I'm trying to implement AABBs/OOBBs with MathGeoLib since the ease to operate with BBs (and because I wanted to test some things with that library).
The problem is that the engine's objects transformations are based on glm since we started with glm (and they work properly) but when it comes to transform the OOBBs according to an object, it doesn't work very well.
What I basically do is to pass to a function the game object's translation, orientation and scale (I tried to pass a global matrix but it doesn't work, it seems to 'add' the transformation instead of setting it, and I can't access the oobb's matrix). That function does the next:
glm::vec3 pos = passedPosition - OOBBPreviousPos;
glm::mat4 Transformation = glm::translate(glm::mat4(1.0f), pos) *
glm::mat4_cast(passedRot) * glm::scale(glm::mat4(1.0f), passedScale);
glm::mat4 resMat = glm::transpose(Transformation);
math::float4x4 mat = math::float4x4::identity;
mat.Set(glm::value_ptr(resMat));
Which basically transposes the glm matrix (I have seen that that's they way of 'translating' them), passes it to a float* and then it constructs the MathGeoLib matrix with that. I have debugged it and the values seem to be right according to the object, so the next thing I do is actually transform the OOBB and then, enclose the AABB to have it inside, like this:
m_OBB.Transform(mat);
m_AABB.SetNegativeInfinity(); //Sets AABB to "null"
m_AABB.Enclose(m_OBB);
The final behaviour is pretty strange, believe me if I say that is the most close I've been from having it right, I've been some days testing different things and nothing works better (passing global/local matrices directly, trying different ways of passing/constructing transformation data, checking if the glm-MathGLib is correct...). It rotates but not around its own axis, and the scaling gets him crazy (although translation works). Its current behaviour can be seen here: https://gfycat.com/quarrelsomefineduck (blue cubes are AABBs, green ones are OOBBs).
Am I doing something wrong with the mathematics calculations or data transfer?
I still been looking on that but then some friend made me look into another direction, so I finally solved it (or better said: I "worked-around it") by storing an initial object's AABB and passing to the mentioned function the game object's global matrix. Then, inside the function, I used another MathGeoLib function to transform the OOBB.
That function finally looks like:
glm::mat4 resMat = glm::transpose(GlobalMatrixPassed);
math::float4x4 mat = math::float4x4::identity;
mat.Set(glm::value_ptr(resMat)); //"Translate" glm matrix passed into a MathGeoLib one
m_OOBB.SetFrom(m_InitialAABB); //Set OOBB from the initial aabb
m_OOBB.Transform(mat); //Transform it
m_AABB.SetFrom(m_OOBB); //Set the AABB in function of the transformed OOBB
Currently I have been calculating the view matrix like this:
viewMatrix = cameraRot * cameraTrans
and the model matrix like this:
modelMatrix = modelTrans * modelScale
where cameraTrans and modelTrans are translation matrices, modelScale is a scaling matrix, and cameraRot and modelRot are rotation matrices produced by quaternions.
Is this correct? I've been googling this for a few hours, and no one mentions the order for the view matrix, just the model matrix. It all seems to work, but I wrote the matrix and quaternion implementations myself so I cant' tell if this is a bug.
(Note: The matrices are row major)
Let us talk about transformation between coordinate system. Suppose you have a point defined on a local system. You want to describe it in a global system, so what you do is rotate this point, in order to align its axis, and then, translate it to its final position. You can described this mathematically by:
Pg = T*R*Pl, where M = T*R
In this way, M allows you describe any point, defined in a local coordinate system, into a global coordinate system.
You can do the same with camera, but what you really want is do exactly the inverse that you have done before, i.e., you want to describe any point in global coordinate system to the camera local coordinate system:
Pc = X*Pg, but what is the value of X?
You know that:
Pg = Tc*Rc*Pc, so Pc = inv(Tc*RC)*Pg
in order words:
X = inv(Tc*Rc) = inv(Rc) * inv(Tc)
Therefore, to describe a point, from its local coordinate system, to the camera coordinate system, you just need to concatenate those two matrices:
Pc = inv(Rc)*inv(Tc)*T*R*P, where
M' = inv(Rc)*inv(Tc)*T*R
Note that some systems (glm library, for example), define this matrix (X) as lookAt and its definition can be found here. I would suggest you to here this article too
What you have is correct.
modelMatrix = modelTranslation * modelRotation * modelScale; // M=TRS
viewMatrix = cameraOrientation * cameraTranslation; // V=OT
To make this easier to remember, first note that matrices are essentially applied backwards. Let us consider that M=SRT. So you have a cube and you translate it. But if you rotate, it will rotate from the original pivot point. Then, once you apply a scaling factor, the model will be skewed because the scaling applies after the rotation. This is all hard to deal with- M=TRS is much easier for most purposes once you consider that. This is a little hard to describe in words, so let me know if you'd like some pictures.
I'm trying to implement a 'raypicker' for selecting objects within my project. I do not fully understand how to implement this, but I understand conceptually how it should work. I've been trying to learn how to do this, but most tutorials I find go way over my head. My current code is based on one of the recent tutorials I found, here.
After several hours of revisions, I believe the problem I'm having with my raypicker is actually the creation of the ray in the first place. If I substitute/hardcode my near/far planes with a coordinate that would undisputably be located within the region of a triangle, the picker identifies it correctly.
My problem is this: my ray creation doesn't seem to fully take my current "camera" or perspective into account, so camera rotation won't affect where my mouse is.
I believe to remedy this I need something like using gluUnProject() or something, but whenever I used this the x,y,z coordinates returned would be incredibly small,
My current ray creation is a mess. I tried to use methods that others proposed initially, but it seemed like whatever method I tried it never worked with my picker/intersection function.
Here's the code for my ray creation:
void oglWidget::mousePressEvent(QMouseEvent *event)
{
QVector3D nearP = QVector3D(event->x()+camX, -event->y()-camY, -1.0);
QVector3D farP = QVector3D(event->x()+camX, -event->y()-camY, 1.0);
int i = -1;
for (int x = 0; x < tileCount; x++)
{
bool rayInter = intersect(nearP, farP, tiles[x]->vertices);
if (rayInter == true)
i = x;
}
if (i != -1)
{
tiles[i]->showSelection();
}
else
{
for (int x = 0; x < tileCount; x++)
tiles[x]->hideSelection();
}
//tiles[0]->showSelection();
}
To repeat, I used to load up the viewport, model & projection matrices, and unproject the mouse coordinates, but within a 1920x1080 window, all I get is values in the range of -2 to 2 for x y & z for each mouse event, which is why I'm trying this method, but this method doesn't work with camera rotation and zoom.
I don't want to do pixel color picking, because who knows I may need this technique later on, and I'd rather not give up after the amount of effort I put in so far
As you seem to have problems constructing your rays, here's how I would do it. This has not been tested directly. You could do it like this, making sure that all vectors are in the same space. If you use multiple model matrices (or stacks thereof) the calculation needs to be repeated separately with each of them.
use pos = gluUnproject(winx, winy, near, ...) to get the position of the mouse coordinate on the near plane in model space; near being the value given to glFrustum() or gluPerspective()
origin of the ray is the camera position in model space: rayorig = inv(modelmat) * camera_in_worldspace
the direction of the ray is the normalized vector from the position from 1. to the ray origin: raydir = normalize(pos - rayorig)
On the website linked they use two points for the ray and they don't seem to normalize the ray direction vector, so this is optional.
Ok, so this is the beginning of my trail of breadcrumbs.
I was somehow having issues with the QT datatypes for the matrices, and the logic pertaining to matrix transformations.
This particular problem in this question resulted from not actually performing any transformations whatsoever.
Steps to solving this problem were:
Converting mouse coordinates into NDC space (within the range of -1 to 1: x/screen width * 2 - 1, y - height / height * 2 - 1)
grabbing the 4x4 matrix for my view matrix (can be the one used when rendering, or re calculated)
In a new vector, have it equal the inverse view matrix multiplied by the inverse projection matrix.
In order to build the ray, I had to do the following:
Take the previously calculated value for the matrices that were multiplied together. This will be multiplied by a vector 4 (array of 4 spots), where it will hold the previously calculated x and y coordinates, as well as -1, then +1.
Then this vector will be divided by the last spot value of the entire vector
Create another vector 4 which was just like the last, but instead of -1, put "1" .
Once again divide that by its last spot value.
Now the coordinates for the ray have been created at the far and near planes, so it can intersect with anything along it in the scene.
I opened a series of questions (because of great uncertainty with my series of problems), so parts of my problem overlap in them too.
In here, I learned that I needed to take the screen height into consideration for switching the origin of the y axis for a Cartesian system, since windows has the y axis start at the top left. Additionally, retrieval of matrices was redundant, but also wrong since they were never declared "properly".
In here, I learned that unProject wasn't working because I was trying to pull the model and view matrices using OpenGL functions, but I never actually set them in the first place, because I built the matrices by hand. I solved that problem in 2 fold: I did the math manually, and I made all the matrices of the same data type (they were mixed data types earlier, leading to issues as well).
And lastly, in here, I learned that my order of operations was slightly off (need to multiply matrices by a vector, not the reverse), that my near plane needs to be -1, not 0, and that the last value of the vector which would be multiplied with the matrices (value "w") needed to be 1.
Credits goes to those individuals who helped me solve these problems:
srobins of facepunch, in this thread
derhass from here, in this question, and this discussion
Take a look at
http://www.realtimerendering.com/intersections.html
Lot of help in determining intersections between various kinds of geometry
http://geomalgorithms.com/code.html also has some c++ functions one of them serves your purpose
This is a topic that I come across often online, but most websites do a poor job properly explaining this. I'm currently creating my own Camera class as part of a 3D renderer built from scratch (how better to understand what happens, right?). But I've hit a snag with creating the World and View matrices for the camera.
As I understand it, the world matrix of a camera is essentially the matrix that places the camera where in needs to be in world space; which is only necessary when you need to render something in its position and according to its orientation. The View matrix, on the other hand, is the matrix that places the camera from that position to the origin of world space, facing along the z axis in one direction or another (negative for right-handed, positive for left-handed, I believe). Am I correct so far?
Given a matrix with its position defined as m_Eye and a lookat defined as m_LookAt, how do I generate the world matrix? More importantly, how do I generate the view matrix without having to perform an expensive inverse operations? I know that the rotation element's inverse is equal to its transpose, so I'm thinking that will factor into it. Regardless, this is the code I have been tinkering with. As an aside, I'm using a right-handed coordinate system.
The following code should generate the appropriate local coordinate axis:
m_W = AlgebraHelper::Normalize(m_Eye - m_LookAt);
m_U = AlgebraHelper::Normalize(m_Up.Cross(m_W));
m_V = m_W.Cross(m_U);
The following code is what I have, so far, for generating the World matrix (note, I also work with row-based matrices, so m_12 indicates the first row and second column):
Matrix4 matrix = Matrix4Identity;
matrix.m_11 = m_U.m_X;
matrix.m_12 = m_U.m_Y;
matrix.m_13 = m_U.m_Z;
matrix.m_21 = m_V.m_X;
matrix.m_22 = m_V.m_Y;
matrix.m_23 = m_V.m_Z;
matrix.m_31 = m_W.m_X;
matrix.m_32 = m_W.m_Y;
matrix.m_33 = m_W.m_Z;
matrix.m_41 = m_Eye.m_X;
matrix.m_42 = m_Eye.m_Y;
matrix.m_43 = m_Eye.m_Z;
Is this a good way to calculate the World matrix and, subsequently, how do I extract the View matrix?
Thank you in advance for any help in the matter.
I am implementing a 3D engine for spatial visualisation, and am writing a camera with the following navigation features:
Rotate the camera (ie, analogous to rotating your head)
Rotate around an arbitrary 3D point (a point in space, which is probably not in the center of the screen; the camera needs to rotate around this keeping the same relative look direction, ie the look direction changes too. This does not look directly at the chosen rotation point)
Pan in the camera's plane (so move up/down or left/right in the plane orthogonal to the camera's look vector)
The camera is not supposed to roll - that is, 'up' remains up. Because of this I represent the camera with a location and two angles, rotations around the X and Y axes (Z would be roll.) The view matrix is then recalculated using the camera location and these two angles. This works great for pan and rotating the eye, but not for rotating around an arbitrary point. Instead I get the following behaviour:
The eye itself apparently moving further up or down than it should
The eye not moving up or down at all when m_dRotationX is 0 or pi. (Gimbal lock? How can I avoid this?)
The eye's rotation being inverted (changing the rotation makes it look further up when it should look further down, down when it should look further up) when m_dRotationX is between pi and 2pi.
(a) What is causing this 'drift' in rotation?
This may be gimbal lock. If so, the standard answer to this is 'use quaternions to represent rotation', said many times here on SO (1, 2, 3 for example), but unfortunately without concrete details (example. This is the best answer I've found so far; it's rare.) I've struggled to implemented a camera using quaternions combining the above two types of rotations. I am, in fact, building a quaternion using the two rotations, but a commenter below said there was no reason - it's fine to immediately build the matrix.
This occurs when changing the X and Y rotations (which represent the camera look direction) when rotating around a point, but does not occur simply when directly changing the rotations, i.e. rotating the camera around itself. To me, this doesn't make sense. It's the same values.
(b) Would a different approach (quaternions, for example) be better for this camera? If so, how do I implement all three camera navigation features above?
If a different approach would be better, then please consider providing a concrete implemented example of that approach. (I am using DirectX9 and C++, and the D3DX* library the SDK provides.) In this second case, I will add and award a bounty in a couple of days when I can add one to the question. This might sound like I'm jumping the gun, but I'm low on time and need to implement or solve this quickly (this is a commercial project with a tight deadline.) A detailed answer will also improve the SO archives, because most camera answers I've read so far are light on code.
Thanks for your help :)
Some clarifications
Thanks for the comments and answer so far! I'll try to clarify a few things about the problem:
The view matrix is recalculated from the camera position and the two angles whenever one of those things changes. The matrix itself is never accumulated (i.e. updated) - it is recalculated afresh. However, the camera position and the two angle variables are accumulated (whenever the mouse moves, for example, one or both of the angles will have a small amount added or subtracted, based on the number of pixels the mouse moved up-down and/or left-right onscreen.)
Commenter JCooper states I'm suffering from gimbal lock, and I need to:
add another rotation onto your transform that rotates the eyePos to be
completely in the y-z plane before you apply the transformation, and
then another rotation that moves it back afterward. Rotate around the
y axis by the following angle immediately before and after applying
the yaw-pitch-roll matrix (one of the angles will need to be negated;
trying it out is the fastest way to decide which).
double fixAngle = atan2(oEyeTranslated.z,oEyeTranslated.x);
Unfortunately, when implementing this as described, my eye shoots off above the scene at a very fast rate due to one of the rotations. I'm sure my code is simply a bad implementation of this description, but I still need something more concrete. In general, I find unspecific text descriptions of algorithms are less useful than commented, explained implementations. I am adding a bounty for a concrete, working example that integrates with the code below (i.e. with the other navigation methods, too.) This is because I would like to understand the solution, as well as have something that works, and because I need to implement something that works quickly since I am on a tight deadline.
Please, if you answer with a text description of the algorithm, make sure it is detailed enough to implement ('Rotate around Y, then transform, then rotate back' may make sense to you but lacks the details to know what you mean. Good answers are clear, signposted, will allow others to understand even with a different basis, are 'solid weatherproof information boards.')
In turn, I have tried to be clear describing the problem, and if I can make it clearer please let me know.
My current code
To implement the above three navigation features, in a mouse move event moving based on the pixels the cursor has moved:
// Adjust this to change rotation speed when dragging (units are radians per pixel mouse moves)
// This is both rotating the eye, and rotating around a point
static const double dRotatePixelScale = 0.001;
// Adjust this to change pan speed (units are meters per pixel mouse moves)
static const double dPanPixelScale = 0.15;
switch (m_eCurrentNavigation) {
case ENavigation::eRotatePoint: {
// Rotating around m_oRotateAroundPos
const double dX = (double)(m_oLastMousePos.x - roMousePos.x) * dRotatePixelScale * D3DX_PI;
const double dY = (double)(m_oLastMousePos.y - roMousePos.y) * dRotatePixelScale * D3DX_PI;
// To rotate around the point, translate so the point is at (0,0,0) (this makes the point
// the origin so the eye rotates around the origin), rotate, translate back
// However, the camera is represented as an eye plus two (X and Y) rotation angles
// This needs to keep the same relative rotation.
// Rotate the eye around the point
const D3DXVECTOR3 oEyeTranslated = m_oEyePos - m_oRotateAroundPos;
D3DXMATRIX oRotationMatrix;
D3DXMatrixRotationYawPitchRoll(&oRotationMatrix, dX, dY, 0.0);
D3DXVECTOR4 oEyeRotated;
D3DXVec3Transform(&oEyeRotated, &oEyeTranslated, &oRotationMatrix);
m_oEyePos = D3DXVECTOR3(oEyeRotated.x, oEyeRotated.y, oEyeRotated.z) + m_oRotateAroundPos;
// Increment rotation to keep the same relative look angles
RotateXAxis(dX);
RotateYAxis(dY);
break;
}
case ENavigation::ePanPlane: {
const double dX = (double)(m_oLastMousePos.x - roMousePos.x) * dPanPixelScale;
const double dY = (double)(m_oLastMousePos.y - roMousePos.y) * dPanPixelScale;
m_oEyePos += GetXAxis() * dX; // GetX/YAxis reads from the view matrix, so increments correctly
m_oEyePos += GetYAxis() * -dY; // Inverted compared to screen coords
break;
}
case ENavigation::eRotateEye: {
// Rotate in radians around local (camera not scene space) X and Y axes
const double dX = (double)(m_oLastMousePos.x - roMousePos.x) * dRotatePixelScale * D3DX_PI;
const double dY = (double)(m_oLastMousePos.y - roMousePos.y) * dRotatePixelScale * D3DX_PI;
RotateXAxis(dX);
RotateYAxis(dY);
break;
}
The RotateXAxis and RotateYAxis methods are very simple:
void Camera::RotateXAxis(const double dRadians) {
m_dRotationX += dRadians;
m_dRotationX = fmod(m_dRotationX, 2 * D3DX_PI); // Keep in valid circular range
}
void Camera::RotateYAxis(const double dRadians) {
m_dRotationY += dRadians;
// Limit it so you don't rotate around when looking up and down
m_dRotationY = std::min(m_dRotationY, D3DX_PI * 0.49); // Almost fully up
m_dRotationY = std::max(m_dRotationY, D3DX_PI * -0.49); // Almost fully down
}
And to generate the view matrix from this:
void Camera::UpdateView() const {
const D3DXVECTOR3 oEyePos(GetEyePos());
const D3DXVECTOR3 oUpVector(0.0f, 1.0f, 0.0f); // Keep up "up", always.
// Generate a rotation matrix via a quaternion
D3DXQUATERNION oRotationQuat;
D3DXQuaternionRotationYawPitchRoll(&oRotationQuat, m_dRotationX, m_dRotationY, 0.0);
D3DXMATRIX oRotationMatrix;
D3DXMatrixRotationQuaternion(&oRotationMatrix, &oRotationQuat);
// Generate view matrix by looking at a point 1 unit ahead of the eye (transformed by the above
// rotation)
D3DXVECTOR3 oForward(0.0, 0.0, 1.0);
D3DXVECTOR4 oForward4;
D3DXVec3Transform(&oForward4, &oForward, &oRotationMatrix);
D3DXVECTOR3 oTarget = oEyePos + D3DXVECTOR3(oForward4.x, oForward4.y, oForward4.z); // eye pos + look vector = look target position
D3DXMatrixLookAtLH(&m_oViewMatrix, &oEyePos, &oTarget, &oUpVector);
}
It seems to me that "Roll" shouldn't be possible given the way you form your view matrix. Regardless of all the other code (some of which does look a little funny), the call D3DXMatrixLookAtLH(&m_oViewMatrix, &oEyePos, &oTarget, &oUpVector); should create a matrix without roll when given [0,1,0] as an 'Up' vector unless oTarget-oEyePos happens to be parallel to the up vector. This doesn't seem to be the case since you're restricting m_dRotationY to be within (-.49pi,+.49pi).
Perhaps you can clarify how you know that 'roll' is happening. Do you have a ground plane and the horizon line of that ground plane is departing from horizontal?
As an aside, in UpdateView, the D3DXQuaternionRotationYawPitchRoll seems completely unnecessary since you immediately turn around and change it into a matrix. Just use D3DXMatrixRotationYawPitchRoll as you did in the mouse event. Quaternions are used in cameras because they're a convenient way to accumulate rotations happening in eye coordinates. Since you're only using two axes of rotation in a strict order, your way of accumulating angles should be fine. The vector transformation of (0,0,1) isn't really necessary either. The oRotationMatrix should already have those values in the (_31,_32,_33) entries.
Update
Given that it's not roll, here's the problem: you create a rotation matrix to move the eye in world coordinates, but you want the pitch to happen in camera coordinates. Since roll isn't allowed and yaw is performed last, yaw is always the same in both the world and camera frames of reference. Consider the images below:
Your code works fine for local pitch and yaw because those are accomplished in camera coordinates.
But when you rotate around a reference point, you are creating a rotation matrix that is in world coordinates and using that to rotate the camera center. This works okay if the camera's coordinate system happens to line up with the world's. However, if you don't check to see if you're up against the pitch limit before you rotate the camera position, you will get crazy behavior when you hit that limit. The camera will suddenly start to skate around the world--still 'rotating' around the reference point, but no longer changing orientation.
If the camera's axes don't line up with the world's, strange things will happen. In the extreme case, the camera won't move at all because you're trying to make it roll.
The above is what would normally happen, but since you handle the camera orientation separately, the camera doesn't actually roll.
Instead, it stays upright, but you get strange translation going on.
One way to handle this would be to (1)always put the camera into a canonical position and orientation relative to the reference point, (2)make your rotation, and then (3)put it back when you're done (e.g., similar to the way that you translate the reference point to the origin, apply the Yaw-Pitch rotation, and then translate back). Thinking more about it, however, this probably isn't the best way to go.
Update 2
I think that Generic Human's answer is probably the best. The question remains as to how much pitch should be applied if the rotation is off-axis, but for now, we'll ignore that. Maybe it'll give you acceptable results.
The essence of the answer is this: Before mouse movement, your camera is at c1 = m_oEyePos and being oriented by M1 = D3DXMatrixRotationYawPitchRoll(&M_1,m_dRotationX,m_dRotationY,0). Consider the reference point a = m_oRotateAroundPos. From the point of view of the camera, this point is a'=M1(a-c1).
You want to change the orientation of the camera to M2 = D3DXMatrixRotationYawPitchRoll(&M_2,m_dRotationX+dX,m_dRotationY+dY,0). [Important: Since you won't allow m_dRotationY to fall outside of a specific range, you should make sure that dY doesn't violate that constraint.] As the camera changes orientation, you also want its position to rotate around a to a new point c2. This means that a won't change from the perspective of the camera. I.e., M1(a-c1)==M2(a-c2).
So we solve for c2 (remember that the transpose of a rotation matrix is the same as the inverse):
M2TM1(a-c1)==(a-c2) =>
-M2TM1(a-c1)+a==c2
Now if we look at this as a transformation being applied to c1, then we can see that it is first negated, then translated by a, then rotated by M1, then rotated by M2T, negated again, and then translated by a again. These are transformations that graphics libraries are good at and they can all be squished into a single transformation matrix.
#Generic Human deserves credit for the answer, but here's code for it. Of course, you need to implement the function to validate a change in pitch before it's applied, but that's simple. This code probably has a couple typos since I haven't tried to compile:
case ENavigation::eRotatePoint: {
const double dX = (double)(m_oLastMousePos.x - roMousePos.x) * dRotatePixelScale * D3DX_PI;
double dY = (double)(m_oLastMousePos.y - roMousePos.y) * dRotatePixelScale * D3DX_PI;
dY = validatePitch(dY); // dY needs to be kept within bounds so that m_dRotationY is within bounds
D3DXMATRIX oRotationMatrix1; // The camera orientation before mouse-change
D3DXMatrixRotationYawPitchRoll(&oRotationMatrix1, m_dRotationX, m_dRotationY, 0.0);
D3DXMATRIX oRotationMatrix2; // The camera orientation after mouse-change
D3DXMatrixRotationYawPitchRoll(&oRotationMatrix2, m_dRotationX + dX, m_dRotationY + dY, 0.0);
D3DXMATRIX oRotationMatrix2Inv; // The inverse of the orientation
D3DXMatrixTranspose(&oRotationMatrix2Inv,&oRotationMatrix2); // Transpose is the same in this case
D3DXMATRIX oScaleMatrix; // Negative scaling matrix for negating the translation
D3DXMatrixScaling(&oScaleMatrix,-1,-1,-1);
D3DXMATRIX oTranslationMatrix; // Translation by the reference point
D3DXMatrixTranslation(&oTranslationMatrix,
m_oRotateAroundPos.x,m_oRotateAroundPos.y,m_oRotateAroundPos.z);
D3DXMATRIX oTransformMatrix; // The full transform for the eyePos.
// We assume the matrix multiply protects against variable aliasing
D3DXMatrixMultiply(&oTransformMatrix,&oScaleMatrix,&oTranslationMatrix);
D3DXMatrixMultiply(&oTransformMatrix,&oTransformMatrix,&oRotationMatrix1);
D3DXMatrixMultiply(&oTransformMatrix,&oTransformMatrix,&oRotationMatrix2Inv);
D3DXMatrixMultiply(&oTransformMatrix,&oTransformMatrix,&oScaleMatrix);
D3DXMatrixMultiply(&oTransformMatrix,&oTransformMatrix,&oTranslationMatrix);
D3DXVECTOR4 oEyeFinal;
D3DXVec3Transform(&oEyeFinal, &m_oEyePos, &oTransformMatrix);
m_oEyePos = D3DXVECTOR3(oEyeFinal.x, oEyeFinal.y, oEyeFinal.z)
// Increment rotation to keep the same relative look angles
RotateXAxis(dX);
RotateYAxis(dY);
break;
}
I think there is a much simpler solution that lets you sidestep all rotation issues.
Notation: A is the point we want to rotate around, C is the original camera location, M is the original camera rotation matrix that maps global coordinates to the camera's local viewport.
Make a note of the local coordinates of A, which are equal to A' = M × (A - C).
Rotate the camera like you would in normal "eye rotation" mode. Update the view matrix M so that it is modified to M2 and C remains unchanged.
Now we would like to find C2 such that A' = M2 × (A - C2).
This is easily done by the equation C2 = A - M2-1 × A'.
Voilà, the camera has been rotated and because the local coordinates of A are unchanged, A remains at the same location and the same scale and distance.
As an added bonus, the rotation behavior is now consistent between "eye rotation" and "point rotation" mode.
You rotate around the point by repeatedly applying small rotation matrices, this probably cause the drift (small precision errors add up) and I bet you will not really do a perfect circle after some time. Since the angles for the view use simple 1-dimension double, they have much less drift.
A possible fix would be to store a dedicated yaw/pitch and relative position from the point when you enter that view mode, and using those to do the math. This requires a bit more bookkeeping, since you need to update those when moving the camera. Note that it will also make the camera move if the point move, which I think is an improvement.
If I understand correctly, you are satisfied with the rotation component in the final matrix (save for inverted rotation controls in the problem #3), but not with the translation part, is that so?
The problem seems to come from the fact that you treating them differently: you are recalculating the rotation part from scratch every time, but accumulate the translation part (m_oEyePos). Other comments mention precision problems, but it's actually more significant than just FP precision: accumulating rotations from small yaw/pitch values is simply not the same---mathematically---as making one big rotation from the accumulated yaw/pitch. Hence the rotation/translation discrepancy. To fix this, try recalculating eye position from scratch simultaneously with the rotation part, similarly to how you find "oTarget = oEyePos + ...":
oEyePos = m_oRotateAroundPos - dist * D3DXVECTOR3(oForward4.x, oForward4.y, oForward4.z)
dist can be fixed or calculated from the old eye position. That will keep the rotation point in the screen center; in the more general case (which you are interested in), -dist * oForward here should be replaced by the old/initial m_oEyePos - m_oRotateAroundPos multiplied by the old/initial camera rotation to bring it to the camera space (finding a constant offset vector in camera's coordinate system), then multiplied by the inverted new camera rotation to get the new direction in the world.
This will, of course, be subject to gimbal lock when the pitch is straight up or down. You'll need to define precisely what behavior you expect in these cases to solve this part. On the other hand, locking at m_dRotationX=0 or =pi is rather strange (this is yaw, not pitch, right?) and might be related to the above.