i have the following problem:
customer want to present double type to a string by an optimal way. it need to be converted to string and showed on a form(sms, table and other).
100000000.949999 needs to be converted in 100000000.950;
10.000000001 -> 10.0;
100000000000000.19292 -> 1e+14;
1000.123456789 -> 1000.123;
0.00001 -> 0.0;
The code for converting is a performance critical, it means that no std::stringstream + setprecision() should be used.
It will be great to implement params 'precision' as argument of my toStringNew() function, but this improvements may critically affects all our system, and we are planning implement it in the next release.
But this problem is actual now.
I wrote the following code:
inline bool toStringNew(std::string& str, double const& value)
{
static const char *zero_double_str = "0.0";
static const double zero_double_limit = 0.001;
static const int max_double_prec_symbol = 13;
static const int max_fract_num = 3;
static const int max_fract_mul = pow(10, max_fract_num);
str.clear();
//get digits of integer part
double fabs_value = fabs(value);
int64_t len = log10(fabs_value);
//Round 2 zero
if(len <= 0) //it means that only fraction part is present
{
if(fabs_value < zero_double_limit)
{
str = zero_double_str;
return true;
}
//use default
return boost::spirit::karma::generate(std::back_inserter(str), value);
}
else if(len > max_double_prec_symbol) //default
{
return boost::spirit::karma::generate(std::back_inserter(str), value);
}
//cast to integer
int64_t i = static_cast<int64_t>(value);
//cast fract to integer
int64_t fract_i = static_cast<int64_t>(round((value - i)* max_fract_mul));
//reserve string memory
size_t str_len = len + 1 + max_fract_num + (value > 0 ? 0 : 1) + 1;
str.reserve(str_len);
//convert integer
boost::spirit::karma::generate(std::back_inserter(str), i);
str+='.';
//convert fract
if(fract_i > 0)
{
str+='.';
int64_t fract_i_len = log10(fract_i);
//fill zero before: 0.001 -> 1 -> 001
while(++fract_i_len < max_fract_num)
{
str += '0';
}
//remove zero after: 010 -> 01
while(!(fract_i % 10))
{
fract_i = fract_i / 10;
}
boost::spirit::karma::generate(std::back_inserter(str), fract_i);
}
boost::spirit::karma::generate(std::back_inserter(str), fract_i);
return true;
}
This works at 1,5 times faster than boost::spirit::karma::generate() for double type.
Can you give me some advices how to satisfy my customer?
I would look at the C++ String Toolkit Library. I have used it for parsing and number conversion and it has shown to be very fast.
#include <cmath>
#include <strtk.hpp>
#include <iostream>
using namespace std;
int main ( int argc, char **argv )
{
double pi = M_PI;
std::cout << strtk::type_to_string<double>( pi ) << std::endl;
return 0;
}
If performance is critical maybe use snprintf. It will be better than your home grown solution and also I think it will perform better. Using the * format specifier you can also make the precision an argument.
Related
As I run the program, it crashes with segmentation fault. Also, when I debug the code in codeblocks IDE, I am unable to debug it as well. The program crashes even before debugging begins. I am not able to understand the problem. Any help would be appreciated. Thanks!!
#include <iostream>
#include <math.h>
#include <string>
using namespace std;
// Method to make strings of equal length
int makeEqualLength(string& fnum,string& snum){
int l1 = fnum.length();
int l2 = snum.length();
if(l1>l2){
int d = l1-l2;
while(d>0){
snum = '0' + snum;
d--;
}
return l1;
}
else if(l2>l1){
int d = l2-l1;
while(d>0){
fnum = '0' + fnum;
d--;
}
return l2;
}
else
return l1;
}
int singleDigitMultiplication(string& fnum,string& snum){
return ((fnum[0] -'0')*(snum[0] -'0'));
}
string addStrings(string& s1,string& s2){
int length = makeEqualLength(s1,s2);
int carry = 0;
string result;
for(int i=length-1;i>=0;i--){
int fd = s1[i]-'0';
int sd = s2[i]-'0';
int sum = (fd+sd+carry)%10+'0';
carry = (fd+sd+carry)/10;
result = (char)sum + result;
}
result = (char)carry + result;
return result;
}
long int multiplyByKaratsubaMethod(string fnum,string snum){
int length = makeEqualLength(fnum,snum);
if(length==0) return 0;
if(length==1) return singleDigitMultiplication(fnum,snum);
int fh = length/2;
int sh = length - fh;
string Xl = fnum.substr(0,fh);
string Xr = fnum.substr(fh,sh);
string Yl = snum.substr(0,fh);
string Yr = snum.substr(fh,sh);
long int P1 = multiplyByKaratsubaMethod(Xl,Yl);
long int P3 = multiplyByKaratsubaMethod(Xr,Yr);
long int P2 = multiplyByKaratsubaMethod(addStrings(Xl,Xr),addStrings(Yl,Yr)) - P1-P3;
return (P1*pow(10,length) + P2*pow(10,length/2) + P3);
}
int main()
{
string firstNum = "62";
string secondNum = "465";
long int result = multiplyByKaratsubaMethod(firstNum,secondNum);
cout << result << endl;
return 0;
}
There are three serious issues in your code:
result = (char)carry + result; does not work.The carry has a value between 0 (0 * 0) and 8 (9 * 9). It has to be converted to the corresponding ASCII value:result = (char)(carry + '0') + result;.
This leads to the next issue: The carry is even inserted if it is 0. There is an if statement missing:if (carry/* != 0*/) result = (char)(carry + '0') + result;.
After fixing the first two issues and testing again, the stack overflow still occurs. So, I compared your algorithm with another I found by google:Divide and Conquer | Set 4 (Karatsuba algorithm for fast multiplication)(and possibly was your origin because it's looking very similar). Without digging deeper, I fixed what looked like a simple transfer mistake:return P1 * pow(10, 2 * sh) + P2 * pow(10, sh) + P3;(I replaced length by 2 * sh and length/2 by sh like I saw it in the googled code.) This became obvious for me seeing in the debugger that length can have odd values so that sh and length/2 are distinct values.
Afterwards, your program became working.
I changed the main() function to test it a little bit harder:
#include <cmath>
#include <iostream>
#include <string>
using namespace std;
string intToStr(int i)
{
string text;
do {
text.insert(0, 1, i % 10 + '0');
i /= 10;
} while (i);
return text;
}
// Method to make strings of equal length
int makeEqualLength(string &fnum, string &snum)
{
int l1 = (int)fnum.length();
int l2 = (int)snum.length();
return l1 < l2
? (fnum.insert(0, l2 - l1, '0'), l2)
: (snum.insert(0, l1 - l2, '0'), l1);
}
int singleDigitMultiplication(const string& fnum, const string& snum)
{
return ((fnum[0] - '0') * (snum[0] - '0'));
}
string addStrings(string& s1, string& s2)
{
int length = makeEqualLength(s1, s2);
int carry = 0;
string result;
for (int i = length - 1; i >= 0; --i) {
int fd = s1[i] - '0';
int sd = s2[i] - '0';
int sum = (fd + sd + carry) % 10 + '0';
carry = (fd + sd + carry) / 10;
result.insert(0, 1, (char)sum);
}
if (carry) result.insert(0, 1, (char)(carry + '0'));
return result;
}
long int multiplyByKaratsubaMethod(string fnum, string snum)
{
int length = makeEqualLength(fnum, snum);
if (length == 0) return 0;
if (length == 1) return singleDigitMultiplication(fnum, snum);
int fh = length / 2;
int sh = length - fh;
string Xl = fnum.substr(0, fh);
string Xr = fnum.substr(fh, sh);
string Yl = snum.substr(0, fh);
string Yr = snum.substr(fh, sh);
long int P1 = multiplyByKaratsubaMethod(Xl, Yl);
long int P3 = multiplyByKaratsubaMethod(Xr, Yr);
long int P2
= multiplyByKaratsubaMethod(addStrings(Xl, Xr), addStrings(Yl, Yr))
- P1 - P3;
return P1 * pow(10, 2 * sh) + P2 * pow(10, sh) + P3;
}
int main()
{
int nErrors = 0;
for (int i = 0; i < 1000; i += 3) {
for (int j = 0; j < 1000; j += 3) {
long int result
= multiplyByKaratsubaMethod(intToStr(i), intToStr(j));
bool ok = result == i * j;
cout << i << " * " << j << " = " << result
<< (ok ? " OK." : " ERROR!") << endl;
nErrors += !ok;
}
}
cout << nErrors << " error(s)." << endl;
return 0;
}
Notes about changes I've made:
Concerning std library: Please, don't mix headers with ".h" and without. Every header of std library is available in "non-suffix-flavor". (The header with ".h" are either C header or old-fashioned.) Headers of C library have been adapted to C++. They have the old name with prefix "c" and without suffix ".h".
Thus, I replaced #include <math.h> by #include <cmath>.
I couldn't resist to make makeEqualLength() a little bit shorter.
Please, note, that a lot of methods in std use std::size_t instead of int or unsigned. std::size_t has appropriate width to do array subscript and pointer arithmetic i.e it has "machine word width". I believed a long time that int and unsigned should have "machine word width" also and didn't care about size_t. When we changed in Visual Studio from x86 (32 bits) to x64 (64 bits), I learnt the hard way that I had been very wrong: std::size_t is 64 bits now but int and unsigned are still 32 bits. (MS VC++ is not an exception. Other compiler vendors (but not all) do it the same way.)I inserted some C type casts to remove the warnings from compiler output. Such casts to remove warnings (regardless you use C casts or better the C++ casts) should always be used with care and should be understood as confirmation: Dear compiler. I see you have concerns but I (believe to) know and assure you that it should work fine.
I'm not sure about your intention to use long int in some places. (Probably, you transferred this code from original source without caring about.) As your surely know, the actual size of all int types may differ to match best performance of the target platform. I'm working on a Intel-PC with Windows 10, using Visual Studio. sizeof (int) == sizeof (long int) (32 bits). This is independent whether I compile x86 code (32 bits) or x64 code (64 bits). The same is true for gcc (on cygwin in my case) as well as on any Intel-PC with Linux (AFAIK). For a granted larger type than int you have to choose long long int.
I did the sample session in cygwin on Windows 10 (64 bit):
$ g++ -std=c++11 -o karatsuba karatsuba.cc
$ ./karatsuba
0 * 0 = 0 OK.
0 * 3 = 0 OK.
0 * 6 = 0 OK.
etc. etc.
999 * 993 = 992007 OK.
999 * 996 = 995004 OK.
999 * 999 = 998001 OK.
0 error(s).
$
I write this code for show fibonacci series using recursion.But It not show correctly for n>43 (ex: for n=100 show:-980107325).
#include<stdio.h>
#include<conio.h>
void fibonacciSeries(int);
void fibonacciSeries(int n)
{
static long d = 0, e = 1;
long c;
if (n>1)
{
c = d + e;
d = e;
e = c;
printf("%d \n", c);
fibonacciSeries(n - 1);
}
}
int main()
{
long a, n;
long long i = 0, j = 1, f;
printf("How many number you want to print in the fibonnaci series :\n");
scanf("%d", &n);
printf("\nFibonacci Series: ");
printf("%d", 0);
fibonacciSeries(n);
_getch();
return 0;
}
The value of fib(100) is so large that it will overflow even a 64 bit number. To operate on such large values, you need to do arbitrary-precision arithmetic. Arbitrary-precision arithmetic is not provided by C nor C++ standard libraries, so you'll need to either implement it yourself or use a library written by someone else.
For smaller values that do fit your long long, your problem is that you use the wrong printf format specifier. To print a long long, you need to use %lld.
Code overflows the range of the integer used long.
Could use long long, but even that may not handle Fib(100) which needs at least 69 bits.
Code could use long double if 1.0/LDBL_EPSILON > 3.6e20
Various libraries exist to handle very large integers.
For this task, all that is needed is a way to add two large integers. Consider using a string. An inefficient but simply string addition follows. No contingencies for buffer overflow.
#include <stdio.h>
#include <string.h>
#include <assert.h>
char *str_revese_inplace(char *s) {
char *left = s;
char *right = s + strlen(s);
while (right > left) {
right--;
char t = *right;
*right = *left;
*left = t;
left++;
}
return s;
}
char *str_add(char *ssum, const char *sa, const char *sb) {
const char *pa = sa + strlen(sa);
const char *pb = sb + strlen(sb);
char *psum = ssum;
int carry = 0;
while (pa > sa || pb > sb || carry) {
int sum = carry;
if (pa > sa) sum += *(--pa) - '0';
if (pb > sb) sum += *(--pb) - '0';
*psum++ = sum % 10 + '0';
carry = sum / 10;
}
*psum = '\0';
return str_revese_inplace(ssum);
}
int main(void) {
char fib[3][300];
strcpy(fib[0], "0");
strcpy(fib[1], "1");
int i;
for (i = 2; i <= 1000; i++) {
printf("Fib(%3d) %s.\n", i, str_add(fib[2], fib[1], fib[0]));
strcpy(fib[0], fib[1]);
strcpy(fib[1], fib[2]);
}
return 0;
}
Output
Fib( 2) 1.
Fib( 3) 2.
Fib( 4) 3.
Fib( 5) 5.
Fib( 6) 8.
...
Fib(100) 3542248xxxxxxxxxx5075. // Some xx left in for a bit of mystery.
Fib(1000) --> 43466...about 200 more digits...8875
You can print some large Fibonacci numbers using only char, int and <stdio.h> in C.
There is some headers :
#include <stdio.h>
#define B_SIZE 10000 // max number of digits
typedef int positive_number;
struct buffer {
size_t index;
char data[B_SIZE];
};
Also some functions :
void init_buffer(struct buffer *buffer, positive_number n) {
for (buffer->index = B_SIZE; n; buffer->data[--buffer->index] = (char) (n % 10), n /= 10);
}
void print_buffer(const struct buffer *buffer) {
for (size_t i = buffer->index; i < B_SIZE; ++i) putchar('0' + buffer->data[i]);
}
void fly_add_buffer(struct buffer *buffer, const struct buffer *client) {
positive_number a = 0;
size_t i = (B_SIZE - 1);
for (; i >= client->index; --i) {
buffer->data[i] = (char) (buffer->data[i] + client->data[i] + a);
buffer->data[i] = (char) (buffer->data[i] - (a = buffer->data[i] > 9) * 10);
}
for (; a; buffer->data[i] = (char) (buffer->data[i] + a), a = buffer->data[i] > 9, buffer->data[i] = (char) (buffer->data[i] - a * 10), --i);
if (++i < buffer->index) buffer->index = i;
}
Example usage :
int main() {
struct buffer number_1, number_2, number_3;
init_buffer(&number_1, 0);
init_buffer(&number_2, 1);
for (int i = 0; i < 2500; ++i) {
number_3 = number_1;
fly_add_buffer(&number_1, &number_2);
number_2 = number_3;
}
print_buffer(&number_1);
}
// print 131709051675194962952276308712 ... 935714056959634778700594751875
Best C type is still char ? The given code is printing f(2500), a 523 digits number.
Info : f(2e5) has 41,798 digits, see also Factorial(10000) and Fibonacci(1000000).
Well, you could want to try implementing BigInt in C++ or C.
Useful Material:
How to implement big int in C++
For this purporse you need implement BigInteger. There is no such build-in support in current c++. You can view few advises on stack overflow
Or you also can use some libs like GMP
Also here is some implementation:
E-maxx - on Russian language description.
Or find some open implementation on GitHub
Try to use a different format and printf, use unsigned to get wider range of digits.
If you use unsigned long long you should get until 18 446 744 073 709 551 615 so until the 93th number for fibonacci serie 12200160415121876738 but after this one you will get incorrect result because the 94th number 19740274219868223167 is too big for unsigned long long.
Keep in mind that the n-th fibonacci number is (approximately) ((1 + sqrt(5))/2)^n.
This allows you to get the value for n that allows the result to fit in 32 /64 unsigned integers. For signed remember that you lose one bit.
Is it possible to take an array filled with 2 digit numbers e.g.
[10,11,12,13,...]
and multiply each element in the list by 100^(position in the array) and sum the result so that:
mysteryFunction[10,11,12] //The function performs 10*100^0 + 11*100^1 + 12*100^3
= 121110
and also
mysteryFunction[10,11,12,13]
= 13121110
when I do not know the number of elements in the array?
(yes, the reverse of order is intended but not 100% necessary, and just in case you missed it the first time the numbers will always be 2 digits)
Just for a bit of background to the problem: this is to try to improve my attempt at an RSA encryption program, at the moment I am multiplying each member of the array by 100^(the position of the number) written out each time which means that each word which I use to encrypt must be a certain length.
For example to encrypt "ab" I have converted it to an array [10,11] but need to convert it to 1110 before I can put it through the RSA algorithm. I would need to adjust my code for if I then wanted to use a three letter word, again for a four letter word etc. which I'm sure you will agree is not ideal. My code is nothing like industry standard but I am happy to upload it should anyone want to see it (I have also already managed this in Haskell if anyone would like to see that). I thought that the background information was necessary just so that I don't get hundreds of downvotes from people thinking that I'm trying to trick them into doing homework for me. Thank you very much for any help, I really do appreciate it!
EDIT: Thank you for all of the answers! They perfectly answer the question that I asked but I am having problems incorporating them into my current program, if I post my code so far would you be able to help? When I tried to include the answer provided I got an error message (I can't vote up because I don't have enough reputation, sorry that I haven't accepted any answers yet).
#include <iostream>
#include <string>
#include <math.h>
int returnVal (char x)
{
return (int) x;
}
unsigned long long modExp(unsigned long long b, unsigned long long e, unsigned long long m)
{
unsigned long long remainder;
int x = 1;
while (e != 0)
{
remainder = e % 2;
e= e/2;
if (remainder == 1)
x = (x * b) % m;
b= (b * b) % m;
}
return x;
}
int main()
{
unsigned long long p = 80001;
unsigned long long q = 70021;
int e = 7;
unsigned long long n = p * q;
std::string foo = "ab";
for (int i = 0; i < foo.length(); i++);
{
std::cout << modExp (returnVal((foo[0]) - 87) + returnVal (foo[1] -87) * 100, e, n);
}
}
If you want to use plain C-style arrays, you will have to separately know the number of entries. With this approach, your mysterious function might be defined like this:
unsigned mysteryFunction(unsigned numbers[], size_t n)
{
unsigned result = 0;
unsigned factor = 1;
for (size_t i = 0; i < n; ++i)
{
result += factor * numbers[i];
factor *= 100;
}
return result;
}
You can test this code with the following:
#include <iostream>
int main()
{
unsigned ar[] = {10, 11, 12, 13};
std::cout << mysteryFunction(ar, 4) << "\n";
return 0;
}
On the other hand, if you want to utilize the STL's vector class, you won't separately need the size. The code itself won't need too many changes.
Also note that the built-in integer types cannot handle very large numbers, so you might want to look into an arbitrary precision number library, like GMP.
EDIT: Here's a version of the function which accepts a std::string and uses the characters' ASCII values minus 87 as the numbers:
unsigned mysteryFunction(const std::string& input)
{
unsigned result = 0;
unsigned factor = 1;
for (size_t i = 0; i < input.size(); ++i)
{
result += factor * (input[i] - 87);
factor *= 100;
}
return result;
}
The test code becomes:
#include <iostream>
#include <string>
int main()
{
std::string myString = "abcde";
std::cout << mysteryFunction(myString) << "\n";
return 0;
}
The program prints: 1413121110
As benedek mentioned, here's an implementation using dynamic arrays via std::vector.
unsigned mystery(std::vector<unsigned> vect)
{
unsigned result = 0;
unsigned factor = 1;
for (auto& item : vect)
{
result += factor * item;
factor *= 100;
}
return result;
}
void main(void)
{
std::vector<unsigned> ar;
ar.push_back(10);
ar.push_back(11);
ar.push_back(12);
ar.push_back(13);
std::cout << mystery(ar);
}
I would like to suggest the following solutions.
You could use standard algorithm std::accumulate declared in header <numeric>
For example
#include <iostream>
#include <numeric>
int main()
{
unsigned int a[] = { 10, 11, 12, 13 };
unsigned long long i = 1;
unsigned long long s =
std::accumulate( std::begin( a ), std::end( a ), 0ull,
[&]( unsigned long long acc, unsigned int x )
{
return ( acc += x * i, i *= 100, acc );
} );
std::cout << "s = " << s << std::endl;
return 0;
}
The output is
s = 13121110
The same can be done with using the range based for statement
#include <iostream>
#include <numeric>
int main()
{
unsigned int a[] = { 10, 11, 12, 13 };
unsigned long long i = 1;
unsigned long long s = 0;
for ( unsigned int x : a )
{
s += x * i; i *= 100;
}
std::cout << "s = " << s << std::endl;
return 0;
}
You could also write a separate function
unsigned long long mysteryFunction( const unsigned int a[], size_t n )
{
unsigned long long s = 0;
unsigned long long i = 1;
for ( size_t k = 0; k < n; k++ )
{
s += a[k] * i; i *= 100;
}
return s;
}
Also think about using std::string instead of integral numbers to keep an encrypted result.
Here is code in Java:
int a = 456;
int b = 5;
String s = Integer.toString(a, b);
System.out.println(s);
Now I want the same in C++, but all the conversions i find convert to base 10 only. I ofc dont want to implement this by mysleft, why to write something what already exists
although std::strtol is more flexible, in a controlled case you can use itoa as well.
int a = 456;
int b = 5;
char buffer[32];
itoa(a, buffer, b);
If you want base 8 or 16 you can easily use the string manipulators std::oct and std::hex. If you want arbitrary bases, I suggest checking out this question.
Without error handling http://ideone.com/nCj2XG:
char *toString(unsigned int value, unsigned int radix)
{
char digit[] = "0123456789ABCDEFGHIJKLMNOPRSTUVWXYZ";
char stack[32];
static char out[33];
int quot, rem;
int digits = 0;
do
{
quot = value / radix;
rem = value % radix;
stack[digits] = digit[rem];
value = quot;
digits++;
}
while( value );
int i = 0;
while(digits--)
{
out[i++] = stack[digits];
}
out[i] = 0;
return out;
}
There is no standard function itoa, which performs conversion to an arbitrary calculus system. But for example, in my version of the compiler there is no implementation. My solution:
#include <string>
// maximum radix - base36
std::string int2string(unsigned int value, unsigned int radix) {
const char base36[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
std::string result;
while (value > 0) {
unsigned int remainder = value % radix;
value /= radix;
result.insert(result.begin(), base36[remainder]);
}
return result;
}
I needed to convert a fractional part of a number into integer without a comma,
for example I have 3.35 I want to get just 35 part without zero or a comma,
Because I used the modf() function to extract the the fractional part but it gives me a 0.35
if there is any way to do that or to filter the '0.' part I will be very grateful if you show me how with the smaller code possible,
A bit more efficient than converting to a string and back again:
int fractional_part_as_int(double number, int number_of_decimal_places) {
double dummy;
double frac = modf(number,&dummy);
return round(frac*pow(10,number_of_decimal_places));
}
#include <iostream>
#include <cmath>
double round(double r) {
return (r > 0.0) ? std::floor(r + 0.5) : std::ceil(r - 0.5);
}
double floor_to_zero(double f) {
return (f > 0.0) ? std::floor(f) : std::ceil(f);
}
double sign(double s) {
return (s < 0.0) ? -1.0 : 1.0;
}
int frac(double f, int prec) {
return round((f - floor_to_zero(f)) * prec) * sign(f);
}
int main() {
double a = 1.2345;
double b = -34.567;
std::cout << frac(a, 100) << " " << frac(b, 100) << std::endl; // 23 57
}
another solution
int precision= 100;
double number = 3.35;
int f = floor(xx);
double temp = ( f - number ) * -1;
int fractional_part = temp * precision;
IF you need it as a string, a quite easy C style solution would be (should work for variable number of decimal places):
double yourNumber = 0.35f;
char buffer[32];
snprintf(buffer, 32, "%g", yourNumber);
strtok(buffer, "."); // Here we would get the part before . , should still check
char* fraction = strtok(NULL, ".");
int fractionAsInt = atoi(fraction);
This example lacks error handling in case of a bad string and is not feasible if you just need a fixed number of decimal places, since the arithmetic approaches work better there.
Something like this should work:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
static int get_frac(double value, unsigned short precision)
{
return (int)((value - (long)value) * pow(10, precision));
}
static int get_frac_no_trailing_zeros(double value, unsigned short precision)
{
int v = get_frac(value, precision);
while (v % 10 == 0)
v /= 10;
return v;
}
int main(int argc, char *argv[])
{
double v;
v = 123.4564;
printf("%.4f = %d\n", v, get_frac(v, 2));
printf("%.4f = %d\n", v, get_frac(v, 4));
printf("%.4f = %d\n", v, get_frac(v, 6));
printf("%.4f = %d\n", v, get_frac_no_trailing_zeros(v, 6));
return EXIT_SUCCESS;
}
You may also want to either avoid calling pow by having a user supply a number in a power of 10 in a first place, or use a lookup table.
Using some stl magic, here is the sample code:
typedef std::pair<int, int> SplitFloat;
SplitFloat Split(float value, int precision)
{
// Get integer part.
float left = std::floor(value);
// Get decimal part.
float right = (value - left) * float(std::pow(10, precision));
return SplitFloat(left, right);
}
It can be improved, but is pretty straightforward.
I just did something close to what you are trying to do, though I'm still pretty new. None the less, maybe this will help someone in the future as I landed here looking for results for my problem.
The first step is making sure that the variable that contains 3.35 is a double, but that's probably obvious.
Next, create a variable that is only an integer and set it's value equal to the value of the double. It will then only contain the whole number.
Then subtract the whole number (int) from the double. You will be left with the fraction/decimal value. From there, just multiply by 100.
Beyond the 100ths decimal value, you would have to do a little more configuring obviously, but it should be fairly simple to do with an if statement. If the decimal value is greater than .99, multiply 1000 instead etc..
Here's how I would do it.
#include <sstream>
#include <string>
int main()
{
double d = yourDesiredNumber; //this is your number
std::ostringstream out;
out << setprecision(yourDesiredPrecision) << std::fixed
<< std::showpoint << d;
std::istringstream in(out.str());
std::string wholePart; //you won't need this.
int fractionalPart;
std::getline(in, wholePart, '.');
in >> fractionalPart;
//now fractionalPart contains your desired value.
}
I'm pretty sure that instead of two different istringstream and ostringstream objects you could have gotten away with just one stringstream object, but I am not sure about the details (never used that class) so I didn't use it in the example.