Feeding the TEA Cipher without flooding ram - c++

How would it be possible to feed the TEA cipher without exceeding a systems ram with large files?
I have tried doing this however it has all ended with massive failure and hours of tinkering that leads to nothing. So could someone give me an example of how this can be done or any meaningful information on how to do it?
void decodeXtea(unsigned int* v, unsigned int* w, unsigned int* k) {
register unsigned int v0=v[0], v1=v[1], i, sum=0xC6EF3720;
register unsigned int delta=0x9E3779B9;
for(i=0; i<32; i++) {
v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + k[(sum>>11) & 3]);
sum -= delta;
v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + k[sum & 3]);
}
w[0]=v0; w[1]=v1;
}
void TeaDecode ( const std::string& str, const std::string& key, std::string* out )
{
unsigned int v[2];
unsigned int w[2];
unsigned int k[4];
unsigned int keybuffer [ 4 ];
// Clear buffers
memset ( v, 0, sizeof(v) );
memset ( w, 0, sizeof(w) );
memset ( k, 0, sizeof(k) );
memset ( keybuffer, 0, sizeof(keybuffer) );
out->clear ();
// Count the number of passes that we need
int numBlocks = str.length() / 4;
int numPasses = numBlocks - 1;
if ( numPasses <= 0 )
return;
// Process the key
int len = key.length ();
if ( len > 16 )
len = 16;
memcpy ( keybuffer, key.c_str(), len );
for ( int i = 0; i < 4; ++i )
k[i] = keybuffer[i];
// Create a temporary buffer to store the result
unsigned char* buffer = new unsigned char [ numPasses * 4 + 4 ];
memset ( buffer, 0, numPasses * 4 + 4 );
// Decode it!
const char* p = str.c_str();
v[1] = *(unsigned int*)&p[numPasses * 4];
for ( int i = 0; i < numPasses; ++i )
{
v[0] = *(unsigned int*)&p[(numPasses-i-1)*4];
decodeXtea ( &v[0], &w[0], &k[0] );
*(unsigned int*)&buffer[(numPasses-i-1)*4] = w[0];
v[1] = w[1];
}
out->assign ( (char *)buffer, numPasses*4 );
delete [] buffer;
}
void encodeXtea(unsigned int* v, unsigned int* w, unsigned int* k) {
register unsigned int v0=v[0], v1=v[1], i, sum=0;
register unsigned int delta=0x9E3779B9;
for(i=0; i<32; i++) {
v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + k[sum & 3]);
sum += delta;
v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + k[(sum>>11) & 3]);
}
w[0]=v0; w[1]=v1;
}
void TeaEncode ( const std::string& str, const std::string& key, std::string* out )
{
unsigned int v[2];
unsigned int w[2];
unsigned int k[4];
unsigned int keybuffer [ 4 ];
// Clear buffers
memset ( v, 0, sizeof(v) );
memset ( w, 0, sizeof(w) );
memset ( k, 0, sizeof(k) );
memset ( keybuffer, 0, sizeof(keybuffer) );
out->clear ();
// Process the key
int len = key.length ();
if ( len > 16 )
len = 16;
memcpy ( keybuffer, key.c_str(), len );
for ( int i = 0; i < 4; ++i )
k[i] = keybuffer[i];
// Copy the input string to a buffer of size multiple of 4
int strbuflen = str.length ();
if ( strbuflen == 0 )
return;
if ( (strbuflen % 4) > 0 )
strbuflen += 4 - (strbuflen % 4);
unsigned char* strbuf = new unsigned char [ strbuflen ];
memset ( strbuf, 0, strbuflen );
memcpy ( strbuf, str.c_str(), str.length() );
// Encode it!
v[1] = 0;
for ( int i = 0; i < strbuflen; i += 4 )
{
v[0] = *(unsigned int*)&strbuf[i];
encodeXtea ( &v[0], &w[0], &k[0] );
out->append ( (char*)&w[0], 4 );
v[1] = w[1];
}
out->append ( (char*)&v[1], 4 );
delete [] strbuf;
}

This fixed it.
void readSystem(string fname,string outFileName,string key,string mode)
{
//size_t buffer_size = 1<<20;
size_t buffer_size;
if(mode == "E")
{
buffer_size = 32;
}
else
{
buffer_size = 36;
}
//char *buffer = new char[buffer_size];
string buffer(buffer_size,'\0');
string data,output;
//data.resize(buffer_size);
// The input
std::ifstream fin(fname,ios::binary);
// The output
ofstream outFile(outFileName,ios::binary);// | ios::app);
// Anti overwrite
if(getSize(outFileName) > 0)
{
cout << "Overwrite error" << endl;
exit(0);
}
while (fin)
{
// Try to read next chunk of data
// fin.read(buffer, buffer_size);
fin.read(&buffer.front(), buffer_size);
// Get the number of bytes actually read
size_t count = fin.gcount();
data = buffer;
//data = encode(data,key);
if(mode == "E")
{
data = encode(data,key);
}
if(mode == "D")
{
data = decode(data,key);
}
//blockXor(data,key);
//outFile.write(data.c_str(),count);
outFile.write(data.c_str(),data.length());
// If nothing has been read, break
if (!count)
break;
// Do whatever you need with first count bytes in the buffer
}
outFile.close();
fin.close();
// delete[] buffer;
}

Related

Convert LPCTSTR HEXADECIMAL to BYTE in VS C++

I have below function that supports for conversion of LPCTSTR to BYTE , but the input str only support digits as of now.
void StrToByte2(LPCTSTR str, BYTE *dest)
{
UINT count = _ttoi(str);
BYTE buf[4] = { 0 };
char string[10] = { 0 };
sprintf_s(string, 10, "%04d", count);
for (int i = 0; i < 4; ++i)
{
if ((string[i] >= '0') && (string[i] <= '9'))
buf[i] = string[i] - '0';
}
dest[0] = (BYTE)(buf[0] << 4) | buf[1];
dest[1] = (BYTE)(buf[2] << 4) | buf[3];
}
If i call this function on "1234" ( any digits) , dest output some 12814,
struct st
{
byte btID[2];
int nID;
};
PTR ptr(new st);
StrToByte2(strCode, ptr->btID);
but when i call this function on any hexadecimal ex A123 , it outputs 0000 always.
Below function is used to convert back the dest code to str
CString Byte2ToStr(const byte* pbuf)
{
CString str;
str.Format(_T("%02X%02X"), pbuf[0], pbuf[1]);
return str;
}
How can i get A123 to converted to bytes and than back to str to display A123??
Please help!!
PTR ptr(new st);
This is a memory leak in C++, because new st allocates memory and there is no way to release it.
UINT count = _ttoi(str);
...
sprintf_s(string, 10, "%04d", count);
This is converting string to integer, then converts integer back to string. It doesn't seem to have a real purpose.
For example, "1234" is converted to 1234, and back to "1234". But "A123" is not a valid number so it is converted to 0, then converted to "0000". So this method fails. You can just work with the original string.
It seems this function tries to fit 2 integers in to 1 byte. This can be done as long as each value is less than 16 or 0xF (I don't know what purpose this might have) It can be fixed as follows:
void StrToByte2(const wchar_t* str, BYTE *dest)
{
int len = wcslen(str);
if(len != 4)
return; //handle error
char buf[4] = { 0 };
for(int i = 0; i < 4; ++i)
if(str[i] >= L'0' && str[i] <= L'9')
buf[i] = (BYTE)(str[i] - L'0');
dest[0] = (buf[0] << 4) + buf[1];
dest[1] = (buf[2] << 4) + buf[3];
}
CStringW Byte2_To_Str(BYTE *dest)
{
CStringW str;
str.AppendFormat(L"%X", 0xF & (dest[0] >> 4));
str.AppendFormat(L"%X", 0xF & (dest[0]));
str.AppendFormat(L"%X", 0xF & (dest[1] >> 4));
str.AppendFormat(L"%X", 0xF & (dest[1]));
return str;
}
int main()
{
BYTE dest[2] = { 0 };
StrToByte2(L"1234", dest);
OutputDebugStringW(Byte2_To_Str(dest));
OutputDebugStringW(L"\n");
return 0;
}
If the string is hexadecimal, you can use sscanf to convert each pair of character to bytes.
Basically, "1234" changes to 12 34
"A123" changes to A1 23
bool hexstring_to_bytes(const wchar_t* str, BYTE *dest, int dest_size = 2)
{
int len = wcslen(str);
if((len / 2) > dest_size)
{
//error
return false;
}
for(int i = 0; i < len / 2; i++)
{
int v;
if(swscanf_s(str + i * 2, L"%2x", &v) != 1)
break;
dest[i] = (unsigned char)v;
}
return true;
}
CStringW bytes_to_hexstring(const BYTE* bytes, int byte_size = 2)
{
CString str;
for(int i = 0; i < byte_size; i++)
str.AppendFormat(L"%02X ", bytes[i] & 0xFF);
return str;
}
int main()
{
CStringW str;
CStringW new_string;
BYTE dest[2] = { 0 };
str = L"1234";
hexstring_to_bytes(str, dest);
new_string = bytes_to_hexstring(dest);
OutputDebugString(new_string);
OutputDebugString(L"\n");
str = L"A123";
hexstring_to_bytes(str, dest);
new_string = bytes_to_hexstring(dest);
OutputDebugStringW(new_string);
OutputDebugStringW(L"\n");
return 0;
}

Runtime error in c++ when analysing time [closed]

Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed 6 years ago.
Improve this question
I'm trying to check how much time passes with each 3 solutions for a problem, but sometimes I get a runtime error and can't see the passed time for 3rd solution, but sometimes it works. I think the solutions.h file is correct but i put it here anyway.
#include <iostream>
#include <cstdlib>
#include <ctime>
#include "solutions.h"
using namespace std;
int main()
{
cout << "Hello world!" << endl;
int* input1 = new int[10000];
int* input2 = new int[20000];
int* input3 = new int[40000];
int* input4 = new int[80000];
int* input5 = new int[100000];
for(int i = 0; i<100000; i++)
{
input1[i]= rand();
input2[i]= rand();
input3[i]= rand();
input4[i]= rand();
input5[i]= rand();
}
int* output1= new int[1000];
double duration;
clock_t startTime1 = clock();
solution1(input1,10000,1000,output1);
duration = 1000 * double( clock() - startTime1 ) / CLOCKS_PER_SEC;
cout << "Solution 1 with 10000 inputs took " << duration << " milliseconds." << endl;
startTime1 = clock();
solution2(input1,10000,1000,output1);
duration = 1000 * double( clock() - startTime1 ) / CLOCKS_PER_SEC;
cout << "Solution 2 with 10000 inputs took " << duration<< " milliseconds." << endl;
startTime1 = clock();
solution3(input1,10000,1000,output1);
duration = 1000 * double( clock() - startTime1 ) / CLOCKS_PER_SEC;
cout << "Solution 3 with 10000 inputs took " << duration << " milliseconds." << endl<<endl<<endl;
return 0;
}
And the solutions.h is
#ifndef SOLUTIONS_H_INCLUDED
#define SOLUTIONS_H_INCLUDED
#include <cmath>
void solution1( int input[], const int n, const int k, int output[] );
void solution2( int input[], const int n, const int k, int output[] );
void solution3( int input[], const int n, const int k, int output[] );
void swap( int &n1, int &n2 ) {
int temp = n1;
n1 = n2;
n2 = temp;
}
void solution1( int input[], const int n, const int k, int output[] ) {
int maxIndex, maxValue;
for( int i = 0; i < k; i++ ) {
maxIndex = i;
maxValue = input[i];
for( int j = i+1; j < n; j++ ) {
if( input[j] >= maxValue ) {
maxIndex = j;
maxValue = input[ j ];
}
}
swap( input[i], input[maxIndex] );
output[i] = input[i];
}
}
int partition( int input[], int p, int r ) {
int x = input[ r ], i = p - 1;
for( int j = p; j < r; j++ ) {
if( input[ j ] >= x ) {
i = i + 1;
swap( input[i], input[j] );
}
}
swap( input[i+1], input[r] );
return i + 1;
}
void quickSort( int input[], int p, int r ) {
int q;
if( p < r ) {
q = partition( input, p, r );
quickSort( input, p, q - 1 );
quickSort( input, q + 1, r );
}
}
void solution2( int input[], const int n, const int k, int output[] ) {
quickSort( input, 0, n - 1 );
for( int i = 0; i < k; i++ ) {
output[i] = input[i];
}
}
int partition2( int input[], int a, int p, int r ) {
int x = a, i = p - 1;
for( int j = p; j < r; j++ ) {
if( input[ j ] == x ) {
swap( input[ j ], input[ r ] );
}
if( input[ j ] >= x ) {
i = i + 1;
swap( input[i], input[j] );
}
}
swap( input[ i + 1 ], input[ r ] );
return i + 1;
}
void quickSort2( int input[], int p, int r ) {
int q;
if( p < r ) {
q = partition2( input, input[ r ], p, r );
quickSort2( input, p, q - 1 );
quickSort2( input, q + 1, r );
}
}
int findMin( int n1, int n2 ) {
if( n1 <= n2 )
return n1;
else
return n2;
}
int select( int input[], int n, int k, int start, int end, int flag ) {
if( n <= 5 ) {
quickSort2( input, start, end );
return input[ start + k - 1 ];
}
int i = start, numGroups = (int) ceil( ( double ) n / 5 ), numElements, j = 0;
int *medians = new int[numGroups];
while( i <= end ) {
numElements = findMin( 5, end - i + 1 );
medians[( i - start ) / 5] = select( input, numElements, (int) ceil( ( double ) numElements / 2 ), i, i + numElements - 1, 1 );
i = i + 5;
}
int M = select( medians, numGroups, (int) ceil( ( double ) numGroups / 2 ), 0, numGroups - 1, 1 );
delete[] medians;
if( flag == 1 )
return M;
int q = partition2( input, M, start, end );
int m = q - start + 1;
if( k == m )
return M;
else if( k < m )
return select( input, m - 1, k, start, q - 1, 0 );
else
return select( input, end - q, k - m, q + 1, end, 0 );
}
void solution3( int input[], const int n, const int k, int output[] ) {
select( input, n, k, 0, n - 1, 0 );
for( int i = 0; i < k; i++ )
output[i] = input[i];
}
#endif // SOLUTIONS_H_INCLUDED
Building your program with address sanitizer (clang++ clock.cxx -std=c++11 -O1 -g -fsanitize=address -fno-omit-frame-pointer) reveals the problem:
$ ./a.out
Hello world!
=================================================================
==8175==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x62e00000a040 at pc 0x000104dbd912 bp 0x7fff5ae43970 sp 0x7fff5ae43968
WRITE of size 4 at 0x62e00000a040 thread T0
#0 0x104dbd911 in main clock.cxx:18
#1 0x7fff88cd85fc in start (libdyld.dylib+0x35fc)
#2 0x0 (<unknown module>)
0x62e00000a040 is located 0 bytes to the right of 40000-byte region [0x62e000000400,0x62e00000a040)
And there is your code:
int* input1 = new int[10000];
int* input2 = new int[20000];
int* input3 = new int[40000];
int* input4 = new int[80000];
int* input5 = new int[100000];
for(int i = 0; i<100000; i++)
{
input1[i]= rand();
input2[i]= rand();
input3[i]= rand();
input4[i]= rand();
input5[i]= rand();
}
As you can see, size of input1, input2, ..., input4 is 10K, 20K, 40K, 80K elements, but in the loop we are accessing to elements out of this array so this can lead to the heap corruption.
Process returned -1073741819 (0xC0000005)
This means "memory access violation" or SEGFAULT.
Hope this will help.

variable length bit packing in C

I am trying to write c functions ReadInt32, WriteInt32 for packing bits sequentially in a stream buffer with size optimisation in mind.
But my functions do not work as expected, I don't find the same values back after writing them in the buffer. I need a little bit of help to point what and where I have misunderstood.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define BITSET(x,n) (x | ( 1 << n))
#define BITCLEAR(x,n) (x & ~(1 << n))
#define ISBITSET(x,n) ((x & (1 << n)) != 0)
/**
#param nbits The number of bits to write
#param val the integer value to write
#param bufptr a pointer on the buffer to write in
#param nbitswritten the number of bits already written in the previous write.
#return the number of bits actually written.
*/
int WriteInt32(int nbits, int val, uint8_t* bufptr, int nbitswritten)
{
uint8_t* p=(uint8_t*)&val;
uint8_t* ptr = &(*(bufptr+nbitswritten));
for (int i=0; i<nbits; i++)
{
int bpos = (i&0x7);
*(ptr+(i>>3)) = ISBITSET(*(p+(i>>3)), bpos) ? (BITSET(*(ptr+(i>>3)), bpos)) : (BITCLEAR(*(ptr+(i>>3)), bpos));
}
return (nbitswritten + nbits);
}
int ReadInt32(int nbits, int& val, uint8_t* ptr, int nbitsread)
{
val = 0;
uint8_t* p = &(*(ptr+nbitsread));
for (int i=0; i<nbits; i++)
{
uint8_t ch = *(p+(i>>3));
int bpos = (i&0x7);
val = (ISBITSET(ch, bpos) ? BITSET(val, bpos) : BITCLEAR(val, bpos));
}
return (nbitsread+nbits);
}
int main (int argc, const char * argv[])
{
int value = 289; // for example I want to encode this value on 10 bits
unsigned char buf[50];
// packing
int nbitswritten = 0;
nbitswritten = WriteInt32 (10, value, buf, 50, nbitswritten);
// unpacking - read from buffer
int nbitsread = 0;
int rvalue;
nbitsread = ReadInt32(10, rvalue, buf, nbitsread);
if ( value == rvalue)
printf("encoding & decoding ok\n");
else
printf("encoding or decoding failed\n");
return 0;
};
Thank you
Olivier
This is an answer to my own question. How to write/read an integer encoded in smaller size than its natural size.
If it can help someone. That's good. ;)
exemple:
struct dd
{
short var1:5; // This variable is encoded on 5 bits
int var2:11; // This variable is encoded on 11 bits
uint8_t var3:3; // This variable is encoded on 3 bits
};
uint8_t buffer[100];
bzero(buffer, 100);
int nbitswritten = 0;
struct dd vardd = { 16, 452, 3 };
// write stuff
nbitswritten = WriteBits(5, vardd.var1, buffer, 100, nbitswritten);
nbitswritten = WriteBits(11, vardd.var2, buffer, 100, nbitswritten);
nbitswritten = WriteBits(3, vardd.var3, buffer, 100, nbitswritten);
// read back
int v1, v2, v3;
int nbitsread = 0;
struct dd result;
nbitsread = ReadInt(5, v1, buffer, 100, nbitsread);
nbitsread = ReadInt(11, v2, buffer, 100, nbitsread);
nbitsread = ReadInt(3, v3, buffer, 100, nbitsread);
result.var1 = (short)v1;
result.var2 = v2;
result.var3 = (uint8_t)v3;
Actually the Read functions comes from the Torque Engine library!!
This is my slightly modified version :
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define BITSET(x,n) (x | ( 1 << n))
#define BITCLEAR(x,n) (x & ~(1 << n))
#define ISBITSET(x,n) ((x & (1 << n)) != 0)
/**
#param nbits The number of bits to write
#param val the value to write
#param bufptr the buffer to write to/in
#param buflen the maximum buffer length in byte/octet
#param nbitswritten the number of bits in bufptr already written.
#return the number of bits written;
*/
int WriteBits(int nbits, const void * val, uint8_t * bufptr, int buflen, int nbitswritten)
{
if (!bufptr || !val || !nbits || !buflen)
return 0;
if ( nbitswritten >= buflen<<8L )
return 0;
if ( nbits+nbitswritten>buflen<<8L )
return 0;
uint8_t* p=(uint8_t*)val;
int n = nbitswritten;
for (int i=0; i<nbits; i++)
{
int sbpos = (i&0x7);
int dbpos = (n&0x7);
*(bufptr+(n>>3)) = ISBITSET(*(p+(i>>3)), sbpos) ? (BITSET(*(bufptr+(n>>3)), dbpos)) : (BITCLEAR(*(bufptr+(n>>3)), dbpos));
n++;
}
nbitswritten = n;
return (n);
}
int ReadBits(int nbits, void * val, uint8_t * bufptr, int buflen, int nbitsread)
{
if (!nbits)
return 0;
uint8_t * stPtr = (bufptr + (nbitsread >> 3));
int byteCount = (nbits + 7) >> 3;
uint8_t * ptr = (TUint8*)val;
int downShift = nbitsread & 0x7;
int upShift = 8 - downShift;
uint8_t curB = *stPtr;
const uint8_t *stEnd = bufptr + buflen;
while(byteCount--)
{
stPtr++;
uint8_t nextB = stPtr < stEnd ? *stPtr : 0;
*ptr++ = (curB >> downShift) | (nextB << upShift);
curB = nextB;
}
nbitsread += nbits;
return nbitsread;
}
int ReadInt(int nbits, int &val, uint8_t * bufptr, int buflen, int nbitsread)
{
int ret = ReadBits(nbits, &val, bufptr, buflen, nbitsread);
if (nbits != 32) {
val &= (1<<nbits)-1;
}
return ret;
}
Olive

C++ error: no match for call to ‘(RgbImage) (int&, int&)’

The pseudo code I'm trying to follow for this implementation:
for (int u = 0; u < uMax; u++)
{ for (int v = 0; v < vMax; v++)
{ float x = f_x(u, v);
float y = f_y(u, v);
dstImage(x, y) = srcImage(u, v);
}
}
The scaling function I'm trying to implement the above code with. I iterate over each pixel just as I did to change the r,g,b, but I'm having issues changing the value of the x. I've implemented code for this to change the r,g,b of the image but I would now like to be able to scale the x of the image by a factor of 2. This is the attempt to scale x the in the same way as changing r,g,b.
void scale()
{
RgbImage theTexMap( filename ); // loaded from some file name
//RgbImage destination;
double r, g, b; // variables to store the different colours
float u, v;
for (int x = 0; x < theTexMap.GetNumRows(); x++)
{ for (int y = 0; y < theTexMap.GetNumCols(); y++)
{ theTexMap.GetRgbPixel(x, y, &r, &g, &b); //this successfully allows me to change the r,g,b values
u = x * 2;
v = y;
//cout << x <<endl;
//cout << y << " " << endl;
//cout << " " <<endl;
destination.SetRgbPixelf(u, v, r, g, b); //allows me to set r,g,b values, fails with the x,y.
}
}
updateTexture(&destination, modifiedID);
}
According to the Pseudo code I'm trying to follow, it should be more like this. (changed inside of for loops and used u,v iteration)
void scale()
{
RgbImage theTexMap( filename ); // loaded from some file name
//RgbImage destination;
double r, g, b; // variables to store the different colours
float x, y;
for (int u = 0; u < theTexMap.GetNumRows(); u++)
{ for (int v = 0; v < theTexMap.GetNumCols(); v++)
{ x = u * 2;
y = v;
//cout << x <<endl;
//cout << y << " " << endl;
//cout << " " <<endl;
theTexMap(x,y) = theTexMap(u,v)
}
}
updateTexture(&theTexMap, modifiedID);
}
Now because I don't really understand the pseudo code for that last line, I get this error message when I call it in my implementation. The error message I receive.
error: no match for call to ‘(RgbImage) (float&, float&)’
theTexMap(x,y) = theTexMap(u,v);
Well now your saying, I don't know what RgbImage (the type of theTexMap) is you dummy. So here's it's class. Should I be using it in this case like the above? Or how should I follow that pseudo code to get my desired factor of 2 scaling?
#include "RgbImage.h"
#ifndef RGBIMAGE_DONT_USE_OPENGL
#ifdef _WIN32
#include <windows.h>
#endif
#include "GL/gl.h"
#endif
RgbImage::RgbImage( int numRows, int numCols )
{
NumRows = numRows;
NumCols = numCols;
ImagePtr = new unsigned char[NumRows*GetNumBytesPerRow()];
if ( !ImagePtr ) {
fprintf(stderr, "Unable to allocate memory for %ld x %ld bitmap.\n",
NumRows, NumCols);
Reset();
ErrorCode = MemoryError;
}
// Zero out the image
unsigned char* c = ImagePtr;
int rowLen = GetNumBytesPerRow();
for ( int i=0; i<NumRows; i++ ) {
for ( int j=0; j<rowLen; j++ ) {
*(c++) = 0;
}
}
}
bool RgbImage::LoadBmpFile( const char* filename )
{
Reset();
FILE* infile = fopen( filename, "rb" ); // Open for reading binary data
if ( !infile ) {
fprintf(stderr, "Unable to open file: %s\n", filename);
ErrorCode = OpenError;
return false;
}
bool fileFormatOK = false;
int bChar = fgetc( infile );
int mChar = fgetc( infile );
if ( bChar=='B' && mChar=='M' ) { // If starts with "BM" for "BitMap"
skipChars( infile, 4+2+2+4+4 ); // Skip 4 fields we don't care about
NumCols = readLong( infile );
NumRows = readLong( infile );
skipChars( infile, 2 ); // Skip one field
int bitsPerPixel = readShort( infile );
skipChars( infile, 4+4+4+4+4+4 ); // Skip 6 more fields
if ( NumCols>0 && NumCols<=100000 && NumRows>0 && NumRows<=100000
&& bitsPerPixel==24 && !feof(infile) ) {
fileFormatOK = true;
}
}
if ( !fileFormatOK ) {
Reset();
ErrorCode = FileFormatError;
fprintf(stderr, "Not a valid 24-bit bitmap file: %s.\n", filename);
fclose ( infile );
return false;
}
// Allocate memory
ImagePtr = new unsigned char[NumRows*GetNumBytesPerRow()];
if ( !ImagePtr ) {
fprintf(stderr, "Unable to allocate memory for %ld x %ld bitmap: %s.\n",
NumRows, NumCols, filename);
Reset();
ErrorCode = MemoryError;
fclose ( infile );
return false;
}
unsigned char* cPtr = ImagePtr;
for ( int i=0; i<NumRows; i++ ) {
int j;
for ( j=0; j<NumCols; j++ ) {
*(cPtr+2) = fgetc( infile ); // Blue color value
*(cPtr+1) = fgetc( infile ); // Green color value
*cPtr = fgetc( infile ); // Red color value
cPtr += 3;
}
int k=3*NumCols; // Num bytes already read
for ( ; k<GetNumBytesPerRow(); k++ ) {
fgetc( infile ); // Read and ignore padding;
*(cPtr++) = 0;
}
}
if ( feof( infile ) ) {
fprintf( stderr, "Premature end of file: %s.\n", filename );
Reset();
ErrorCode = ReadError;
fclose ( infile );
return false;
}
fclose( infile ); // Close the file
return true;
}
short RgbImage::readShort( FILE* infile )
{
// read a 16 bit integer
unsigned char lowByte, hiByte;
lowByte = fgetc(infile); // Read the low order byte (little endian form)
hiByte = fgetc(infile); // Read the high order byte
// Pack together
short ret = hiByte;
ret <<= 8;
ret |= lowByte;
return ret;
}
long RgbImage::readLong( FILE* infile )
{
// Read in 32 bit integer
unsigned char byte0, byte1, byte2, byte3;
byte0 = fgetc(infile); // Read bytes, low order to high order
byte1 = fgetc(infile);
byte2 = fgetc(infile);
byte3 = fgetc(infile);
// Pack together
long ret = byte3;
ret <<= 8;
ret |= byte2;
ret <<= 8;
ret |= byte1;
ret <<= 8;
ret |= byte0;
return ret;
}
void RgbImage::skipChars( FILE* infile, int numChars )
{
for ( int i=0; i<numChars; i++ ) {
fgetc( infile );
}
}
bool RgbImage::WriteBmpFile( const char* filename )
{
FILE* outfile = fopen( filename, "wb" ); // Open for reading binary data
if ( !outfile ) {
fprintf(stderr, "Unable to open file: %s\n", filename);
ErrorCode = OpenError;
return false;
}
fputc('B',outfile);
fputc('M',outfile);
int rowLen = GetNumBytesPerRow();
writeLong( 40+14+NumRows*rowLen, outfile ); // Length of file
writeShort( 0, outfile ); // Reserved for future use
writeShort( 0, outfile );
writeLong( 40+14, outfile ); // Offset to pixel data
writeLong( 40, outfile ); // header length
writeLong( NumCols, outfile ); // width in pixels
writeLong( NumRows, outfile ); // height in pixels (pos for bottom up)
writeShort( 1, outfile ); // number of planes
writeShort( 24, outfile ); // bits per pixel
writeLong( 0, outfile ); // no compression
writeLong( 0, outfile ); // not used if no compression
writeLong( 0, outfile ); // Pixels per meter
writeLong( 0, outfile ); // Pixels per meter
writeLong( 0, outfile ); // unused for 24 bits/pixel
writeLong( 0, outfile ); // unused for 24 bits/pixel
// Now write out the pixel data:
unsigned char* cPtr = ImagePtr;
for ( int i=0; i<NumRows; i++ ) {
// Write out i-th row's data
int j;
for ( j=0; j<NumCols; j++ ) {
fputc( *(cPtr+2), outfile); // Blue color value
fputc( *(cPtr+1), outfile); // Blue color value
fputc( *(cPtr+0), outfile); // Blue color value
cPtr+=3;
}
// Pad row to word boundary
int k=3*NumCols; // Num bytes already read
for ( ; k<GetNumBytesPerRow(); k++ ) {
fputc( 0, outfile ); // Read and ignore padding;
cPtr++;
}
}
fclose( outfile ); // Close the file
return true;
}
void RgbImage::writeLong( long data, FILE* outfile )
{
// Read in 32 bit integer
unsigned char byte0, byte1, byte2, byte3;
byte0 = (unsigned char)(data&0x000000ff); // Write bytes, low order to high order
byte1 = (unsigned char)((data>>8)&0x000000ff);
byte2 = (unsigned char)((data>>16)&0x000000ff);
byte3 = (unsigned char)((data>>24)&0x000000ff);
fputc( byte0, outfile );
fputc( byte1, outfile );
fputc( byte2, outfile );
fputc( byte3, outfile );
}
void RgbImage::writeShort( short data, FILE* outfile )
{
// Read in 32 bit integer
unsigned char byte0, byte1;
byte0 = data&0x000000ff; // Write bytes, low order to high order
byte1 = (data>>8)&0x000000ff;
fputc( byte0, outfile );
fputc( byte1, outfile );
}
/*********************************************************************
* SetRgbPixel routines allow changing the contents of the RgbImage. *
*********************************************************************/
void RgbImage::SetRgbPixelf( long row, long col, double red, double green, double blue )
{
SetRgbPixelc( row, col, doubleToUnsignedChar(red),
doubleToUnsignedChar(green),
doubleToUnsignedChar(blue) );
}
void RgbImage::SetRgbPixelc( long row, long col,
unsigned char red, unsigned char green, unsigned char blue )
{
assert ( row<NumRows && col<NumCols );
unsigned char* thePixel = GetRgbPixel( row, col );
*(thePixel++) = red;
*(thePixel++) = green;
*(thePixel) = blue;
}
unsigned char RgbImage::doubleToUnsignedChar( double x )
{
if ( x>=1.0 ) {
return (unsigned char)255;
}
else if ( x<=0.0 ) {
return (unsigned char)0;
}
else {
return (unsigned char)(x*255.0); // Rounds down
}
}
// Bitmap file format (24 bit/pixel form) BITMAPFILEHEADER
// Header (14 bytes)
// 2 bytes: "BM"
// 4 bytes: long int, file size
// 4 bytes: reserved (actually 2 bytes twice)
// 4 bytes: long int, offset to raster data
// Info header (40 bytes) BITMAPINFOHEADER
// 4 bytes: long int, size of info header (=40)
// 4 bytes: long int, bitmap width in pixels
// 4 bytes: long int, bitmap height in pixels
// 2 bytes: short int, number of planes (=1)
// 2 bytes: short int, bits per pixel
// 4 bytes: long int, type of compression (not applicable to 24 bits/pixel)
// 4 bytes: long int, image size (not used unless compression is used)
// 4 bytes: long int, x pixels per meter
// 4 bytes: long int, y pixels per meter
// 4 bytes: colors used (not applicable to 24 bit color)
// 4 bytes: colors important (not applicable to 24 bit color)
// "long int" really means "unsigned long int"
// Pixel data: 3 bytes per pixel: RGB values (in reverse order).
// Rows padded to multiples of four.
#ifndef RGBIMAGE_DONT_USE_OPENGL
bool RgbImage::LoadFromOpenglBuffer() // Load the bitmap from the current OpenGL buffer
{
int viewportData[4];
glGetIntegerv( GL_VIEWPORT, viewportData );
int& vWidth = viewportData[2];
int& vHeight = viewportData[3];
if ( ImagePtr==0 ) { // If no memory allocated
NumRows = vHeight;
NumCols = vWidth;
ImagePtr = new unsigned char[NumRows*GetNumBytesPerRow()];
if ( !ImagePtr ) {
fprintf(stderr, "Unable to allocate memory for %ld x %ld buffer.\n",
NumRows, NumCols);
Reset();
ErrorCode = MemoryError;
return false;
}
}
assert ( vWidth>=NumCols && vHeight>=NumRows );
int oldGlRowLen;
if ( vWidth>=NumCols ) {
glGetIntegerv( GL_UNPACK_ROW_LENGTH, &oldGlRowLen );
glPixelStorei( GL_UNPACK_ROW_LENGTH, NumCols );
}
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
// Get the frame buffer data.
glReadPixels( 0, 0, NumCols, NumRows, GL_RGB, GL_UNSIGNED_BYTE, ImagePtr);
// Restore the row length in glPixelStorei (really ought to restore alignment too).
if ( vWidth>=NumCols ) {
glPixelStorei( GL_UNPACK_ROW_LENGTH, oldGlRowLen );
}
return true;
}
#endif // RGBIMAGE_DONT_USE_OPENGL
This expression:
theTexMap(x,y) = theTexMap(u,v);
^^^^^^^^^^^^^^
Is trying to invoke RgbImage::operator()(float, float). That is not a defined operator on your type, hence the error.
I'm guessing the function you want to call is:
theTexMap.GetRgbPixel(u, v, &r, &g, &b);
theTexMap.SetRgbPixelf(x, y, r, g, b);

Writing BMP image in pure c/c++ without other libraries

In my algorithm, I need to create an information output. I need to write a boolean matrix into a bmp file.
It must be a monocromic image, where pixels are white if the matrix on such element is true.
Main problem is the bmp header and how to write this.
See if this works for you...
In this code, I had 3 2-dimensional arrays, called red,green and blue. Each one was of size [width][height], and each element corresponded to a pixel - I hope this makes sense!
FILE *f;
unsigned char *img = NULL;
int filesize = 54 + 3*w*h; //w is your image width, h is image height, both int
img = (unsigned char *)malloc(3*w*h);
memset(img,0,3*w*h);
for(int i=0; i<w; i++)
{
for(int j=0; j<h; j++)
{
x=i; y=(h-1)-j;
r = red[i][j]*255;
g = green[i][j]*255;
b = blue[i][j]*255;
if (r > 255) r=255;
if (g > 255) g=255;
if (b > 255) b=255;
img[(x+y*w)*3+2] = (unsigned char)(r);
img[(x+y*w)*3+1] = (unsigned char)(g);
img[(x+y*w)*3+0] = (unsigned char)(b);
}
}
unsigned char bmpfileheader[14] = {'B','M', 0,0,0,0, 0,0, 0,0, 54,0,0,0};
unsigned char bmpinfoheader[40] = {40,0,0,0, 0,0,0,0, 0,0,0,0, 1,0, 24,0};
unsigned char bmppad[3] = {0,0,0};
bmpfileheader[ 2] = (unsigned char)(filesize );
bmpfileheader[ 3] = (unsigned char)(filesize>> 8);
bmpfileheader[ 4] = (unsigned char)(filesize>>16);
bmpfileheader[ 5] = (unsigned char)(filesize>>24);
bmpinfoheader[ 4] = (unsigned char)( w );
bmpinfoheader[ 5] = (unsigned char)( w>> 8);
bmpinfoheader[ 6] = (unsigned char)( w>>16);
bmpinfoheader[ 7] = (unsigned char)( w>>24);
bmpinfoheader[ 8] = (unsigned char)( h );
bmpinfoheader[ 9] = (unsigned char)( h>> 8);
bmpinfoheader[10] = (unsigned char)( h>>16);
bmpinfoheader[11] = (unsigned char)( h>>24);
f = fopen("img.bmp","wb");
fwrite(bmpfileheader,1,14,f);
fwrite(bmpinfoheader,1,40,f);
for(int i=0; i<h; i++)
{
fwrite(img+(w*(h-i-1)*3),3,w,f);
fwrite(bmppad,1,(4-(w*3)%4)%4,f);
}
free(img);
fclose(f);
Clean C Code for Bitmap (BMP) Image Generation
This code does not use any library other than stdio.h. So, it can be easily incorporated in other languages of C-Family, like- C++, C#, Java.
#include <stdio.h>
const int BYTES_PER_PIXEL = 3; /// red, green, & blue
const int FILE_HEADER_SIZE = 14;
const int INFO_HEADER_SIZE = 40;
void generateBitmapImage(unsigned char* image, int height, int width, char* imageFileName);
unsigned char* createBitmapFileHeader(int height, int stride);
unsigned char* createBitmapInfoHeader(int height, int width);
int main ()
{
int height = 361;
int width = 867;
unsigned char image[height][width][BYTES_PER_PIXEL];
char* imageFileName = (char*) "bitmapImage.bmp";
int i, j;
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
image[i][j][2] = (unsigned char) ( i * 255 / height ); ///red
image[i][j][1] = (unsigned char) ( j * 255 / width ); ///green
image[i][j][0] = (unsigned char) ( (i+j) * 255 / (height+width) ); ///blue
}
}
generateBitmapImage((unsigned char*) image, height, width, imageFileName);
printf("Image generated!!");
}
void generateBitmapImage (unsigned char* image, int height, int width, char* imageFileName)
{
int widthInBytes = width * BYTES_PER_PIXEL;
unsigned char padding[3] = {0, 0, 0};
int paddingSize = (4 - (widthInBytes) % 4) % 4;
int stride = (widthInBytes) + paddingSize;
FILE* imageFile = fopen(imageFileName, "wb");
unsigned char* fileHeader = createBitmapFileHeader(height, stride);
fwrite(fileHeader, 1, FILE_HEADER_SIZE, imageFile);
unsigned char* infoHeader = createBitmapInfoHeader(height, width);
fwrite(infoHeader, 1, INFO_HEADER_SIZE, imageFile);
int i;
for (i = 0; i < height; i++) {
fwrite(image + (i*widthInBytes), BYTES_PER_PIXEL, width, imageFile);
fwrite(padding, 1, paddingSize, imageFile);
}
fclose(imageFile);
}
unsigned char* createBitmapFileHeader (int height, int stride)
{
int fileSize = FILE_HEADER_SIZE + INFO_HEADER_SIZE + (stride * height);
static unsigned char fileHeader[] = {
0,0, /// signature
0,0,0,0, /// image file size in bytes
0,0,0,0, /// reserved
0,0,0,0, /// start of pixel array
};
fileHeader[ 0] = (unsigned char)('B');
fileHeader[ 1] = (unsigned char)('M');
fileHeader[ 2] = (unsigned char)(fileSize );
fileHeader[ 3] = (unsigned char)(fileSize >> 8);
fileHeader[ 4] = (unsigned char)(fileSize >> 16);
fileHeader[ 5] = (unsigned char)(fileSize >> 24);
fileHeader[10] = (unsigned char)(FILE_HEADER_SIZE + INFO_HEADER_SIZE);
return fileHeader;
}
unsigned char* createBitmapInfoHeader (int height, int width)
{
static unsigned char infoHeader[] = {
0,0,0,0, /// header size
0,0,0,0, /// image width
0,0,0,0, /// image height
0,0, /// number of color planes
0,0, /// bits per pixel
0,0,0,0, /// compression
0,0,0,0, /// image size
0,0,0,0, /// horizontal resolution
0,0,0,0, /// vertical resolution
0,0,0,0, /// colors in color table
0,0,0,0, /// important color count
};
infoHeader[ 0] = (unsigned char)(INFO_HEADER_SIZE);
infoHeader[ 4] = (unsigned char)(width );
infoHeader[ 5] = (unsigned char)(width >> 8);
infoHeader[ 6] = (unsigned char)(width >> 16);
infoHeader[ 7] = (unsigned char)(width >> 24);
infoHeader[ 8] = (unsigned char)(height );
infoHeader[ 9] = (unsigned char)(height >> 8);
infoHeader[10] = (unsigned char)(height >> 16);
infoHeader[11] = (unsigned char)(height >> 24);
infoHeader[12] = (unsigned char)(1);
infoHeader[14] = (unsigned char)(BYTES_PER_PIXEL*8);
return infoHeader;
}
Without the use of any other library you can look at the BMP file format. I've implemented it in the past and it can be done without too much work.
Bitmap-File Structures
Each bitmap file contains a
bitmap-file header, a
bitmap-information header, a color
table, and an array of bytes that
defines the bitmap bits. The file has
the following form:
BITMAPFILEHEADER bmfh;
BITMAPINFOHEADER bmih;
RGBQUAD aColors[];
BYTE aBitmapBits[];
... see the file format for more details
this is a example code copied from
https://en.wikipedia.org/wiki/User:Evercat/Buddhabrot.c
void drawbmp (char * filename) {
unsigned int headers[13];
FILE * outfile;
int extrabytes;
int paddedsize;
int x; int y; int n;
int red, green, blue;
extrabytes = 4 - ((WIDTH * 3) % 4); // How many bytes of padding to add to each
// horizontal line - the size of which must
// be a multiple of 4 bytes.
if (extrabytes == 4)
extrabytes = 0;
paddedsize = ((WIDTH * 3) + extrabytes) * HEIGHT;
// Headers...
// Note that the "BM" identifier in bytes 0 and 1 is NOT included in these "headers".
headers[0] = paddedsize + 54; // bfSize (whole file size)
headers[1] = 0; // bfReserved (both)
headers[2] = 54; // bfOffbits
headers[3] = 40; // biSize
headers[4] = WIDTH; // biWidth
headers[5] = HEIGHT; // biHeight
// Would have biPlanes and biBitCount in position 6, but they're shorts.
// It's easier to write them out separately (see below) than pretend
// they're a single int, especially with endian issues...
headers[7] = 0; // biCompression
headers[8] = paddedsize; // biSizeImage
headers[9] = 0; // biXPelsPerMeter
headers[10] = 0; // biYPelsPerMeter
headers[11] = 0; // biClrUsed
headers[12] = 0; // biClrImportant
outfile = fopen(filename, "wb");
//
// Headers begin...
// When printing ints and shorts, we write out 1 character at a time to avoid endian issues.
//
fprintf(outfile, "BM");
for (n = 0; n <= 5; n++)
{
fprintf(outfile, "%c", headers[n] & 0x000000FF);
fprintf(outfile, "%c", (headers[n] & 0x0000FF00) >> 8);
fprintf(outfile, "%c", (headers[n] & 0x00FF0000) >> 16);
fprintf(outfile, "%c", (headers[n] & (unsigned int) 0xFF000000) >> 24);
}
// These next 4 characters are for the biPlanes and biBitCount fields.
fprintf(outfile, "%c", 1);
fprintf(outfile, "%c", 0);
fprintf(outfile, "%c", 24);
fprintf(outfile, "%c", 0);
for (n = 7; n <= 12; n++)
{
fprintf(outfile, "%c", headers[n] & 0x000000FF);
fprintf(outfile, "%c", (headers[n] & 0x0000FF00) >> 8);
fprintf(outfile, "%c", (headers[n] & 0x00FF0000) >> 16);
fprintf(outfile, "%c", (headers[n] & (unsigned int) 0xFF000000) >> 24);
}
//
// Headers done, now write the data...
//
for (y = HEIGHT - 1; y >= 0; y--) // BMP image format is written from bottom to top...
{
for (x = 0; x <= WIDTH - 1; x++)
{
red = reduce(redcount[x][y] + COLOUR_OFFSET) * red_multiplier;
green = reduce(greencount[x][y] + COLOUR_OFFSET) * green_multiplier;
blue = reduce(bluecount[x][y] + COLOUR_OFFSET) * blue_multiplier;
if (red > 255) red = 255; if (red < 0) red = 0;
if (green > 255) green = 255; if (green < 0) green = 0;
if (blue > 255) blue = 255; if (blue < 0) blue = 0;
// Also, it's written in (b,g,r) format...
fprintf(outfile, "%c", blue);
fprintf(outfile, "%c", green);
fprintf(outfile, "%c", red);
}
if (extrabytes) // See above - BMP lines must be of lengths divisible by 4.
{
for (n = 1; n <= extrabytes; n++)
{
fprintf(outfile, "%c", 0);
}
}
}
fclose(outfile);
return;
}
drawbmp(filename);
Here is a C++ variant of the code that works for me. Note I had to change the size computation to account for the line padding.
// mimeType = "image/bmp";
unsigned char file[14] = {
'B','M', // magic
0,0,0,0, // size in bytes
0,0, // app data
0,0, // app data
40+14,0,0,0 // start of data offset
};
unsigned char info[40] = {
40,0,0,0, // info hd size
0,0,0,0, // width
0,0,0,0, // heigth
1,0, // number color planes
24,0, // bits per pixel
0,0,0,0, // compression is none
0,0,0,0, // image bits size
0x13,0x0B,0,0, // horz resoluition in pixel / m
0x13,0x0B,0,0, // vert resolutions (0x03C3 = 96 dpi, 0x0B13 = 72 dpi)
0,0,0,0, // #colors in pallete
0,0,0,0, // #important colors
};
int w=waterfallWidth;
int h=waterfallHeight;
int padSize = (4-(w*3)%4)%4;
int sizeData = w*h*3 + h*padSize;
int sizeAll = sizeData + sizeof(file) + sizeof(info);
file[ 2] = (unsigned char)( sizeAll );
file[ 3] = (unsigned char)( sizeAll>> 8);
file[ 4] = (unsigned char)( sizeAll>>16);
file[ 5] = (unsigned char)( sizeAll>>24);
info[ 4] = (unsigned char)( w );
info[ 5] = (unsigned char)( w>> 8);
info[ 6] = (unsigned char)( w>>16);
info[ 7] = (unsigned char)( w>>24);
info[ 8] = (unsigned char)( h );
info[ 9] = (unsigned char)( h>> 8);
info[10] = (unsigned char)( h>>16);
info[11] = (unsigned char)( h>>24);
info[20] = (unsigned char)( sizeData );
info[21] = (unsigned char)( sizeData>> 8);
info[22] = (unsigned char)( sizeData>>16);
info[23] = (unsigned char)( sizeData>>24);
stream.write( (char*)file, sizeof(file) );
stream.write( (char*)info, sizeof(info) );
unsigned char pad[3] = {0,0,0};
for ( int y=0; y<h; y++ )
{
for ( int x=0; x<w; x++ )
{
long red = lround( 255.0 * waterfall[x][y] );
if ( red < 0 ) red=0;
if ( red > 255 ) red=255;
long green = red;
long blue = red;
unsigned char pixel[3];
pixel[0] = blue;
pixel[1] = green;
pixel[2] = red;
stream.write( (char*)pixel, 3 );
}
stream.write( (char*)pad, padSize );
}
Note that the lines are saved from down to up and not the other way around.
Additionally, the scanlines must have a byte-length of multiples of four, you should insert fill bytes at the end of the lines to ensure this.
I just wanted to share an improved version of Minhas Kamal's code because although it worked well enough for most applications, I had a few issues with it still. Two highly important things to remember:
The code (at the time of writing) calls free() on two static arrays. This will cause your program to crash. So I commented out those lines.
NEVER assume that your pixel data's pitch is always (Width*BytesPerPixel). It's best to let the user specify the pitch value. Example: when manipulating resources in Direct3D, the RowPitch is never guaranteed to be an even multiple of the byte depth being used. This can cause errors in your generated bitmaps (especially at odd resolutions such as 1366x768).
Below, you can see my revisions to his code:
const int bytesPerPixel = 4; /// red, green, blue
const int fileHeaderSize = 14;
const int infoHeaderSize = 40;
void generateBitmapImage(unsigned char *image, int height, int width, int pitch, const char* imageFileName);
unsigned char* createBitmapFileHeader(int height, int width, int pitch, int paddingSize);
unsigned char* createBitmapInfoHeader(int height, int width);
void generateBitmapImage(unsigned char *image, int height, int width, int pitch, const char* imageFileName) {
unsigned char padding[3] = { 0, 0, 0 };
int paddingSize = (4 - (/*width*bytesPerPixel*/ pitch) % 4) % 4;
unsigned char* fileHeader = createBitmapFileHeader(height, width, pitch, paddingSize);
unsigned char* infoHeader = createBitmapInfoHeader(height, width);
FILE* imageFile = fopen(imageFileName, "wb");
fwrite(fileHeader, 1, fileHeaderSize, imageFile);
fwrite(infoHeader, 1, infoHeaderSize, imageFile);
int i;
for (i = 0; i < height; i++) {
fwrite(image + (i*pitch /*width*bytesPerPixel*/), bytesPerPixel, width, imageFile);
fwrite(padding, 1, paddingSize, imageFile);
}
fclose(imageFile);
//free(fileHeader);
//free(infoHeader);
}
unsigned char* createBitmapFileHeader(int height, int width, int pitch, int paddingSize) {
int fileSize = fileHeaderSize + infoHeaderSize + (/*bytesPerPixel*width*/pitch + paddingSize) * height;
static unsigned char fileHeader[] = {
0,0, /// signature
0,0,0,0, /// image file size in bytes
0,0,0,0, /// reserved
0,0,0,0, /// start of pixel array
};
fileHeader[0] = (unsigned char)('B');
fileHeader[1] = (unsigned char)('M');
fileHeader[2] = (unsigned char)(fileSize);
fileHeader[3] = (unsigned char)(fileSize >> 8);
fileHeader[4] = (unsigned char)(fileSize >> 16);
fileHeader[5] = (unsigned char)(fileSize >> 24);
fileHeader[10] = (unsigned char)(fileHeaderSize + infoHeaderSize);
return fileHeader;
}
unsigned char* createBitmapInfoHeader(int height, int width) {
static unsigned char infoHeader[] = {
0,0,0,0, /// header size
0,0,0,0, /// image width
0,0,0,0, /// image height
0,0, /// number of color planes
0,0, /// bits per pixel
0,0,0,0, /// compression
0,0,0,0, /// image size
0,0,0,0, /// horizontal resolution
0,0,0,0, /// vertical resolution
0,0,0,0, /// colors in color table
0,0,0,0, /// important color count
};
infoHeader[0] = (unsigned char)(infoHeaderSize);
infoHeader[4] = (unsigned char)(width);
infoHeader[5] = (unsigned char)(width >> 8);
infoHeader[6] = (unsigned char)(width >> 16);
infoHeader[7] = (unsigned char)(width >> 24);
infoHeader[8] = (unsigned char)(height);
infoHeader[9] = (unsigned char)(height >> 8);
infoHeader[10] = (unsigned char)(height >> 16);
infoHeader[11] = (unsigned char)(height >> 24);
infoHeader[12] = (unsigned char)(1);
infoHeader[14] = (unsigned char)(bytesPerPixel * 8);
return infoHeader;
}
I edited ralf's htp code so that it would compile (on gcc, running ubuntu 16.04 lts). It was just a matter of initializing the variables.
int w = 100; /* Put here what ever width you want */
int h = 100; /* Put here what ever height you want */
int red[w][h];
int green[w][h];
int blue[w][h];
FILE *f;
unsigned char *img = NULL;
int filesize = 54 + 3*w*h; //w is your image width, h is image height, both int
if( img )
free( img );
img = (unsigned char *)malloc(3*w*h);
memset(img,0,sizeof(img));
int x;
int y;
int r;
int g;
int b;
for(int i=0; i<w; i++)
{
for(int j=0; j<h; j++)
{
x=i; y=(h-1)-j;
r = red[i][j]*255;
g = green[i][j]*255;
b = blue[i][j]*255;
if (r > 255) r=255;
if (g > 255) g=255;
if (b > 255) b=255;
img[(x+y*w)*3+2] = (unsigned char)(r);
img[(x+y*w)*3+1] = (unsigned char)(g);
img[(x+y*w)*3+0] = (unsigned char)(b);
}
}
unsigned char bmpfileheader[14] = {'B','M', 0,0,0,0, 0,0, 0,0, 54,0,0,0};
unsigned char bmpinfoheader[40] = {40,0,0,0, 0,0,0,0, 0,0,0,0, 1,0, 24,0};
unsigned char bmppad[3] = {0,0,0};
bmpfileheader[ 2] = (unsigned char)(filesize );
bmpfileheader[ 3] = (unsigned char)(filesize>> 8);
bmpfileheader[ 4] = (unsigned char)(filesize>>16);
bmpfileheader[ 5] = (unsigned char)(filesize>>24);
bmpinfoheader[ 4] = (unsigned char)( w );
bmpinfoheader[ 5] = (unsigned char)( w>> 8);
bmpinfoheader[ 6] = (unsigned char)( w>>16);
bmpinfoheader[ 7] = (unsigned char)( w>>24);
bmpinfoheader[ 8] = (unsigned char)( h );
bmpinfoheader[ 9] = (unsigned char)( h>> 8);
bmpinfoheader[10] = (unsigned char)( h>>16);
bmpinfoheader[11] = (unsigned char)( h>>24);
f = fopen("img.bmp","wb");
fwrite(bmpfileheader,1,14,f);
fwrite(bmpinfoheader,1,40,f);
for(int i=0; i<h; i++)
{
fwrite(img+(w*(h-i-1)*3),3,w,f);
fwrite(bmppad,1,(4-(w*3)%4)%4,f);
}
fclose(f);
The best bitmap encoder is the one you do not write yourself. The file format is a lot more involved, than one might expect. This is evidenced by the fact, that all proposed answers do not create a monochrome (1bpp) bitmap, but rather write out 24bpp files, that happen to only use 2 colors.
The following is a Windows-only solution, using the Windows Imaging Component. It doesn't rely on any external/3rd party libraries, other than what ships with Windows.
Like every C++ program, we need to include several header files. And link to Windowscodecs.lib while we're at it:
#include <Windows.h>
#include <comdef.h>
#include <comip.h>
#include <comutil.h>
#include <wincodec.h>
#include <vector>
#pragma comment(lib, "Windowscodecs.lib")
Next up, we declare our container (a vector, of vectors! Of bool!), and a few smart pointers for convenience:
using _com_util::CheckError;
using container = std::vector<std::vector<bool>>;
_COM_SMARTPTR_TYPEDEF(IWICImagingFactory, __uuidof(IWICImagingFactory));
_COM_SMARTPTR_TYPEDEF(IWICBitmapEncoder, __uuidof(IWICBitmapEncoder));
_COM_SMARTPTR_TYPEDEF(IWICBitmapFrameEncode, __uuidof(IWICBitmapFrameEncode));
_COM_SMARTPTR_TYPEDEF(IWICStream, __uuidof(IWICStream));
_COM_SMARTPTR_TYPEDEF(IWICPalette, __uuidof(IWICPalette));
With that all settled, we can jump right into the implementation. There's a bit of setup required to get a factory, an encoder, a frame, and get everything prepared:
void write_bitmap(wchar_t const* pathname, container const& data)
{
// Create factory
IWICImagingFactoryPtr sp_factory { nullptr };
CheckError(sp_factory.CreateInstance(CLSID_WICImagingFactory, nullptr,
CLSCTX_INPROC_SERVER));
// Create encoder
IWICBitmapEncoderPtr sp_encoder { nullptr };
CheckError(sp_factory->CreateEncoder(GUID_ContainerFormatBmp, nullptr, &sp_encoder));
// Create stream
IWICStreamPtr sp_stream { nullptr };
CheckError(sp_factory->CreateStream(&sp_stream));
CheckError(sp_stream->InitializeFromFilename(pathname, GENERIC_WRITE));
// Initialize encoder with stream
CheckError(sp_encoder->Initialize(sp_stream, WICBitmapEncoderNoCache));
// Create new frame
IWICBitmapFrameEncodePtr sp_frame { nullptr };
IPropertyBag2Ptr sp_properties { nullptr };
CheckError(sp_encoder->CreateNewFrame(&sp_frame, &sp_properties));
// Initialize frame with default properties
CheckError(sp_frame->Initialize(sp_properties));
// Set pixel format
// SetPixelFormat() requires a pointer to non-const
auto pf { GUID_WICPixelFormat1bppIndexed };
CheckError(sp_frame->SetPixelFormat(&pf));
if (!::IsEqualGUID(pf, GUID_WICPixelFormat1bppIndexed))
{
// Report unsupported pixel format
CheckError(WINCODEC_ERR_UNSUPPORTEDPIXELFORMAT);
}
// Set size derived from data argument
auto const width { static_cast<UINT>(data.size()) };
auto const height { static_cast<UINT>(data[0].size()) };
CheckError(sp_frame->SetSize(width, height));
// Set palette on frame. This is required since we use an indexed pixel format.
// Only GIF files support global palettes, so make sure to set it on the frame
// rather than the encoder.
IWICPalettePtr sp_palette { nullptr };
CheckError(sp_factory->CreatePalette(&sp_palette));
CheckError(sp_palette->InitializePredefined(WICBitmapPaletteTypeFixedBW, FALSE));
CheckError(sp_frame->SetPalette(sp_palette));
At that point everything is set up, and we have a frame to dump our data into. For 1bpp files, every byte stores the information of 8 pixels. The left-most pixel is stored in the MSB, with pixels following all the way down to the right-most pixel stored in the LSB.
The code isn't entirely important; you'll be replacing that with whatever suits your needs, when you replace the data layout of your input anyway:
// Write data to frame
auto const stride { (width * 1 + 7) / 8 };
auto const size { height * stride };
std::vector<unsigned char> buffer(size, 127u);
// Convert data to match required layout. Each byte stores 8 pixels, with the
// MSB being the leftmost, the LSB the right-most.
for (size_t x { 0 }; x < data.size(); ++x)
{
for (size_t y { 0 }; y < data[x].size(); ++y)
{
auto shift { x % 8 };
auto mask { 0x80 >> shift };
auto bit { mask * data[x][y] };
auto& value { buffer[y * stride + x / 8] };
value &= ~mask;
value |= bit;
}
}
CheckError(sp_frame->WritePixels(height, stride,
static_cast<UINT>(buffer.size()), buffer.data()));
What's left is to commit the changes to the frame and the encoder, which will ultimately write the image file to disk:
// Commit frame
CheckError(sp_frame->Commit());
// Commit image
CheckError(sp_encoder->Commit());
}
This is a test program, writing out an image to a file passed as the first command-line argument:
#include <iostream>
int wmain(int argc, wchar_t* argv[])
try
{
if (argc != 2)
{
return -1;
}
CheckError(::CoInitializeEx(nullptr, COINIT_APARTMENTTHREADED));
// Create 64x64 matrix
container data(64, std::vector<bool>(64, false));
// Fill with arrow pointing towards the upper left
for (size_t i { 0 }; i < data.size(); ++i)
{
data[0][i] = true;
data[i][0] = true;
data[i][i] = true;
}
::write_bitmap(argv[1], data);
::CoUninitialize();
}
catch (_com_error const& e)
{
std::wcout << L"Error!\n" << L" Message: " << e.ErrorMessage() << std::endl;
}
It produces the following 64x64 image (true 1bpp, 4096 pixels, 574 bytes in size):
If you get strange colors switches in the middle of your image using the above C++ function. Be sure to open the outstream in binary mode:
imgFile.open(filename, std::ios_base::out | std::ios_base::binary);
Otherwise windows inserts unwanted characters in the middle of your file! (been banging my head on this issue for hours)
See related question here: Why does ofstream insert a 0x0D byte before 0x0A?
Here's a simple c++ bmp image file class.
class bmp_img {
public:
constexpr static int header_size = 14;
constexpr static int info_header_size = 40;
constexpr static size_t bytes_per_pixel = 3;
bmp_img(size_t width, size_t height) :
image_px_width{ width }, image_px_height{ height }, row_width{ image_px_width * bytes_per_pixel },
row_padding{ (4 - row_width % 4) % 4 }, row_stride{ row_width + row_padding }, file_size{ header_size + info_header_size + (image_px_height * row_stride) },
image(image_px_height, std::vector<unsigned char>(row_width))
{
//header file type
file_header[0] = 'B';
file_header[1] = 'M';
//header file size info
file_header[2] = static_cast<unsigned char>(file_size);
file_header[3] = static_cast<unsigned char>(file_size >> 8);
file_header[4] = static_cast<unsigned char>(file_size >> 16);
file_header[5] = static_cast<unsigned char>(file_size >> 24);
//header offset to pixel data
file_header[10] = header_size + info_header_size;
//info header size
info_header[0] = info_header_size;
//info header image width
info_header[4] = static_cast<unsigned char>(image_px_width);
info_header[5] = static_cast<unsigned char>(image_px_width >> 8);
info_header[6] = static_cast<unsigned char>(image_px_width >> 16);
info_header[7] = static_cast<unsigned char>(image_px_width >> 24);
//info header image height
info_header[8] = static_cast<unsigned char>(image_px_height);
info_header[9] = static_cast<unsigned char>(image_px_height >> 8);
info_header[10] = static_cast<unsigned char>(image_px_height >> 16);
info_header[11] = static_cast<unsigned char>(image_px_height >> 24);
//info header planes
info_header[12] = 1;
//info header bits per pixel
info_header[14] = 8 * bytes_per_pixel;
}
size_t width() const {
return image_px_width;
}
size_t height() const {
return image_px_height;
}
void set_pixel(size_t x, size_t y, int r, int g, int b) {
image[y][x * bytes_per_pixel + 2] = r;
image[y][x * bytes_per_pixel + 1] = g;
image[y][x * bytes_per_pixel + 0] = b;
}
void fill(int r, int g, int b) {
for (int y = 0; y < image_px_height; ++y) {
for (int x = 0; x < image_px_width; ++x) {
set_pixel(x, y, r, g, b);
}
}
}
void write_to_file(const char* file_name) const {
std::ofstream img_file(file_name, std::ios_base::binary | std::ios_base::out);
img_file.write((char*)file_header, header_size);
img_file.write((char*)info_header, info_header_size);
std::vector<char> allignment(row_padding);
for (int y = image_px_height - 1; y >= 0; --y) {
img_file.write((char*)image[y].data(), row_width);
img_file.write(allignment.data(), row_padding);
}
img_file.close();
}
private:
size_t image_px_width;
size_t image_px_height;
size_t row_width;
size_t row_padding;
size_t row_stride;
size_t file_size;
unsigned char file_header[header_size] = { 0 };
unsigned char info_header[info_header_size] = { 0 };
std::vector<std::vector<unsigned char>> image;
};
C++ answer, flexible API, assumes little-endian system to code-golf it a bit. Note this uses the bmp native y-axis (0 at the bottom).
#include <vector>
#include <fstream>
struct image
{
image(int width, int height)
: w(width), h(height), rgb(w * h * 3)
{}
uint8_t & r(int x, int y) { return rgb[(x + y*w)*3 + 2]; }
uint8_t & g(int x, int y) { return rgb[(x + y*w)*3 + 1]; }
uint8_t & b(int x, int y) { return rgb[(x + y*w)*3 + 0]; }
int w, h;
std::vector<uint8_t> rgb;
};
template<class Stream>
Stream & operator<<(Stream & out, image const& img)
{
uint32_t w = img.w, h = img.h;
uint32_t pad = w * -3 & 3;
uint32_t total = 54 + 3*w*h + pad*h;
uint32_t head[13] = {total, 0, 54, 40, w, h, (24<<16)|1};
char const* rgb = (char const*)img.rgb.data();
out.write("BM", 2);
out.write((char*)head, 52);
for(uint32_t i=0 ; i<h ; i++)
{ out.write(rgb + (3 * w * i), 3 * w);
out.write((char*)&pad, pad);
}
return out;
}
int main()
{
image img(100, 100);
for(int x=0 ; x<100 ; x++)
{ for(int y=0 ; y<100 ; y++)
{ img.r(x,y) = x;
img.g(x,y) = y;
img.b(x,y) = 100-x;
}
}
std::ofstream("/tmp/out.bmp") << img;
}
This code uses some newer C++ features. I've used it to create 8bit and 24bit bmp files. It only writes bmp files, one day we may read them too!
I didn't like all the shifting and error proneess for endian safety.
It could use lots more comments but the code is pretty straight forward. The supposedly run-time detection of endianness results in code being optimized away on all the compilers I tested (a while ago).
endian_type.h >> Endian safe POD type.
#ifndef ENDIAN_TYPE_H
#define ENDIAN_TYPE_H
#include <algorithm>
#include <type_traits>
namespace endian_type {
template <typename T, bool store_as_big_endian>
struct EndianType {
using value_type = T;
static_assert(std::is_fundamental_v<value_type>,
"EndianType works for fundamental data types");
EndianType() = default;
EndianType(const value_type& value)
: value{ convert_to(value) } {}
struct TypeAsBytes {
unsigned char value[sizeof(value_type)];
};
static constexpr bool is_big_endian() {
union { int ival; char cval; } uval;
uval.ival = 1;
return 0 == uval.cval;
}
static TypeAsBytes convert_to(const value_type& ivalue) {
TypeAsBytes ovalue;
const unsigned char* p_ivalue = (const unsigned char*)&ivalue;
if (store_as_big_endian != is_big_endian()) {
std::reverse_copy(p_ivalue, p_ivalue + sizeof(value_type), ovalue.value);
} else {
std::copy(p_ivalue, p_ivalue + sizeof(value_type), ovalue.value);
}
return ovalue;
}
static value_type convert_from(const TypeAsBytes& ivalue) {
value_type ovalue;
unsigned char* p_ovalue = (unsigned char*) &ovalue;
const unsigned char* p_ivalue = (const unsigned char*)&ivalue;
if (store_as_big_endian != is_big_endian()) {
std::reverse_copy(p_ivalue, p_ivalue + sizeof(value_type), p_ovalue);
}
else {
std::copy(p_ivalue, p_ivalue + sizeof(value_type), p_ovalue);
}
return ovalue;
}
value_type get() const {
return convert_from(value);
}
EndianType& set(const value_type& ivalue) {
value = convert_to(ivalue);
return *this;
}
operator value_type() const {
return get();
}
EndianType& operator=(const value_type& ivalue) {
set(ivalue);
return *this;
}
private:
TypeAsBytes value;
};
template <typename T>
using BigEndian = EndianType<T, true>;
template <typename T>
using LittleEndian = EndianType<T, false>;
} // namespace endian_type
#endif // ENDIAN_TYPE_H
The following contains the write_bmp functions.
bmp_writer.h >> the BMP writer header
#ifndef BMP_WRITER
#define BMP_WRITER
#include "endian_type.h"
#include <cctype>
#include <vector>
#include <fstream>
namespace bmp_writer {
template <typename T>
using LittleEndian = endian_type::LittleEndian<T>;
struct Header {
char magic[2]{ 'B', 'M' };
LittleEndian<std::uint32_t> size;
LittleEndian<std::uint16_t> app_data1;
LittleEndian<std::uint16_t> app_data2;
LittleEndian<std::uint32_t> offset;
};
struct Info {
LittleEndian<std::uint32_t> info_size{ 40 };
LittleEndian<std::uint32_t> width;
LittleEndian<std::uint32_t> height;
LittleEndian<std::uint16_t> count_colour_planes{ 1 };
LittleEndian<std::uint16_t> bits_per_pixel;
LittleEndian<std::uint32_t> compression{};
LittleEndian<std::uint32_t> image_bytes_size;
LittleEndian<std::uint32_t> resolution_horizontal{ 2835 };
LittleEndian<std::uint32_t> resolution_vertical{ 2835 };
LittleEndian<std::uint32_t> count_pallete_entries{ 0 };
LittleEndian<std::uint32_t> important_colours{ 0 };
};
template <std::size_t count>
class Palette {
public:
static constexpr std::uint32_t NUM_CHANNELS = 4;
using Entry = std::uint8_t[NUM_CHANNELS];
private:
Palette() {
for (auto i = 0; i < count; ++i) {
auto& entry = table[i];
for (auto j = 0; j < NUM_CHANNELS - 1; ++j) {
entry[j] = i;
}
}
}
Palette(const Palette&) = delete;
Palette(const Palette&&) = delete;
Palette& operator=(const Palette&) = delete;
Palette& operator=(const Palette&&) = delete;
public:
static const Palette& get() {
static const Palette palette;
return palette;
}
Entry table[count];
};
static_assert(sizeof(Info) == 40, "");
template <typename T>
void write_bmp(
std::ofstream& out,
std::uint32_t width,
std::uint32_t height,
std::uint16_t count_colour_planes,
const T* data,
std::uint32_t data_size
) {
auto& palette = Palette<256>::get();
Header header;
Info info;
info.width = width;
info.height = height;
//info.count_colour_planes = count_colour_planes;
const std::uint32_t t_per_pixel = data_size / (width * height);
info.bits_per_pixel = std::uint16_t(sizeof(T) * 8 * t_per_pixel);
const std::uint32_t row_len = width * sizeof(T) * t_per_pixel;
// Round row up to next multiple of 4.
const std::uint32_t padded_row_len = (row_len + 3) & ~3u;
const std::uint32_t data_size_bytes = padded_row_len * height;
info.image_bytes_size = data_size_bytes;
if (count_colour_planes == 1) {
header.offset = sizeof(Info) + sizeof(Header) + sizeof(palette);
} else {
header.offset = sizeof(Info) + sizeof(Header);
}
header.size = header.offset + height * padded_row_len;
out.write(reinterpret_cast<const char*>(&header), sizeof(header));
out.write(reinterpret_cast<const char*>(&info), sizeof(info));
if (count_colour_planes == 1) {
out.write(reinterpret_cast<const char*>(&palette), sizeof(palette));
}
const char padding[3] = {};
for (int i = height; i > 0;) {
--i;
const char* p_row =
reinterpret_cast<const char*>(data + i * width);
out.write(p_row, row_len);
if (padded_row_len != row_len) {
out.write(padding, padded_row_len - row_len);
}
}
};
template <typename T>
void write_bmp(
std::ofstream& out,
std::uint32_t width,
std::uint32_t height,
std::uint16_t count_colour_planes,
const std::vector<T>& data
) {
write_bmp(out, width, height, count_colour_planes,
&*data.cbegin(), data.size());
}
template <typename T>
void write_bmp(
const std::string& outfilename,
std::uint32_t width,
std::uint32_t height,
std::uint16_t count_colour_planes,
const std::vector<T>& data
) {
std::ofstream out{ outfilename, std::ios_base::binary };
if (!out) {
throw std::runtime_error("Failed to open: " + outfilename);
}
write_bmp(out, width, height, count_colour_planes,
&*data.begin(), static_cast<std::uint32_t>(data.size()));
out.close();
}
} // namespace
#endif // BMP_WRITER
And an example of use:
#include "bmp_writer.h"
struct PixelType {
PixelType(std::uint8_t r, std::uint8_t g, std::uint8_t b)
: c{ b, g, r } {}
PixelType(std::uint32_t c)
: c{ (c >> 16) & 0xffu, (c >> 8) & 0xffu, c & 0xffu } {}
PixelType() = default;
std::uint8_t c[3] = {};
};
void bmp_writer_test1() {
const int size_x = 20;
const int size_y = 10;
std::vector<PixelType> data(size_x * size_y);
// Write some pixels.
data[2] = PixelType(0xff0000); // red
data[10] = PixelType(0x00ff00); // green
bmp_writer::write_bmp(
"test_bmp_writer1.bmp",
std::uint32_t(size_x),
std::uint32_t(size_y),
std::uint16_t(sizeof(PixelType)),
data
);
}
void bmp_writer_test2() {
const int size_x = 20;
const int size_y = 10;
PixelType data[size_x * size_y];
// Write some pixels.
data[15] = PixelType(0xff, 0, 0); // red
data[17] = PixelType(0, 0xff, 0); // green
std::ofstream out{ "test_bmp_writer2.bmp", std::ios_base::binary };
if (!out) {
throw std::runtime_error("Failed to open: " "test_bmp_writer2.bmp");
}
bmp_writer::write_bmp(
out,
std::uint32_t(size_x),
std::uint32_t(size_y),
std::uint16_t(sizeof(PixelType)),
data,
sizeof(data) / sizeof PixelType
);
}