#include <iostream>
using namespace std;
class T1
{
const int t = 100;
public:
T1()
{
cout << "T1 constructor: " << t << endl;
}
};
When I am trying to initialize the const member variable t with 100. But it's giving me the following error:
test.cpp:21: error: ISO C++ forbids initialization of member ‘t’
test.cpp:21: error: making ‘t’ static
How can I initialize a const value?
The const variable specifies whether a variable is modifiable or not. The constant value assigned will be used each time the variable is referenced. The value assigned cannot be modified during program execution.
Bjarne Stroustrup's explanation sums it up briefly:
A class is typically declared in a header file and a header file is typically included into many translation units. However, to avoid complicated linker rules, C++ requires that every object has a unique definition. That rule would be broken if C++ allowed in-class definition of entities that needed to be stored in memory as objects.
A const variable has to be declared within the class, but it cannot be defined in it. We need to define the const variable outside the class.
T1() : t( 100 ){}
Here the assignment t = 100 happens in initializer list, much before the class initilization occurs.
Well, you could make it static:
static const int t = 100;
or you could use a member initializer:
T1() : t(100)
{
// Other constructor stuff here
}
There are couple of ways to initialize the const members inside the class..
Definition of const member in general, needs initialization of the variable too..
1) Inside the class , if you want to initialize the const the syntax is like this
static const int a = 10; //at declaration
2) Second way can be
class A
{
static const int a; //declaration
};
const int A::a = 10; //defining the static member outside the class
3) Well if you don't want to initialize at declaration, then the other way is to through constructor, the variable needs to be initialized in the initialization list(not in the body of the constructor). It has to be like this
class A
{
const int b;
A(int c) : b(c) {} //const member initialized in initialization list
};
If you don't want to make the const data member in class static, You can initialize the const data member using the constructor of the class.
For example:
class Example{
const int x;
public:
Example(int n);
};
Example::Example(int n):x(n){
}
if there are multiple const data members in class you can use the following syntax to initialize the members:
Example::Example(int n, int z):x(n),someOtherConstVariable(z){}
You can upgrade your compiler to support C++11 and your code would work perfectly.
Use initialization list in constructor.
T1() : t( 100 )
{
}
Another solution is
class T1
{
enum
{
t = 100
};
public:
T1();
};
So t is initialised to 100 and it cannot be changed and it is private.
If a member is a Array it will be a little bit complex than the normal is:
class C
{
static const int ARRAY[10];
public:
C() {}
};
const unsigned int C::ARRAY[10] = {0,1,2,3,4,5,6,7,8,9};
or
int* a = new int[N];
// fill a
class C {
const std::vector<int> v;
public:
C():v(a, a+N) {}
};
Another possible way are namespaces:
#include <iostream>
namespace mySpace {
static const int T = 100;
}
using namespace std;
class T1
{
public:
T1()
{
cout << "T1 constructor: " << mySpace::T << endl;
}
};
The disadvantage is that other classes can also use the constants if they include the header file.
This is the right way to do. You can try this code.
#include <iostream>
using namespace std;
class T1 {
const int t;
public:
T1():t(100) {
cout << "T1 constructor: " << t << endl;
}
};
int main() {
T1 obj;
return 0;
}
if you are using C++10 Compiler or below then you can not initialize the cons member at the time of declaration. So here it is must to make constructor to initialise the const data member. It is also must to use initialiser list T1():t(100) to get memory at instant.
you can add static to make possible the initialization of this class member variable.
static const int i = 100;
However, this is not always a good practice to use inside class declaration, because all objects instacied from that class will shares the same static variable which is stored in internal memory outside of the scope memory of instantiated objects.
In C++ you cannot initialize any variables directly while the declaration.
For this we've to use the concept of constructors.
See this example:-
#include <iostream>
using namespace std;
class A
{
public:
const int x;
A():x(0) //initializing the value of x to 0
{
//constructor
}
};
int main()
{
A a; //creating object
cout << "Value of x:- " <<a.x<<endl;
return 0;
}
Hope it would help you!
Related
#include <iostream>
using namespace std;
class T1
{
const int t = 100;
public:
T1()
{
cout << "T1 constructor: " << t << endl;
}
};
When I am trying to initialize the const member variable t with 100. But it's giving me the following error:
test.cpp:21: error: ISO C++ forbids initialization of member ‘t’
test.cpp:21: error: making ‘t’ static
How can I initialize a const value?
The const variable specifies whether a variable is modifiable or not. The constant value assigned will be used each time the variable is referenced. The value assigned cannot be modified during program execution.
Bjarne Stroustrup's explanation sums it up briefly:
A class is typically declared in a header file and a header file is typically included into many translation units. However, to avoid complicated linker rules, C++ requires that every object has a unique definition. That rule would be broken if C++ allowed in-class definition of entities that needed to be stored in memory as objects.
A const variable has to be declared within the class, but it cannot be defined in it. We need to define the const variable outside the class.
T1() : t( 100 ){}
Here the assignment t = 100 happens in initializer list, much before the class initilization occurs.
Well, you could make it static:
static const int t = 100;
or you could use a member initializer:
T1() : t(100)
{
// Other constructor stuff here
}
There are couple of ways to initialize the const members inside the class..
Definition of const member in general, needs initialization of the variable too..
1) Inside the class , if you want to initialize the const the syntax is like this
static const int a = 10; //at declaration
2) Second way can be
class A
{
static const int a; //declaration
};
const int A::a = 10; //defining the static member outside the class
3) Well if you don't want to initialize at declaration, then the other way is to through constructor, the variable needs to be initialized in the initialization list(not in the body of the constructor). It has to be like this
class A
{
const int b;
A(int c) : b(c) {} //const member initialized in initialization list
};
If you don't want to make the const data member in class static, You can initialize the const data member using the constructor of the class.
For example:
class Example{
const int x;
public:
Example(int n);
};
Example::Example(int n):x(n){
}
if there are multiple const data members in class you can use the following syntax to initialize the members:
Example::Example(int n, int z):x(n),someOtherConstVariable(z){}
You can upgrade your compiler to support C++11 and your code would work perfectly.
Use initialization list in constructor.
T1() : t( 100 )
{
}
Another solution is
class T1
{
enum
{
t = 100
};
public:
T1();
};
So t is initialised to 100 and it cannot be changed and it is private.
If a member is a Array it will be a little bit complex than the normal is:
class C
{
static const int ARRAY[10];
public:
C() {}
};
const unsigned int C::ARRAY[10] = {0,1,2,3,4,5,6,7,8,9};
or
int* a = new int[N];
// fill a
class C {
const std::vector<int> v;
public:
C():v(a, a+N) {}
};
Another possible way are namespaces:
#include <iostream>
namespace mySpace {
static const int T = 100;
}
using namespace std;
class T1
{
public:
T1()
{
cout << "T1 constructor: " << mySpace::T << endl;
}
};
The disadvantage is that other classes can also use the constants if they include the header file.
This is the right way to do. You can try this code.
#include <iostream>
using namespace std;
class T1 {
const int t;
public:
T1():t(100) {
cout << "T1 constructor: " << t << endl;
}
};
int main() {
T1 obj;
return 0;
}
if you are using C++10 Compiler or below then you can not initialize the cons member at the time of declaration. So here it is must to make constructor to initialise the const data member. It is also must to use initialiser list T1():t(100) to get memory at instant.
you can add static to make possible the initialization of this class member variable.
static const int i = 100;
However, this is not always a good practice to use inside class declaration, because all objects instacied from that class will shares the same static variable which is stored in internal memory outside of the scope memory of instantiated objects.
In C++ you cannot initialize any variables directly while the declaration.
For this we've to use the concept of constructors.
See this example:-
#include <iostream>
using namespace std;
class A
{
public:
const int x;
A():x(0) //initializing the value of x to 0
{
//constructor
}
};
int main()
{
A a; //creating object
cout << "Value of x:- " <<a.x<<endl;
return 0;
}
Hope it would help you!
Is there a nice way to have a non static value as default argument in a function? I've seen some older responses to the same question which always end up in explicitly writing out the overload. Is this still necessary in C++17?
What I'd like to do is do something akin to
class C {
const int N; //Initialized in constructor
void foo(int x = this->N){
//do something
}
}
instead of having to write
class C {
const int N; //Initialized in constructor
void foo(){
foo(N);
}
void foo(int x){
//do something
}
}
which makes the purpose of the overload less obvious.
One relatively elegant way (in my opinion) would be to use std::optional to accept the argument, and if no argument was provided, use the default from the object:
class C {
const int N_; // Initialized in constructor
public:
C(int x) :N_(x) {}
void foo(std::optional<int> x = std::nullopt) {
std::cout << x.value_or(N_) << std::endl;
}
};
int main() {
C c(7);
c.foo();
c.foo(0);
}
You can find the full explanation of what works/doesn't work in section 11.3.6 of the standard. Subsection 9 describes member access (excerpt):
A non-static member shall not appear in a default argument unless it
appears as the id-expressionof a class member access expression
(8.5.1.5) or unless it is used to form a pointer to member
(8.5.2.1).[Example:The declaration of X::mem1()in the following example
is ill-formed because no object is supplied for the non-static
memberX::a used as an initializer.
int b;
class X {
int a;
int mem1(int i = a);// error: non-static memberaused as default argument
int mem2(int i = b);// OK; useX::b
static int b;
};
class A{
private:
int a;
public:
const int &ref = a;
};
int main() {
A obj;
obj.a = 20; // error cause private
obj.ref = 30; // not private but const so ERROR
return 0;
}
I'm trying to make a member variable accessible but read only through the interface. Currently I've tried this approach and it seems to compile fine. I made a const reference to my original variable int a and made it public. Is there anything that's wrong with this practice that I might be missing out? Or is this example safe and sound to use for practical purposes?
Nothing wrong with providing a member function with const correctness applied (and I've used that too and intend to do so always), but I'm asking is there any thing wrong with this way if I have to provide a variable that is only read-only.
Thankyou :)
class A{
private:
int a;
public:
const int &ref = a;
};
is there any thing wrong with this way if I have to provide a variable that is only read-only
There are at least a couple drawbacks with this design decision for class A.
1: Class Size
Also as Dieter Lücking mentions in a
comment:
increasing the size of the class, needlessly
2: Copy Semantics
It breaks the compiler generated copy assignment operator. For example, the following code behavior is generally desirable but doesn't work.
A obj1;
// ...
A obj2;
// make changes to 'obj2'
// Update 'obj1' with the changes from 'obj2'
obj1 = obj2; // This copy doesn't work!
More information:
Should I prefer pointers or references in member data?
Assignment operator with reference class member
Thinking in C++, 2nd ed. Volume 1 ©2000 by Bruce Eckel, 11: References & the Copy-Constructor
There are certain rules when using references:
A reference must be initialized when it is created. (Pointers can be initialized at any time.)
Once a reference is initialized to an object, it cannot be changed to refer to another object. (Pointers can be pointed to another object at any time.)
You cannot have NULL references. You must always be able to assume that a reference is connected to a legitimate piece of storage.
It may be possible to implement a custom assignment operator but that's more code to maintain (i.e., another drawback in my opinion).
#include <iostream>
class A
{
private:
int a;
public:
explicit A(int value) : a(value) {}
A& operator=(const A& other)
{
a = other.a;
return *this;
}
const int& ref = a;
};
int main()
{
A obj1(10);
std::cout << "1: " << obj1.ref << "\n";
A obj2(20);
std::cout << "2: " << obj2.ref << "\n";
obj1 = obj2;
std::cout << "1: " << obj1.ref << "\n";
return 0;
}
The idiomatic way to address this issue is to use a proper accessor function.
class A {
private:
int a;
public:
int getA() const { return a; }
};
The standard way to do this in C++ is by making the actual member private but including a public 'getter' method for the interface, as below:
class A{
private:
int a;
public:
int get_a() const { return a; }
A() : a(20) {}
};
int main() {
A obj;
int n = obj.get_a(); // n = 20
return 0;
}
The user cannot set the value of A::a but can use A::get_a to retrieve its value.
How should I write a constructor for a class to initialize a member that is a const structure / has const fields?
In the following example, I define a constructor within structure B and it works fine to initialize it's const fields.
But when I try to use the same technique to initialize const fields of structure C within class A it doesn't work. Can someone please help me and rewrite my class A in a way, that it starts working?
#include <iostream>
class A
{
public:
struct C
{
C (const int _x) : x (_x) {}
const int x;
};
C c (3);
};
int main (int argc, char *argv[])
{
struct B
{
B (const int _x) : x (_x) {}
const int x;
};
B b (2);
std::cout << b.x << std::endl;
A a;
std::cout << a.c.x << std::endl;
return 0;
}
P.S.
I did some search and I think, I understand, that unless I have C++11 support or want to use boost library, I have to define a helper function to initialize a const struct within initialization list
(C++ Constant structure member initialization)
but it seems to be crazy that I have to define alike struct, but with non const fields to initialize a struct with const fields, doesn't it?
Another thing that I found tells that I should initialize const members in a constructor of the class A, rather than in a constructor of the struct C (C++ compile time error: expected identifier before numeric constant) but it also seems crazy to me, because why should I rewrite a class constructor every time I want to add a new struct, isn't it more convenient to have a separate constructor for each struct C within the class A?
I would be grateful to any comments that could possibly clarify my confusion.
I'd do the job like this:
#include <iostream>
class A {
public:
struct C {
C(const int _x) : x(_x) {}
const int x;
};
C c; // (3);
A() : c(3) {}
};
int main(int argc, char *argv []) {
A a;
std::cout << a.c.x << std::endl;
return 0;
}
Note that it's not a matter of using a ctor in A or in C, but of the ctor for A telling how the ctor for C should be invoked. If the value that will be passed will always be 3 that's not necessary, but I'm assuming you want to be a able to pass a value of your choice when you create the C object, and it will remain constant after that.
If the value will always be the same (3 in this case) you can simplify things a lot by also making the constant static:
struct A {
struct C {
static const int x = 3;
};
C c;
};
int main() {
A a;
std::cout << a.c.x << "\n";
}
So, if the value is identical for all instances of that class, make it static const, initialize it in place, and life is good. If the value is not known until you create an instance of the object, and remains constant thereafter for the life of that object, you need to pass it in through the constructors.
For a slightly different case, there's a third possibility: if C is an independent class (not nested inside of A) you might have a situation where other instances of C use various values, but all instances of C inside an A always use the same value. In this case, you'd do something like:
struct C {
const int x;
C(int x) : x(x) {}
};
struct A {
C c;
A() : c(3) {}
};
Of course, you can do the same thing when C is nested inside of A, but when/if you do, it generally means you're setting the same value for all instances of C, so you might as well use the static const approach instead. The obvious exception would be if A had multiple constructors, so (for example) A's default constructor passed one value for C::x and its copy constructor passed a different value.
#include <iostream>
using namespace std;
class T1
{
const int t = 100;
public:
T1()
{
cout << "T1 constructor: " << t << endl;
}
};
When I am trying to initialize the const member variable t with 100. But it's giving me the following error:
test.cpp:21: error: ISO C++ forbids initialization of member ‘t’
test.cpp:21: error: making ‘t’ static
How can I initialize a const value?
The const variable specifies whether a variable is modifiable or not. The constant value assigned will be used each time the variable is referenced. The value assigned cannot be modified during program execution.
Bjarne Stroustrup's explanation sums it up briefly:
A class is typically declared in a header file and a header file is typically included into many translation units. However, to avoid complicated linker rules, C++ requires that every object has a unique definition. That rule would be broken if C++ allowed in-class definition of entities that needed to be stored in memory as objects.
A const variable has to be declared within the class, but it cannot be defined in it. We need to define the const variable outside the class.
T1() : t( 100 ){}
Here the assignment t = 100 happens in initializer list, much before the class initilization occurs.
Well, you could make it static:
static const int t = 100;
or you could use a member initializer:
T1() : t(100)
{
// Other constructor stuff here
}
There are couple of ways to initialize the const members inside the class..
Definition of const member in general, needs initialization of the variable too..
1) Inside the class , if you want to initialize the const the syntax is like this
static const int a = 10; //at declaration
2) Second way can be
class A
{
static const int a; //declaration
};
const int A::a = 10; //defining the static member outside the class
3) Well if you don't want to initialize at declaration, then the other way is to through constructor, the variable needs to be initialized in the initialization list(not in the body of the constructor). It has to be like this
class A
{
const int b;
A(int c) : b(c) {} //const member initialized in initialization list
};
If you don't want to make the const data member in class static, You can initialize the const data member using the constructor of the class.
For example:
class Example{
const int x;
public:
Example(int n);
};
Example::Example(int n):x(n){
}
if there are multiple const data members in class you can use the following syntax to initialize the members:
Example::Example(int n, int z):x(n),someOtherConstVariable(z){}
You can upgrade your compiler to support C++11 and your code would work perfectly.
Use initialization list in constructor.
T1() : t( 100 )
{
}
Another solution is
class T1
{
enum
{
t = 100
};
public:
T1();
};
So t is initialised to 100 and it cannot be changed and it is private.
If a member is a Array it will be a little bit complex than the normal is:
class C
{
static const int ARRAY[10];
public:
C() {}
};
const unsigned int C::ARRAY[10] = {0,1,2,3,4,5,6,7,8,9};
or
int* a = new int[N];
// fill a
class C {
const std::vector<int> v;
public:
C():v(a, a+N) {}
};
Another possible way are namespaces:
#include <iostream>
namespace mySpace {
static const int T = 100;
}
using namespace std;
class T1
{
public:
T1()
{
cout << "T1 constructor: " << mySpace::T << endl;
}
};
The disadvantage is that other classes can also use the constants if they include the header file.
This is the right way to do. You can try this code.
#include <iostream>
using namespace std;
class T1 {
const int t;
public:
T1():t(100) {
cout << "T1 constructor: " << t << endl;
}
};
int main() {
T1 obj;
return 0;
}
if you are using C++10 Compiler or below then you can not initialize the cons member at the time of declaration. So here it is must to make constructor to initialise the const data member. It is also must to use initialiser list T1():t(100) to get memory at instant.
you can add static to make possible the initialization of this class member variable.
static const int i = 100;
However, this is not always a good practice to use inside class declaration, because all objects instacied from that class will shares the same static variable which is stored in internal memory outside of the scope memory of instantiated objects.
In C++ you cannot initialize any variables directly while the declaration.
For this we've to use the concept of constructors.
See this example:-
#include <iostream>
using namespace std;
class A
{
public:
const int x;
A():x(0) //initializing the value of x to 0
{
//constructor
}
};
int main()
{
A a; //creating object
cout << "Value of x:- " <<a.x<<endl;
return 0;
}
Hope it would help you!