Related
I've read through this article, and what I take from it is that when you want to call a pointer to a member function, you need an instance (either a pointer to one or a stack-reference) and call it so:
(instance.*mem_func_ptr)(..)
or
(instance->*mem_func_ptr)(..)
My question is based on this: since you have the instance, why not call the member function directly, like so:
instance.mem_func(..) //or: instance->mem_func(..)
What is the rational/practical use of pointers to member functions?
[edit]
I'm playing with X-development & reached the stage where I am implementing widgets; the event-loop-thread for translating the X-events to my classes & widgets needs to start threads for each widget/window when an event for them arrives; to do this properly I thought I needed function-pointers to the event-handlers in my classes.
Not so: what I did discover was that I could do the same thing in a much clearer & neater way by simply using a virtual base class. No need whatsoever for pointers to member-functions. It was while developing the above that the doubt about the practical usability/meaning of pointers to member-functions arose.
The simple fact that you need a reference to an instance in order to use the member-function-pointer, obsoletes the need for one.
[edit - #sbi & others]
Here is a sample program to illustrate my point:
(Note specifically 'Handle_THREE()')
#include <iostream>
#include <string>
#include <map>
//-----------------------------------------------------------------------------
class Base
{
public:
~Base() {}
virtual void Handler(std::string sItem) = 0;
};
//-----------------------------------------------------------------------------
typedef void (Base::*memfunc)(std::string);
//-----------------------------------------------------------------------------
class Paper : public Base
{
public:
Paper() {}
~Paper() {}
virtual void Handler(std::string sItem) { std::cout << "Handling paper\n"; }
};
//-----------------------------------------------------------------------------
class Wood : public Base
{
public:
Wood() {}
~Wood() {}
virtual void Handler(std::string sItem) { std::cout << "Handling wood\n"; }
};
//-----------------------------------------------------------------------------
class Glass : public Base
{
public:
Glass() {}
~Glass() {}
virtual void Handler(std::string sItem) { std::cout << "Handling glass\n"; }
};
//-----------------------------------------------------------------------------
std::map< std::string, memfunc > handlers;
void AddHandler(std::string sItem, memfunc f) { handlers[sItem] = f; }
//-----------------------------------------------------------------------------
std::map< Base*, memfunc > available_ONE;
void AddAvailable_ONE(Base *p, memfunc f) { available_ONE[p] = f; }
//-----------------------------------------------------------------------------
std::map< std::string, Base* > available_TWO;
void AddAvailable_TWO(std::string sItem, Base *p) { available_TWO[sItem] = p; }
//-----------------------------------------------------------------------------
void Handle_ONE(std::string sItem)
{
memfunc f = handlers[sItem];
if (f)
{
std::map< Base*, memfunc >::iterator it;
Base *inst = NULL;
for (it=available_ONE.begin(); ((it != available_ONE.end()) && (inst==NULL)); it++)
{
if (it->second == f) inst = it->first;
}
if (inst) (inst->*f)(sItem);
else std::cout << "No instance of handler for: " << sItem << "\n";
}
else std::cout << "No handler for: " << sItem << "\n";
}
//-----------------------------------------------------------------------------
void Handle_TWO(std::string sItem)
{
memfunc f = handlers[sItem];
if (f)
{
Base *inst = available_TWO[sItem];
if (inst) (inst->*f)(sItem);
else std::cout << "No instance of handler for: " << sItem << "\n";
}
else std::cout << "No handler for: " << sItem << "\n";
}
//-----------------------------------------------------------------------------
void Handle_THREE(std::string sItem)
{
Base *inst = available_TWO[sItem];
if (inst) inst->Handler(sItem);
else std::cout << "No handler for: " << sItem << "\n";
}
//-----------------------------------------------------------------------------
int main()
{
Paper p;
Wood w;
Glass g;
AddHandler("Paper", (memfunc)(&Paper::Handler));
AddHandler("Wood", (memfunc)(&Wood::Handler));
AddHandler("Glass", (memfunc)(&Glass::Handler));
AddAvailable_ONE(&p, (memfunc)(&Paper::Handler));
AddAvailable_ONE(&g, (memfunc)(&Glass::Handler));
AddAvailable_TWO("Paper", &p);
AddAvailable_TWO("Glass", &g);
std::cout << "\nONE: (bug due to member-function address being relative to instance address)\n";
Handle_ONE("Paper");
Handle_ONE("Wood");
Handle_ONE("Glass");
Handle_ONE("Iron");
std::cout << "\nTWO:\n";
Handle_TWO("Paper");
Handle_TWO("Wood");
Handle_TWO("Glass");
Handle_TWO("Iron");
std::cout << "\nTHREE:\n";
Handle_THREE("Paper");
Handle_THREE("Wood");
Handle_THREE("Glass");
Handle_THREE("Iron");
}
{edit] Potential problem with direct-call in above example:
In Handler_THREE() the name of the method must be hard-coded, forcing changes to be made anywhere that it is used, to apply any change to the method. Using a pointer to member-function the only additional change to be made is where the pointer is created.
[edit] Practical uses gleaned from the answers:
From answer by Chubsdad:
What: A dedicated 'Caller'-function is used to invoke the mem-func-ptr;Benefit: To protect code using function(s) provided by other objectsHow: If the particular function(s) are used in many places and the name and/or parameters change, then you only need to change the name where it is allocated as pointer, and adapt the call in the 'Caller'-function. (If the function is used as instance.function() then it must be changed everywhere.)
From answer by Matthew Flaschen:
What: Local specialization in a classBenefit: Makes the code much clearer,simpler and easier to use and maintainHow: Replaces code that would conventionally be implement using complex logic with (potentially) large switch()/if-then statements with direct pointers to the specialization; fairly similar to the 'Caller'-function above.
The same reason you use any function pointer: You can use arbitrary program logic to set the function pointer variable before calling it. You could use a switch, an if/else, pass it into a function, whatever.
EDIT:
The example in the question does show that you can sometimes use virtual functions as an alternative to pointers to member functions. This shouldn't be surprising, because there are usually multiple approaches in programming.
Here's an example of a case where virtual functions probably don't make sense. Like the code in the OP, this is meant to illustrate, not to be particularly realistic. It shows a class with public test functions. These use internal, private, functions. The internal functions can only be called after a setup, and a teardown must be called afterwards.
#include <iostream>
class MemberDemo;
typedef void (MemberDemo::*MemberDemoPtr)();
class MemberDemo
{
public:
void test1();
void test2();
private:
void test1_internal();
void test2_internal();
void do_with_setup_teardown(MemberDemoPtr p);
};
void MemberDemo::test1()
{
do_with_setup_teardown(&MemberDemo::test1_internal);
}
void MemberDemo::test2()
{
do_with_setup_teardown(&MemberDemo::test2_internal);
}
void MemberDemo::test1_internal()
{
std::cout << "Test1" << std::endl;
}
void MemberDemo::test2_internal()
{
std::cout << "Test2" << std::endl;
}
void MemberDemo::do_with_setup_teardown(MemberDemoPtr mem_ptr)
{
std::cout << "Setup" << std::endl;
(this->*mem_ptr)();
std::cout << "Teardown" << std::endl;
}
int main()
{
MemberDemo m;
m.test1();
m.test2();
}
My question is based on this: since you have the instance, why not call the member function directly[?]
Upfront: In more than 15 years of C++ programming, I have used members pointers maybe twice or thrice. With virtual functions being around, there's not all that much use for it.
You would use them if you want to call a certain member functions on an object (or many objects) and you have to decide which member function to call before you can find out for which object(s) to call it on. Here is an example of someone wanting to do this.
I find the real usefulness of pointers to member functions comes when you look at a higher level construct such as boost::bind(). This will let you wrap a function call as an object that can be bound to a specific object instance later on and then passed around as a copyable object. This is a really powerful idiom that allows for deferred callbacks, delegates and sophisticated predicate operations. See my previous post for some examples:
https://stackoverflow.com/questions/1596139/hidden-features-and-dark-corners-of-stl/1596626#1596626
Member functions, like many function pointers, act as callbacks. You could manage without them by creating some abstract class that calls your method, but this can be a lot of extra work.
One common use is algorithms. In std::for_each, we may want to call a member function of the class of each member of our collection. We also may want to call the member function of our own class on each member of the collection - the latter requires boost::bind to achieve, the former can be done with the STL mem_fun family of classes (if we don't have a collection of shared_ptr, in which case we need to boost::bind in this case too). We could also use a member function as a predicate in certain lookup or sort algorithms. (This removes our need to write a custom class that overloads operator() to call a member of our class, we just pass it in directly to boost::bind).
The other use, as I mentioned, are callbacks, often in event-driven code. When an operation has completed we want a method of our class called to handle the completion. This can often be wrapped into a boost::bind functor. In this case we have to be very careful to manage the lifetime of these objects correctly and their thread-safety (especially as it can be very hard to debug if something goes wrong). Still, it once again can save us from writing large amounts of "wrapper" code.
There are many practical uses. One that comes to my mind is as follows:
Assume a core function such as below (suitably defined myfoo and MFN)
void dosomething(myfoo &m, MFN f){ // m could also be passed by reference to
// const
m.*f();
}
Such a function in the presence of pointer to member functions, becomes open for extension and closed for modification (OCP)
Also refer to Safe bool idiom which smartly uses pointer to members.
The best use of pointers to member functions is to break dependencies.
Good example where pointer to member function is needed is Subscriber/Publisher pattern :
http://en.wikipedia.org/wiki/Publish/subscribe
In my opinion, member function pointers do are not terribly useful to the average programmer in their raw form. OTOH, constructs like ::std::tr1::function that wrap member function pointers together with a pointer to the object they're supposed to operate on are extremely useful.
Of course ::std::tr1::function is very complex. So I will give you a simple example that you wouldn't actually use in practice if you had ::std::tr1::function available:
// Button.hpp
#include <memory>
class Button {
public:
Button(/* stuff */) : hdlr_(0), myhandler_(false) { }
~Button() {
// stuff
if (myhandler_) {
delete hdlr_;
}
}
class PressedHandler {
public:
virtual ~PressedHandler() = 0;
virtual void buttonPushed(Button *button) = 0;
};
// ... lots of stuff
// This stores a pointer to the handler, but will not manage the
// storage. You are responsible for making sure the handler stays
// around as long as the Button object.
void setHandler(const PressedHandler &hdlr) {
hdlr_ = &hdlr;
myhandler_ = false;
}
// This stores a pointer to an object that Button does not manage. You
// are responsible for making sure this object stays around until Button
// goes away.
template <class T>
inline void setHandlerFunc(T &dest, void (T::*pushed)(Button *));
private:
const PressedHandler *hdlr_;
bool myhandler_;
template <class T>
class PressedHandlerT : public Button::PressedHandler {
public:
typedef void (T::*hdlrfuncptr_t)(Button *);
PressedHandlerT(T *ob, hdlrfuncptr_t hdlr) : ob_(ob), func_(hdlr) { }
virtual ~PressedHandlerT() {}
virtual void buttonPushed(Button *button) { (ob_->*func_)(button); }
private:
T * const ob_;
const hdlrfuncptr_t func_;
};
};
template <class T>
inline void Button::setHandlerFunc(T &dest, void (T::*pushed)(Button *))
{
PressedHandler *newhandler = new PressedHandlerT<T>(&dest, pushed);
if (myhandler_) {
delete hdlr_;
}
hdlr_ = newhandler;
myhandler_ = true;
}
// UseButton.cpp
#include "Button.hpp"
#include <memory>
class NoiseMaker {
public:
NoiseMaker();
void squee(Button *b);
void hiss(Button *b);
void boo(Button *b);
private:
typedef ::std::auto_ptr<Button> buttonptr_t;
const buttonptr_t squeebutton_, hissbutton_, boobutton_;
};
NoiseMaker::NoiseMaker()
: squeebutton_(new Button), hissbutton_(new Button), boobutton_(new Button)
{
squeebutton_->setHandlerFunc(*this, &NoiseMaker::squee);
hissbutton_->setHandlerFunc(*this, &NoiseMaker::hiss);
boobutton_->setHandlerFunc(*this, &NoiseMaker::boo);
}
Assuming Button is in a library and not alterable by you, I would enjoy seeing you implement that cleanly using a virtual base class without resorting to a switch or if else if construct somewhere.
The whole point of pointers of pointer-to-member function type is that they act as a run-time way to reference a specific method. When you use the "usual" syntax for method access
object.method();
pointer->method();
the method part is a fixed, compile-time specification of the method you want to call. It is hardcoded into your program. It can never change. But by using a pointer of pointer-to-member function type you can replace that fixed part with a variable, changeable at run-time specification of the method.
To better illustrate this, let me make the following simple analogy. Let's say you have an array
int a[100];
You can access its elements with fixed compile-time index
a[5]; a[8]; a[23];
In this case the specific indices are hardcoded into your program. But you can also access array's elements with a run-time index - an integer variable i
a[i];
the value of i is not fixed, it can change at run-time, thus allowing you to select different elements of the array at run-time. That is very similar to what pointers of pointer-to-member function type let you do.
The question you are asking ("since you have the instance, why not call the member function directly") can be translated into this array context. You are basically asking: "Why do we need a variable index access a[i], when we have direct compile-time constant access like a[1] and a[3]?" I hope you know the answer to this question and realize the value of run-time selection of specific array element.
The same applies to pointers of pointer-to-member function type: they, again, let you to perform run-time selection of a specific class method.
The use case is that you have several member methods with the same signature, and you want to build logic which one should be called under given circumstances. This can be helpful to implement state machine algorithms.
Not something you use everyday...
Imagine for a second you have a function that could call one of several different functions depending on parameters passed.
You could use a giant if/else if statement
You could use a switch statement
Or you could use a table of function pointers (a jump table)
If you have a lot of different options the jump table can be a much cleaner way of arranging your code ...
Its down to personal preference though. Switch statement and jump table correspond to more or less the same compiled code anyway :)
Member pointers + templates = pure win.
e.g. How to tell if class contains a certain member function in compile time
or
template<typename TContainer,
typename TProperty,
typename TElement = decltype(*Container().begin())>
TProperty grand_total(TContainer& items, TProperty (TElement::*property)() const)
{
TProperty accum = 0;
for( auto it = items.begin(), end = items.end(); it != end; ++it) {
accum += (it->*property)();
}
return accum;
}
auto ship_count = grand_total(invoice->lineItems, &LineItem::get_quantity);
auto sub_total = grand_total(invoice->lineItems, &LineItem::get_extended_total);
auto sales_tax = grand_total(invoice->lineItems, &LineItem::calculate_tax);
To invoke it, you need a reference to an instance, but then you can call the func direct & don't need a pointer to it.
This is completely missing the point. There are two indepedent concerns here:
what action to take at some later point in time
what object to perform that action on
Having a reference to an instance satisfies the second requirement. Pointers to member functions address the first: they are a very direct way to record - at one point in a program's execution - which action should be taken at some later stage of execution, possibly by another part of the program.
EXAMPLE
Say you have a monkey that can kiss people or tickle them. At 6pm, your program should set the monkey loose, and knows whom the monkey should visit, but around 3pm your user will type in which action should be taken.
A beginner's approach
So, at 3pm you could set a variable "enum Action { Kiss, Tickle } action;", then at 6pm you could do something like "if (action == Kiss) monkey->kiss(person); else monkey->tickle(person)".
Issues
But that introducing an extra level of encoding (the Action type's introduced to support this - built in types could be used but would be more error prone and less inherently meaningful). Then - after having worked out what action should be taken at 3pm, at 6pm you have to redundantly consult that encoded value to decide which action to take, which will require another if/else or switch upon the encoded value. It's all clumsy, verbose, slow and error prone.
Member function pointers
A better way is to use a more specialised varibale - a member function pointer - that directly records which action to perform at 6pm. That's what a member function pointer is. It's a kiss-or-tickle selector that's set earlier, creating a "state" for the monkey - is it a tickler or a kisser - which can be used later. The later code just invokes whatever function's been set without having to think about the possibilities or have any if/else-if or switch statements.
To invoke it, you need a reference to an instance, but then you can call the func direct & don't need a pointer to it.
Back to this. So, this is good if you make the decision about which action to take at compile time (i.e. a point X in your program, it'll definitely be a tickle). Function pointers are for when you're not sure, and want to decouple the setting of actions from the invocation of those actions.
I'm trying to code the following situation:
I have a base class providing a framework for handling events. I'm trying to use an array of pointer-to-member-functions for that. It goes as following:
class EH { // EventHandler
virtual void something(); // just to make sure we get RTTI
public:
typedef void (EH::*func_t)();
protected:
func_t funcs_d[10];
protected:
void register_handler(int event_num, func_t f) {
funcs_d[event_num] = f;
}
public:
void handle_event(int event_num) {
(this->*(funcs_d[event_num]))();
}
};
Then the users are supposed to derive other classes from this one and provide handlers:
class DEH : public EH {
public:
typedef void (DEH::*func_t)();
void handle_event_5();
DEH() {
func_t f5 = &DEH::handle_event_5;
register_handler(5, f5); // doesn't compile
........
}
};
This code wouldn't compile, since DEH::func_t cannot be converted to EH::func_t. It makes perfect sense to me. In my case the conversion is safe since the object under this is really DEH. So I'd like to have something like that:
void EH::DEH_handle_event_5_wrapper() {
DEH *p = dynamic_cast<DEH *>(this);
assert(p != NULL);
p->handle_event_5();
}
and then instead of
func_t f5 = &DEH::handle_event_5;
register_handler(5, f5); // doesn't compile
in DEH::DEH()
put
register_handler(5, &EH::DEH_handle_event_5_wrapper);
So, finally the question (took me long enough...):
Is there a way to create those wrappers (like EH::DEH_handle_event_5_wrapper) automatically?
Or to do something similar?
What other solutions to this situation are out there?
Thanks.
Instead of creating a wrapper for each handler in all derived classes (not even remotely a viable approach, of course), you can simply use static_cast to convert DEH::func_t to EH::func_t. Member pointers are contravariant: they convert naturally down the hierarchy and they can be manually converted up the hierarchy using static_cast (opposite of ordinary object pointers, which are covariant).
The situation you are dealing with is exactly the reason the static_cast functionality was extended to allow member pointer upcasts. Moreover, the non-trivial internal structure of a member function pointer is also implemented that way specifically to handle such situations properly.
So, you can simply do
DEH() {
func_t f5 = &DEH::handle_event_5;
register_handler(5, static_cast<EH::func_t>(f5));
........
}
I would say that in this case there's no point in defining a typedef name DEH::func_t - it is pretty useless. If you remove the definition of DEH::func_t the typical registration code will look as follows
DEH() {
func_t f5 = static_cast<func_t>(&DEH::handle_event_5);
// ... where `func_t` is the inherited `EH::func_t`
register_handler(5, f5);
........
}
To make it look more elegant you can provide a wrapper for register_handler in DEH or use some other means (a macro? a template?) to hide the cast.
This method does not provide you with any means to verify the validity of the handler pointer at the moment of the call (as you could do with dynamic_cast in the wrapper-based version). I don't know though how much you care to have this check in place. I would say that in this context it is actually unnecessary and excessive.
Why not just use virtual functions? Something like
class EH {
public:
void handle_event(int event_num) {
// Do any pre-processing...
// Invoke subclass hook
subclass_handle_event( event_num );
// Do any post-processing...
}
private:
virtual void subclass_handle_event( int event_num ) {}
};
class DEH : public EH {
public:
DEH() { }
private:
virtual void subclass_handle_event( int event_num ) {
if ( event_num == 5 ) {
// ...
}
}
};
You really shouldn't be doing it this way. Check out boost::bind
http://www.boost.org/doc/libs/1_43_0/libs/bind/bind.html
Elaboration:
First, I urge you to reconsider your design. Most event handler systems I've seen involve an external registrar object that maintains mappings of events to handler objects. You have the registration embedded in the EventHandler class and are doing the mapping based on function pointers, which is much less desirable. You're running into problems because you're making an end run around the built-in virtual function behavior.
The point of boost::bindand the like is to create objects out of function pointers, allowing you to leverage object oriented language features. So an implementation based on boost::bind with your design as a starting point would look something like this:
struct EventCallback
{
virtual ~EventCallback() { }
virtual void handleEvent() = 0;
};
template <class FuncObj>
struct EventCallbackFuncObj : public IEventCallback
{
EventCallbackT(FuncObj funcObj) :
m_funcObj(funcObj) { }
virtual ~EventCallbackT() { }
virtual void handleEvent()
{
m_funcObj();
}
private:
FuncObj m_funcObj;
};
Then your register_handler function looks something like this:
void register_handler(int event_num, EventCallback* pCallback)
{
m_callbacks[event_num] = pCallback;
}
And your register call would like like:
register_handler(event,
new EventCallbackFuncObj(boost::bind(&DEH::DEH_handle_event_5_wrapper, this)));
Now you can create a callback object from an (object, member function) of any type and save that as the event handler for a given event without writing customized function wrapper objects.
Let me first explain what I'm trying to achieve using some pseudo-code (JavaScript).
// Declare our function that takes a callback as as an argument, and calls the callback with true.
B(func) { func(true); }
// Call the function
B(function(bool success) { /* code that uses success */ });
I hope this says it all. If not, please comment on my question so I can write a little more to clarify my issue.
What I want is to have code like this in C++.
I have tried to use lambda functions, but I was unable to specify a parameter type for those.
If your compiler is a fairly recent release (such as Visual Studio 2010 or GCC 4.5), you can use some new features from the new C++ standard, which is currently in ratification and should be published soon.
I don't know what you need to do to enable this in Visual Studio, but it should be well-documented either on MSDN or internal help.
For GCC 4.5, just add the -std=c++0x option to enable the new features.
One of these features is the Lambda syntax:
template <typename F>
void func_with_callback(F f) {
f(true);
}
int main() {
func_with_callback( [](bool t){ if(t) cout << "lambda called" << endl; } );
}
If you don't have access to a modern compiler, you can use techniques such as functors and libraries like boost::lambda, which can perform similarly.
EDIT: Upon reading your question again, it looks like you might be looking for anonymous functions in C++. If that's what you want, unfortunately the language does not support that feature. C++ requires you be a bit more verbose with those sorts of things at present time. If you need more than what boost::lamda is already providing you then you should probably separate it out as a normal function anyway.
In C and C++ this is accomplished using function pointers or functors and templates (C++ only).
For example (using the C++ way (functors))
//Define a functor. A functor is nothing but a class which overloads
//operator(). Inheriting from std::binary_function allows your functor
//to operate cleanly with STL algorithms.
struct MyFunctor : public std::binary_function<int, int, bool>
{
bool operator()(int a, int b) {
return a < b;
};
};
//Define a template which takes a functor type. Your functor should be
//should be passed by value into the target function, and a functor should
//not have internal state, making this copy cheap.
template <typename Func_T>
void MyFunctionUsingACallback(Func_T functor)
{
if (functor(a, b))
//Do something
else
//Do something else
}
//Example usage.
int main()
{
MyFunctionUsingACallback(MyFunctor());
}
Using the C way (function pointers):
//Create a typedef for a function pointer type taking a pair of ints and
//returning a boolean value.
typedef bool (*Functor_T)(int, int);
//An example callback function.
bool MyFunctor(int a, int b)
{
return a < b;
}
//Note that you use the typedef'd function here.
void MyFunctionUsingACallback(Functor_T functor)
{
if (functor(a, b))
//Do something
else
//Do something else
}
//Example usage.
int main()
{
MyFunctionUsingACallback(MyFunctor);
}
Note that you should prefer the C++ way because it will allow the compiler to
make more intelligent decisions with regards to inlining, unless for some reason
you are limited to the C subset.
In Java, you can have a List of Objects. You can add objects of multiple types, then retrieve them, check their type, and perform the appropriate action for that type.
For example: (apologies if the code isn't exactly correct, I'm going from memory)
List<Object> list = new LinkedList<Object>();
list.add("Hello World!");
list.add(7);
list.add(true);
for (object o : list)
{
if (o instanceof int)
; // Do stuff if it's an int
else if (o instanceof String)
; // Do stuff if it's a string
else if (o instanceof boolean)
; // Do stuff if it's a boolean
}
What's the best way to replicate this behavior in C++?
boost::variant is similar to dirkgently's suggestion of boost::any, but supports the Visitor pattern, meaning it's easier to add type-specific code later. Also, it allocates values on the stack rather than using dynamic allocation, leading to slightly more efficient code.
EDIT: As litb points out in the comments, using variant instead of any means you can only hold values from one of a prespecified list of types. This is often a strength, though it might be a weakness in the asker's case.
Here is an example (not using the Visitor pattern though):
#include <vector>
#include <string>
#include <boost/variant.hpp>
using namespace std;
using namespace boost;
...
vector<variant<int, string, bool> > v;
for (int i = 0; i < v.size(); ++i) {
if (int* pi = get<int>(v[i])) {
// Do stuff with *pi
} else if (string* si = get<string>(v[i])) {
// Do stuff with *si
} else if (bool* bi = get<bool>(v[i])) {
// Do stuff with *bi
}
}
(And yes, you should technically use vector<T>::size_type instead of int for i's type, and you should technically use vector<T>::iterator instead anyway, but I'm trying to keep it simple.)
Your example using Boost.Variant and a visitor:
#include <string>
#include <list>
#include <boost/variant.hpp>
#include <boost/foreach.hpp>
using namespace std;
using namespace boost;
typedef variant<string, int, bool> object;
struct vis : public static_visitor<>
{
void operator() (string s) const { /* do string stuff */ }
void operator() (int i) const { /* do int stuff */ }
void operator() (bool b) const { /* do bool stuff */ }
};
int main()
{
list<object> List;
List.push_back("Hello World!");
List.push_back(7);
List.push_back(true);
BOOST_FOREACH (object& o, List) {
apply_visitor(vis(), o);
}
return 0;
}
One good thing about using this technique is that if, later on, you add another type to the variant and you forget to modify a visitor to include that type, it will not compile. You have to support every possible case. Whereas, if you use a switch or cascading if statements, it's easy to forget to make the change everywhere and introduce a bug.
C++ does not support heterogenous containers.
If you are not going to use boost the hack is to create a dummy class and have all the different classes derive from this dummy class. Create a container of your choice to hold dummy class objects and you are ready to go.
class Dummy {
virtual void whoami() = 0;
};
class Lizard : public Dummy {
virtual void whoami() { std::cout << "I'm a lizard!\n"; }
};
class Transporter : public Dummy {
virtual void whoami() { std::cout << "I'm Jason Statham!\n"; }
};
int main() {
std::list<Dummy*> hateList;
hateList.insert(new Transporter());
hateList.insert(new Lizard());
std::for_each(hateList.begin(), hateList.end(),
std::mem_fun(&Dummy::whoami));
// yes, I'm leaking memory, but that's besides the point
}
If you are going to use boost you can try boost::any. Here is an example of using boost::any.
You may find this excellent article by two leading C++ experts of interest.
Now, boost::variant is another thing to look out for as j_random_hacker mentioned. So, here's a comparison to get a fair idea of what to use.
With a boost::variant the code above would look something like this:
class Lizard {
void whoami() { std::cout << "I'm a lizard!\n"; }
};
class Transporter {
void whoami() { std::cout << "I'm Jason Statham!\n"; }
};
int main() {
std::vector< boost::variant<Lizard, Transporter> > hateList;
hateList.push_back(Lizard());
hateList.push_back(Transporter());
std::for_each(hateList.begin(), hateList.end(), std::mem_fun(&Dummy::whoami));
}
How often is that sort of thing actually useful? I've been programming in C++ for quite a few years, on different projects, and have never actually wanted a heterogenous container. It may be common in Java for some reason (I have much less Java experience), but for any given use of it in a Java project there might be a way to do something different that will work better in C++.
C++ has a heavier emphasis on type safety than Java, and this is very type-unsafe.
That said, if the objects have nothing in common, why are you storing them together?
If they do have things in common, you can make a class for them to inherit from; alternately, use boost::any. If they inherit, have virtual functions to call, or use dynamic_cast<> if you really have to.
I'd just like to point out that using dynamic type casting in order to branch based on type often hints at flaws in the architecture. Most times you can achieve the same effect using virtual functions:
class MyData
{
public:
// base classes of polymorphic types should have a virtual destructor
virtual ~MyData() {}
// hand off to protected implementation in derived classes
void DoSomething() { this->OnDoSomething(); }
protected:
// abstract, force implementation in derived classes
virtual void OnDoSomething() = 0;
};
class MyIntData : public MyData
{
protected:
// do something to int data
virtual void OnDoSomething() { ... }
private:
int data;
};
class MyComplexData : public MyData
{
protected:
// do something to Complex data
virtual void OnDoSomething() { ... }
private:
Complex data;
};
void main()
{
// alloc data objects
MyData* myData[ 2 ] =
{
new MyIntData()
, new MyComplexData()
};
// process data objects
for ( int i = 0; i < 2; ++i ) // for each data object
{
myData[ i ]->DoSomething(); // no type cast needed
}
// delete data objects
delete myData[0];
delete myData[1];
};
Sadly there is no easy way of doing this in C++. You have to create a base class yourself and derive all other classes from this class. Create a vector of base class pointers and then use dynamic_cast (which comes with its own runtime overhead) to find the actual type.
Just for completeness of this topic I want to mention that you can actually do this with pure C by using void* and then casting it into whatever it has to be (ok, my example isn't pure C since it uses vectors but that saves me some code). This will work if you know what type your objects are, or if you store a field somewhere which remembers that. You most certainly DON'T want to do this but here is an example to show that it's possible:
#include <iostream>
#include <vector>
using namespace std;
int main() {
int a = 4;
string str = "hello";
vector<void*> list;
list.push_back( (void*) &a );
list.push_back( (void*) &str );
cout << * (int*) list[0] << "\t" << * (string*) list[1] << endl;
return 0;
}
While you cannot store primitive types in containers, you can create primitive type wrapper classes which will be similar to Java's autoboxed primitive types (in your example the primitive typed literals are actually being autoboxed); instances of which appear in C++ code (and can (almost) be used) just like primitive variables/data members.
See Object Wrappers for the Built-In Types from Data Structures and Algorithms with Object-Oriented Design Patterns in C++.
With the wrapped object you can use the c++ typeid() operator to compare the type.
I am pretty sure the following comparison will work:
if (typeid(o) == typeid(Int)) [where Int would be the wrapped class for the int primitive type, etc...]
(otherwise simply add a function to your primitive wrappers that returns a typeid and thus:
if (o.get_typeid() == typeid(Int)) ...
That being said, with respect to your example, this has code smell to me.
Unless this is the only place where you are checking the type of the object,
I would be inclined to use polymorphism (especially if you have other methods/functions specific with respect to type). In this case I would use the primitive wrappers adding an interfaced class declaring the deferred method (for doing 'do stuff') that would be implemented by each of your wrapped primitive classes. With this you would be able to use your container iterator and eliminate your if statement (again, if you only have this one comparison of type, setting up the deferred method using polymorphism just for this would be overkill).
I am a fairly inexperienced, but here's what I'd go with-
Create a base class for all classes you need to manipulate.
Write container class/ reuse container class.
(Revised after seeing other answers -My previous point was too cryptic.)
Write similar code.
I am sure a much better solution is possible. I am also sure a better explanation is possible. I've learnt that I have some bad C++ programming habits, so I've tried to convey my idea without getting into code.
I hope this helps.
Beside the fact, as most have pointed out, you can't do that, or more importantly, more than likely, you really don't want to.
Let's dismiss your example, and consider something closer to a real-life example. Specifically, some code I saw in a real open-source project. It attempted to emulate a cpu in a character array. Hence it would put into the array a one byte "op code", followed by 0, 1 or 2 bytes which could be a character, an integer, or a pointer to a string, based on the op code. To handle that, it involved a lot of bit-fiddling.
My simple solution: 4 separate stacks<>s: One for the "opcode" enum and one each for chars, ints and string. Take the next off the opcode stack, and the would take you which of the other three to get the operand.
There's a very good chance your actual problem can be handled in a similar way.
Well, you could create a base class and then create classes which inherit from it. Then, store them in a std::vector.
The short answer is... you can't.
The long answer is... you'd have to define your own new heirarchy of objects that all inherit from a base object. In Java all objects ultimately descend from "Object", which is what allows you to do this.
RTTI (Run time type info) in C++ has always been tough, especially cross-compiler.
You're best option is to use STL and define an interface in order to determine the object type:
public class IThing
{
virtual bool isA(const char* typeName);
}
void myFunc()
{
std::vector<IThing> things;
// ...
things.add(new FrogThing());
things.add(new LizardThing());
// ...
for (int i = 0; i < things.length(); i++)
{
IThing* pThing = things[i];
if (pThing->isA("lizard"))
{
// do this
}
// etc
}
}
Mike
Whilst refactoring some legacy C++ code I found that I could potentially remove some code duplication by somehow defining a variable that could point to any class method that shared the same signature. After a little digging, I found that I could do something like the following:
class MyClass
{
protected:
bool CaseMethod1( int abc, const std::string& str )
{
cout << "case 1:" << str;
return true;
}
bool CaseMethod2( int abc, const std::string& str )
{
cout << "case 2:" << str;
return true;
}
bool CaseMethod3( int abc, const std::string& str )
{
cout << "case 3:" << str;
return true;
}
public:
bool TestSwitch( int num )
{
bool ( MyClass::*CaseMethod )( int, const std::string& );
switch ( num )
{
case 1: CaseMethod = &MyClass::CaseMethod1;
break;
case 2: CaseMethod = &MyClass::CaseMethod2;
break;
case 3: CaseMethod = &MyClass::CaseMethod3;
break;
}
...
bool res = CaseMethod( 999, "hello world" );
...
reurn res;
}
};
My question is - is this the correct way to go about this? Should I consider anything that Boost has to offer?
Edit...
Ok, my mistake - I should be calling the method like so:
bool res = ( (*this).*CaseMethod )( 999, "Hello World" );
What you have there is a pointer-to-member-function. It will solve your problem. I am surprised that your "TestSwitch" function compiles, as the calling syntax is slightly different to what you might expect. It should be:
bool res = (this->*CaseMethod)( 999, "hello world" );
However, you might find a combination of boost::function and boost::bind makes things a little easier, as you can avoid the bizarre calling syntax.
boost::function<bool(int,std::string)> f=
boost::bind(&MyClass::CaseMethod1,this,_1,_2);
Of course, this will bind it to the current this pointer: you can make the this pointer of the member function an explicit third parameter if you like:
boost::function<bool(MyClass*,int,std::string)> f=
boost::bind(&MyClass::CaseMethod1,_1,_2,_3);
Another alternative might be to use virtual functions and derived classes, but that might require major changes to your code.
You could also build a lookup (if your key range is reasonable) so that you end up writing:
this->*Methods[num]( 999, "hello world" );
This removes the switch as well, and makes the cleanup a bit more worthwhile.
You can certainly do it, although the CaseMethod call isn't correct (it's a pointer to member function, so you have to specify the object on which the method should be called). The correct call would look like this:
bool res = this->*CaseMethod( 999, "hello world" );
On the other hand, I'd recommend boost::mem_fn - you'll have less chances to screw it up. ;)
I don't see the difference between your call and simply calling the method within the switch statement.
No, there is no semantic or readability difference.
The only difference I see is that you are taking a pointer to a method and so forbids to the compiler to inline it or optimizes any call to that method.
Without wider context, it's hard to figure out the right answer, but I sew three possibilities here:
stay with normal switch statement, no need to do anything. This is the most likely solution
use pointers to member function in conjunction with an array, as #Simon says, or may be with a map. For a case statement with a large number of cases, this may be faster.
split t he class into a number of classes, each carrying one function to call, and use virtual functions. This is probably the best solution, buy it will require some serious refatoring. Consider GoF patterns such as State or Visitor or some such.
There's nothing intrinsically wrong with the localised example you've given here, but class method pointers can often be tricky to keep 'safe' if you use them in a wider context, such as outside the class they're a pointer of, or in conjunction with a complex inheritance tree. The way compilers typically manage method pointers is different to 'normal' pointers (since there's extra information beyond just a code entry point), and consequently there are a lot of restrictions on what you can do with them.
If you're just keeping simple pointers the way you describe then you'll be fine, but fore more complex uses you may want to take a look at a more generalised functor system such as boost::bind. These can take pointers to just about any callable code pointer, and can also bind instanced function arguments if necessary.
There are other approaches available, such as using an abstract base class, or specialized template functions.
I'll describe the base class idea.
You can define an abstract base class
class Base { virtual bool Method(int i, const string& s) = 0; };
Then write each of your cases as a subclass, such as
class Case1 : public Base { virtual bool Method(..) { /* implement */; } };
At some point, you will get your "num" variable that indicates which test to execute. You could write a factory function that takes this num (I'll call it which_case), and returns a pointer to Base, and then call Method from that pointer.
Base* CreateBase(int which_num) { /* metacode: return new Case[which_num]; */ }
// ... later, when you want to actually call your method ...
Base* base = CreateBase(23);
base->Method(999, "hello world!");
delete base; // Or use a scoped pointer.
By the way, this application makes me wish C++ supported static virtual functions, or something like "type" as a builtin type - but it doesn't.