I understand that pthread_t should be treated as an opaque value, however I don't know how to initialize it when used as a class member, and how can I check for its validity.
Consider this code sample:
class MyClass
{
public:
pthread_t thread;
MyClass()
: thread(0) // Wrong because pthread_t should be an opaque value,
// so how should I initialize it?
{}
~MyClass()
{
if( thread ) // Wrong, but how can I verify if it is valid?
pthread_join(thread, NULL);
}
};
I also understand that if pthread_create() fails, the pthread_t value may be inconsistent. So I should only rely on the return value from pthread_create(). But this means that I should keep this returned value along with pthread_t and use it to check thread validity? And in this case, how should I initialize in the class constructor this value?
class MyClass
{
public:
pthread_t thread;
int threadValid;
MyClass()
: thread(0), // Wrong because pthread_t should be an opaque value,
// so how should I initialize it?
, threadValid(1) // pthread_create return zero in case of success,
// so I can initialize this to any nonzero value?
{}
~MyClass()
{
if( threadValid == 0 ) // Nonzero means thread invalid.
// Is this the correct approach?
{
pthread_join(thread, NULL);
threadValid = 1;
}
}
};
I have a Windows API background, and there a thread has its HANDLE value, which may be initialized safely to NULL, and can be checked against NULL, and if CreateThread() fails, it just consistently returns NULL. There's no way, with pthreads, to keep this neat and simple approach?
pthread_t is a C type, so it must have a trivial default constructor; so you can just value-initialize it:
: thread(), // ...
Your usage of threadValid seems somewhat confused. It would be better to make it a bool initially set to false and then only set it true once pthread_create succeeds.
But this means that I should keep this returned value along with pthread_t and use it to check thread validity?
Yes, or more simply keep a boolean, like already mentioned.
And in this case, how should I initialize in the class constructor this value?
Don't initialize it, it's not mandatory to initialize members in C++.
Unfortunately you can only use a guard variable to know if its value make sense or not.
So for instance you can't use 0 because it would be a valid pthread_t on some systems (DG/UX for instance).
You should have to use something else to know if the value can be used or not, and you should value-initialize it.
If you can compromise on portability (non production code for instance), consider that on Linux and Android pthread_t should be like an int type, and on Darwin it should be an handle, so it would work if you initialize it to 0.
pthread_t thread_handle;
pthread_attr_t thread_attributes;
pthread_attr_init(&thread_attributes);
pthread_attr_setdetachstate(&thread_attributes, PTHREAD_CREATE_JOINABLE);
threadValid = (::pthread_create(&thread_handle, &thread_attributes, function, data) == 0);
and when shutting it down:
if (threadValid) {
::pthread_join(thread_handle, 0);
}
Don't start your thread in the constructor though.
Related
I want to each of these 3 object instance run in parallel. I have no global variables. Is it thread-safe? or do i need some syncronization mechanism?
class myClass{
public:
myClass();
~myClass();
void myFunction();
}
int main() {
myClass myObj1, myObj2, myObj3;
pthread_t myThread1, myThread2, myThread3;
pthread_create(&myThread1, NULL, myObj1::myFunction, NULL );
pthread_create(&myThread2, NULL, myObj2::myFunction, NULL );
pthread_create(&myThread3, NULL, myObj3::myFunction, NULL );
...
}
Could you explain me why or why not need for syncronization?
EDIT: In the below, some friends say that this program cannot compile because while creating pthread i used non-static member function call. I just wanted to show what is my problem here. For Friends who want to use non-static member function with pthreads, its my code;
struct thread_args{
myClass* itsInctance;
//int i,j,k; // also if you want to pass parameter to function you use in
//pthread_create u can add them here
}
void* myThread(void* args){
thread_args *itsArgs = (thread_args*)args;
itsArgs->itsInstance->myFunciton();
}
int main() {
myClass myObj1;
pthread_t myThread1;
thread_args itsArgs;
itsArgs.itsInstance = &myObj1;
// also if you have any other params, fill them here
pthread_create(&myThread1, NULL, myThread, &itsArgs);
...
}
Could you explain me why or why not need for syncronization?
You need synchronization when there is a data race.
Since in your example there is no data, there cannot be a data race.
You may find video Plain Threads are the GOTO of todays computing - Hartmut Kaiser - Keynote Meeting C++ 2014 instructive.
I have a class and a library (lwip). For some reasons I need to call library's function of thread creation like :
/** The only thread function:
* Creates a new thread
* #param name human-readable name for the thread (used for debugging purposes)
* #param thread thread-function
* #param arg parameter passed to 'thread'
* #param stacksize stack size in bytes for the new thread (may be ignored by ports)
* #param prio priority of the new thread (may be ignored by ports) */
sys_thread_t sys_thread_new(const char *name, lwip_thread_fn thread, void *arg, int
stacksize, int prio);
Inside this function we call pthread:
code = pthread_create(&tmp,NULL,(void *(*)(void *)) function, arg);
My call looks like :
sys_thread_new("main_thread",(lwip_thread_fn)&this->main_thread, NULL,
DEFAULT_THREAD_STACKSIZE,DEFAULT_THREAD_PRIO);
My class method works fine, but I need to change some fielsd of CURRENT class (like 'state'
or else) I have an Idea to pass a pointer to current class to that thread and in thread function change class fields. Some kind of:
sys_thread_new("main_thread",(lwip_thread_fn)&this->main_thread, (void*)this,
DEFAULT_THREAD_STACKSIZE, DEFAULT_THREAD_PRIO);
Then in main_thread:
void lwip::main_thread(void *arg) {
lwip *p = (lwip*)arg;
p->state = 1;
}
Something like that. But it seems I do something wrong -
Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread 0x7ffff6e8e700 (LWP 4985)]
0x0000000000403a75 in lwip::main_thread (this=0x7fffffffe4f0, arg=0x80) at
../src/lwip.cpp:50
50 p->state = 1;
There are two problems here: If the main_thread member function is a static member function, you pass a pointer to it using &lwip::main_thread, no casting should be needed. If the function is not static, then you must make it static.
The other problem is that if the instance (this) you pass to the thread function is destructed, the thread function now has a pointer to a destructed object. Be careful with temporary object or passing instances by value.
If the actual thread function can't be static, you can easily solve it with a static wrapper function:
class lwip
{
...
private:
void main_thread() { ... }
static void* main_thread_wrapper(void* arg)
{
reinterpret_cast<lwip*>(arg)->main_thread();
return nullptr;
}
};
...
sys_thread_new("main_thread", &lwip::main_thread_wrapper, this,
DEFAULT_THREAD_STACKSIZE,DEFAULT_THREAD_PRIO);
If you have to cast the pointer to function to get
pthread_create to compile, you have undefined behavior.
If the goal is to call a member function in a different thread,
you need to wrap the call in an extern "C" function. This
means no members and no templates; in the simplest case:
extern "C" void*
startThread( void* p )
{
static_cast<T*>(p)->f();
}
and pass the address of startThread as third argument and
a pointer to the object as fourth. If inheritance is involved,
you must ensure that the fourth argument has the same type as
that in the cast in startThread, e.g.:
pthread_create( &tmp, nullptr, &startThread, static_cast<Base*>( pointerToDerived ) );
if startThread casts to Base*.
If you need arguments to the function as well, you need to pass
a pointer to a struct with both the pointer to the object and
the additional arguments. You also need to ensure that the
lifetime of this struct is sufficient, so that there is no risk
of the thread accessing an already inexistant object. This
often means an additional conditional variable, to ensure that
the thread calling pthread_create doesn't continue before the
new thread has made a copy of all of the relevant data. (Both
Boost threads and the C++11 threads do this for you. It's only
necessary if you need additional data, other than just the
pointer to the object, in the new thread.)
This can get painful if you need to do it for many different
types, and downright impossible if the class in question is
a template. In such cases, one common solution is to use
a Thread object, along the lines of:
class Thread
{
public:
virtual void* run() = 0;
};
and a starter function:
namespace {
extern "C" void*
doStartThread( void* p )
{
return static_cast<Thread*>( p )->run();
}
}
pthread_t
startThread( Thread* thread )
{
pthread_t results;
if ( pthread_create( &results, nullptr, doStartThread, thread ) != 0 ) {
throw std::runtime_error( "Could not create thread" );
}
}
Afterwards, you inherit from Thread, overriding the run
function with whatever you want (and adding any additional data
you might need); the derived class can even be a template.
Again, the lifetime of the Thread object is an issue; the
solution I've usually used has been to require it to be
dynamically allocated, and then delete it at the end of
doStartThread. It's a very good idea to catch it in an
std::unique_ptr in doStartThread, although you still want to
catch exceptions in this function, since otherwise they will
kill the process. And don't forget the delete if
pthread_create fails (since the caller has passed over
ownership. If you really want to be sure:
namespace {
extern "C" void*
doStartThread( void* p )
{
std::unique_ptr<Thread*> object( static_cast<Thread*>( p ) );
try {
return object->run();
} catch ( ... ) {
return somethingElseToReportTheError;
}
}
}
pthread_t
startThread( std::unique_ptr<Thread> thread )
{
pthread_t results;
if ( pthread_create( &results, nullptr, doStartThread, thread.get() ) != 0 ) {
throw std::runtime_error( "Could not create thread" );
}
thread.release(); // AFTER the call has succeeded!
}
I've used this technique successfully in a number of
applications (using std::auto_ptr, since there was no
std::unique_ptr then); typically, the fact that you need to
use dynamic allocation is not an issue, and it solves the
lifetime issue quite nicely. (The alternative would be to use
a conditional variable, blocking the original thread until the
new thread had copied everything over.)
Note that by using a unique_ptr in the interface, you
effectively block the calling thread from further access to the
thread object, by robbing it of its pointer to the object. This
offers an additional guarantee with regards to thread safety.
But of course, this additional guarantee (and the solution to
the lifetime issues) only applies to the Thread object itself,
and not to anything it might point to.
I'm not sure what the correct syntax is for this because it involves the winapi which i'm not familiar with. For example, i didnt know it won't let me xhangethe predefined thread function parameters from processClient(LPVOID) to processClient(LPVOID&).
I need to pass the "params" object by reference(just so theres no problems for now, even though im not going to change values in it) to the thread function "processClient()".
... struct(the object) declaration
struct ClientParams{
ClientParams::ClientParams():sock(INVALID_SOCKET), i(NULL){};
public:
SOCKET sock;
int i;
};
... in processClient(LPVOID lpParam){
SOCKET ClientSocket=(SOCKET)*lpParam->sock; ?? doesnt work
int i=*lpParam->i; ?? doesn't work
}
... in main{
ClientParams *params = new ClientParams();
params->i=some_value;
params->sock=ClientSocket;
CreateThread(
NULL, // don't inherit handle
0, // use default size for the executable
processClient,
(LPVOID)params, // thread data
0, // run right away
&i );
}
SOCKET ClientSocket=(SOCKET)*lpParam->sock; ?? doesnt work
lpParam has the same value it did when you passed it, in main, where it was 'params', of type 'ClientParams*', so you don't have any business dereferencing it with '*'. The rest of it is just a precedence problem. It should be
SOCKET ClientSocket=((ClientParams*)lpParam)->sock;
Access structure members must through the structure.
SOCKET ClientSocket=((ClientParams*)lpParam)->sock;
It is my understanding that the function called when starting a thread inside an object should not be a class member. The best approach seems to be to launch a friend function, which gets you access back into your object.
In general, the member function (and therefore, the parent thread) that launched the daughter thread can continue or it can return. In every case where I use this technique, I let the launcher method just return to the app in the parent thread that called it; something like Qt threads.
When the daughter thread has finished its work, the final thing it does is return into the friend function which itself returns to something waiting to catch its return (pthread_koin or WaitForSingleEvent) or, if there is no catcher, I guess you'd say it returns to nowhere.
So, here is the question. If there is no catcher for the return from the friend function, that is, the parent thread is not in a member function, can I safely destroy the object that launched the child thread from the friend function?
EDIT --------------------------------------------------------------------------
Obvious from the responses, I need an example. We'll go for Windows. Not that different from Linux. I have left out lots of stuff, the class definition, etc.
Main creates so, a SomeObject on the heap.
Main calls so->run() and goes off to do other stuff.
Run() launches the daughter thread that runs SomeFriend().
SomeFriend() calls so->Worker() (that == so)
Worker() does whatever and returns to SomeFriend().
CAN I DELETE so HERE? i.e. delete that <<<=== the subject of this question.
SomeFriend() returns terminating the daughter thread.
//=================================================================
int main( int argc, char** argv )
{
SomeObject* so = new SomeObject();
so->run();
while(1)
{
DoOtherTasks(); // but don't exit!
}
return 0;
//=================================================================
void SomeObject::run();
(
volatile DWORD ThreadId; // Thread ID
HANDLE threadHandle;
try
{
threadHandle = CreateThread(
NULL, // default security attributes
0, // set stack size: default = 0
(LPTHREAD_START_ROUTINE)(SomeFriend),
(LPVOID*)this, // func args: this
0, // default creation flags
(LPDWORD)(&ThreadId) // ptr to thread identifier
);
}
catch ( ... )
{ throw; }
} // launches the thread and returns.
//=================================================================
void* SomeFriend( void* thisPtr ) // is a friend of SomeObject
{
SomeObject* that ((SomeObject*)thisPtr);
that->Worker();
// HERE IS WHERE THE QUESTION IS TALKING ABOUT
// CAN I DO THIS SAFELY?
delete that;
return (void*)NULL;
}
//=================================================================
void SomeObject::Worker() // remember, this is run in the daughter thread.
{
// whatever
return (void*)NULL;
}
To answer your edited question, yes you can delete that; However, remember that main() or any functions it calls might not have a valid so at any point in its logic after so->run() was called because of the way the thread scheduler may have scheduled the threads.
Think of the thread as "owning" so after you've called so->run(). main() and its stack descendants should never touch so again without guarded logic.
Yes.
Your memory management code should be thread-safe already (or threading would be dangerous to start with!) so the free() itself should be fine. The destruction is fine as well, as long as you keep in mind that nobody else may have a reference to this object as they will be pointing to a destructed object.
The reason that people say that it should not be a class member is that member functions have a typically hidden pointer that's also treated differently on a byte level from other parameters, so you can't just call it as a normal function with an extra parameter. This makes it typically incompatible with the pthread_create and CreateThreadEx functions that have a specific calling convention they want. That's why you have a bouncer static / global / friend function that does this calling convention conversion for you (and probably so transparently that you don't notice it yourself).
There's no inherent reason for not launching a member function as the top-level function in a thread. C++11 handles it just fine:
struct S {
void f();
};
S s;
int main() {
std::thread thr(&S::f, s);
thr.join();
return 0;
}
Here is the issue that I'm having with multithreading. The proc needs to be static which means the only way I see that 2 threads can communicate and share data is through the global scope. This does not seem very clean nor does it feel very OO. I know I can create a static proc function in a class but that's still static.
What I'd like to for example do is have thread procs in the class somehow so that ex: I could create an MD5 checksum class and have an array of these objects, each on their own thread checking its hash, while the UI thread is not impaired by this and another class could simply keep track of the handles and wait for multiple objects before saying "Complete" or something. How is this limitation usually overcome?
You cannot avoid using a static function if you want to start a thread there. You can however (using Windows) pass the this pointer as a parameter and use it on the other side to enter the class instance.
#include <windows.h>
class Threaded {
static DWORD WINAPI StaticThreadEntry(LPVOID me) {
reinterpret_cast<Threaded*>(me)->ThreadEntry();
return 0;
}
void ThreadEntry() {
// Stuff here.
}
public:
void DoSomething() {
::CreateThread(0, 0, StaticThreadEntry, this, 0, 0);
}
};
In C++, Boost.Thread solves the problem nicely. A thread is represented by a functor, meaning that the (non-static) operator() is the thread's entry point.
For example, a thread can be created like this:
// define the thread functor
struct MyThread {
MyThread(int& i) : i(i) {}
void operator()(){...}
private:
int& i;
};
// create the thread
int j;
boost::thread thr(MyThread(j));
by passing data to the thread functor's constructor, we can pass parameters to the thread without having to rely on globals. (In this case, the thread is given a reference to the integer j declared outside the thread.)
With other libraries or APIs, it's up to you to make the jump from a (typically static) entry point to sharing non-static data.
The thread function typically takes a (sometimes optional) parameter (often of type void*), which you can use to pass instance data to the thread.
If you use this to pass a pointer to some object to the thread, then the thread can simply cast the pointer back to the object type, and access the data, without having to rely on globals.
For example, (in pseudocode), this would have roughly the same effect as the Boost example above:
void MyThreadFunc(void* params) {
int& i = *(int*)params;
...
}
int j;
CreateThread(MyThreadFunc, &j);
Or the parameter can be a pointer to an object whose (non-static) member function you wish to call, allowing you to execute a class member function instead of a nonmember.
I'm not sure I understood well... I give it a try. Are you looking for thread local storage ?
Thread creation routines usually allow you to pass a parameter to the function which will run in a new thread. This is true for both Posix pthread_create(...) and Win32 CreateThread(...). Here is a an example using Pthreads:
void* func (void* arg) {
queue_t* pqueue = (queue_t*)arg;
// pull messages off the queue
val = queue_pull(pqueue);
return 0;
}
int main (int argc, char* argv[]) {
pthread_t thread;
queue_t queue = queue_init();
pthread_create(&thread, 0, func, &queue);
// push messages on the queue for the thread to process
queue_push(&queue, 123);
void* ignored;
pthread_join(&thread, &ignored);
return 0;
}
No statics anywhere. In a C++ program you could pass a pointer to an instance of a class.