This question already has answers here:
srand() — why call it only once?
(7 answers)
Closed 7 years ago.
I am writing a program to simulate Knight's tour randomly. (See wikipedia for what it means: http://en.wikipedia.org/wiki/Knight%27s_tour) First, I create a chess object, which is basically just a 8*8 array with numbers to indicate the position of the knight. I create a chess object and randomly assign a position for the knight. Then, I moved the knight randomly until there is no more legal moves and returns the number of moves performed.
int runTour ()
{
srand (time(NULL));
Chess knight(rand()%8, rand()%8); //Initialize random chess object.
knight.printBoard(); //Prints the board before moving
int moveNumber = 0; //A number from 0 to 7 that dictates how the knight moves
int counter = 0;
while (moveNumber != -1) //A moveNumber of -1 means there is no more legal move
{
moveNumber = knight.findRandMove(knight.getRow(), knight.getColumn()); //findRandMove is a function that returns a legal random move for the knight based on its position. It works perfectly.
knight.move(moveNumber); //move is a function that moves the knight
counter ++;
}
knight.printBoard(); // Returns board when move is exhausted
return counter; //Returns number of moves performed.
}
The interesting thing is that while it runs perfectly randomly from run to run, it keeps outputting the same thing in the same run. For example, this is the main() function:
int main(){
runTour();
runTour();
return 0;
}
And in BOTH runTour() it outputs: (where 0 represents positions not reached, 1 represents the current position of the knight, and 9 positions reached)
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 9 0 0 0
0 9 9 0 0 0 9 0
0 0 0 0 0 9 9 0
9 0 9 9 9 9 0 1
0 0 9 9 9 9 9 9
0 9 9 9 9 0 9 0
9 0 0 0 9 9 9 9
0 0 9 0 9 9 0 9
And when I run it again, BOTH runTour output:
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 9 9
0 9 0 0 9 9 9 0
0 0 9 9 9 9 9 9
1 0 9 0 9 9 0 9
So the random function is random in different runs, but is the same in each run. Why is this the case? How can I modify the code so that runTour() can have different performances when it is called? Thank you very much for reading this clumsy question.
As you´re using a timestamp as srand seed:
If both runTours are in the same second, what do you think will happen with your code?
...
srand is supposed to be called exactly one time, not one time per function call of runTour
Try moving your srand call to your main function. You should only have to seed the generator one time, rather than each time you call the function.
Related
-2 -1 0
-1 1 1
0 1 2
This is 3x3 emboss kernel. How should I write this in 5x5?
As I understand, these filters take directional differences (see the wikipidea page).
We can decompose you filter into directions
0 -1 0 0 0 0 -2 0 0
0 0 0 -1 0 1 0 0 0
0 1 0 0 0 0 0 0 2
So, I think you can expand it over these 3 directions giving emphasis
0 0 -1 0 0 0 0 0 0 0 -2 0 0 0 0
0 0 -1 0 0 0 0 0 0 0 0 -2 0 0 0
0 0 0 0 0 -1 -1 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 2 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 2
So, the final kernel would be
-2 0 -1 0 0
0 -2 -1 0 0
-1 -1 1 1 1
0 0 1 2 0
0 0 1 0 2
May be you can also try interpolating filter coefficients marked as x
-2 x -1 0 0
x -2 -1 0 0
-1 -1 1 1 1
0 0 1 2 x
0 0 1 x 2
The simple solution to fitting any lower-dimensional convolution kernel into a higher-dimensional matrix of the same rank is to surround it by zero weights. This is especially true when you're dealing with a concept like embossing, which is arguably more interested in immediate vector of change than the rate at which it is changing. That is, for this embossing matrix,
You could equivalently use this in 5 x 5:
Granted, this will get you a different visual effect than anything with any part of the matrix filled in; but sometimes, especially with edge-detection, immediate clarity is more important. We aren't always displaying it. If this were something like a Guassian blur kernel, having a greater range could improve the effect, but embossing isn't that different conceptually from Sobel-Feldman and it may be better to keep it tight.
I'm coding my own minesweeper game for fun in C++ (The language I'm most familiar with) and when I'm storing a constant in a 2d array, it sometimes ends up storing a random value.
Here's my code:
using namespace std;
Table::Table() {
tiles[16][16] = {0};
covers[16][16] ={1};
}//stores position of mines, covers, and values
//places mines on the board
void Table::placemines() {
int minecount=0;
int i = rand()%15;
int j = rand()%15;
while(minecount<40){
if (tiles[i][j] == 0) {
tiles[i][j] = -10;
minecount++;
} else {}
i = rand()%15;
j = rand()%15;
}
}
and my main.cpp to display the values
using namespace std;
int main() {
Table newtable = Table();
newtable.placemines(6, 7);
for (int j = 0; j < 16; j++) {
for (int i = 0; i < 16; i++) {
cout << newtable.tiles[i][j] << ' ';
}
cout << '\n';
}
}
and the output
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 -10 -10 -10 0 0 1 -10 0 0
0 0 0 0 0 0 0 -10 0 -10 -10 0 -10 0 0 0
0 0 0 0 0 -10 0 0 0 -10 -10 0 -10 0 0 0
-10 0 0 -10 -10 0 0 -10 -10 0 0 0 0 -10 0 0
-10 0 -10 0 0 -10 0 0 0 0 0 0 0 -10 0 0
0 0 0 0 0 0 0 0 -10 -10 0 1920169263 0 -10 0 0
0 0 -10 0 0 0 0 0 0 -10 -10 1651076143 0 0 0 0
0 0 0 0 0 0 0 0 -10 -10 0 1819894831 -10 0 0 0
0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0
0 0 0 0 0 0 0 -10 0 -10 0 32 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-10 0 0 -10 0 0 0 0 0 0 -10 2 0 0 0 0
-10 0 0 0 0 -10 0 0 0 -10 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
Can anyone tell what's going on? Thank you!
Too much code missing, no declaration, no placemines() code
You have bug here:
tiles[16][16] = {0};
This statement sets some element of array, with indices 16 and 16, to 0. If your array defined as type tiles[16][16] that means you write into the Abyss and cause UB (because last element of array is tiles[15][15]).
If you have to initialize an array, use std::fill http://en.cppreference.com/w/cpp/algorithm/fill . For zero-intialization this works:
Table::Table() : tiles{0} {
Another bug possible:
int i = rand()%15;
You have to use array's size to cover the range properly.
PS. Avoid using namespace std; in global scope, pleeeese.
Is it possible to create a 9x9 matrix where the "diagonal" is another matrix and the rest are zeroes, like this:
5 5 5 0 0 0 0 0 0
5 5 5 0 0 0 0 0 0
5 5 5 0 0 0 0 0 0
0 0 0 5 5 5 0 0 0
0 0 0 5 5 5 0 0 0
0 0 0 5 5 5 0 0 0
0 0 0 0 0 0 5 5 5
0 0 0 0 0 0 5 5 5
0 0 0 0 0 0 5 5 5
from a smaller 3x3 matrix repeated:
5 5 5
5 5 5
5 5 5
I am aware of the Replicate function but that repeats it everywhere in the matrix and doesn't maintain the zeroes. Is there a builtin way of achieving what I'm after?
One way of doing this is by using blocks where .block<3,3>(0,0) is a 3x3 block starting at 0,0. (Note: Your IDE might flag this line as an error but it will compile and run)
for (int x=0, x<3, x++){
zero_matrix.block<3,3>(x*3,x*3) = five_matrix;
}
You can use the (unsupported) KroneckerProduct module for that:
#include <unsupported/Eigen/KroneckerProduct>
int main()
{
Eigen::MatrixXd A = Eigen::kroneckerProduct(Eigen::Matrix3d::Identity(), Eigen::Matrix3d::Constant(5));
std::cout << A << '\n';
}
I am making a 3D maze in c++. I am having trouble with a recursive method to find a valid path between the two endpoints (starting point is m[0][0][0]; endpoint is m[7][7][7];). It checks positions in the array. If its contents are a 1, then it is a valid part of the path; if 0, it is not a valid part of the path. Here is my method:
bool Maze::findPath(int row, int column, int level,string path){
cout << "findPath " << row << ", " << column << ", " << level << " value " << m[row][column][level] << endl;
if(row < 0 || row > 7 || column < 0 || column > 7 || level < 0 || level > 7 ){
cout << "Out of bounds" << endl;
//system("PAUSE");
return false;
}
else if(m[row][column][level] == 0){
cout << "spot is zero" << endl;
//system("PAUSE");
return false;
}
else if(visited[row][column][level] == 1){
cout << "visited" << endl;
return false;
}
else if(row == 7 && column == 7 && level == 7 && m[row][column][level] == 1){
cout << "Found!" << endl;
//system("PAUSE");
return true;
}
else{
visited[row][column][level] = 1;
//cout << "searching..." << endl;
if(row < 7 && findPath(row + 1,column,level,path))
return true;
if(column < 7 && findPath(row,column + 1,level,path))
return true;
if(level < 7 && findPath(row,column,level + 1,path))
return true;
if(row > 7 && findPath(row - 1,column,level,path))
return true;
if(column > 7 && findPath(row,column - 1,level,path))
return true;
if(level > 7 && findPath(row,column,level - 1,path))
return true;
}
return false;
}
So the method checks for "Out of bounds", an invalid spot on the path (zero), a visited location. I'm not sure what exactly I'm missing, but the method returns true to mazes that are unsolvable. Can anybody see some blatant mistake that I may be missing with my recursive call? Thanks
EDIT: Fixed a few code mistakes, but it still seems to be "solving" unsolvable mazes.
Here's an example of a solvable maze that it is saying is not possible to solve:
1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0
1 0 0 1 0 1 0 0
0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
1 1 1 1 0 0 0 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 1 1 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 1 1 1 0 1
There's a problem in the findPath(++row,column,level,path) (and similar recursive calls): you don't want the variable increments to carry over to the other recursive calls. (For example, the variable row in findPath(row,++column,level,path) would be affected by the first recursive call.)
Use findPath(row + 1,column,level,path) (and similar) instead.
Also, in the last three recursive calls, you're not making the right tests:
//instead of level < 7
if(level < 7 && findPath(--row,column,level,path)) //should be row > 0
return true;
if(level < 7 && findPath(row,--column,level,path)) //should be column > 0
return true;
if(level < 7 && findPath(row,column,--level,path)) //should be level > 0
return true;
EDIT
However, you don't actually need these tests since you filter out out of bounds errors at the top of your recursive function. Therefore, these calls can be simplified to:
return findPath(row + 1,column,level,path) || findPath(row,column + 1,level,path)
|| findPath(row,column,level + 1,path) || findPath(row - 1,column,level,path)
|| findPath(row,column - 1,level,path) || findPath(row,column,level - 1,path);
Additionally, the test && m[row][column][level] == 1 is redundant since the else if(m[row][column][level] == 0) takes care of that. (I'd check m[7][7][7] before even calling this function the first time, by the way.)
I just Finished this algorithm as an assignment for a class, ours only used a 5x5 block as the maze, but I found that it will go very slowly testing all possibilities each time it reaches the block from any angle, I found that the program can be sped up significantly by setting values in your array to 0 as you determine that they're not useful. I did it at the return false at the end of the function.
So here is my issue. In the program I have below, towards the bottom of the function "SetBoardStartingConfig" I attempt to fill in the first 4 rows of an array by randomly generating numbers, checking if the square I'm attempting to place them onto is empty (0), and if the addition of the piece would make it go over the specified max values in array "MaxPieces". If it wouldn't, it should theoretically be added - but its not working as I intended, and throwing me interesting values. In main, I go on to repeat this function 10 times, but it always seems to produce a different error - below I've also pasted some of my results.
Note: I've commented out both algorithms to try this, they're separated by a bit of white space.
Sidenote: I seem to always get FlagSide = 1 (right side) the first time I run the program - any ideas on how to fix this?
Thank you all very much for your help :).
#include <iostream>
#include <stdlib.h>
#include <string>
using namespace std;
int board[10][10];
int AIPieces[11];
int PlayerPieces[11];
int MaxPieces[11];
string PieceNames[11];
//insert stuff for maximum number of things
#define NullSpace -1 // Spaces that pieces can not move to
#define Flag -5
#define Bomb 1
#define EmptySpace 0 //Empty board spaces
void SetMaxPieces()
{
MaxPieces[0] = 1;
MaxPieces[Bomb] = 6;
MaxPieces[2] = 8;
MaxPieces[3] = 5;
MaxPieces[4] = 4;
MaxPieces[5] = 4;
MaxPieces[6] = 4;
MaxPieces[7] = 3;
MaxPieces[8] = 2;
MaxPieces[9] = 1;
MaxPieces[10] = 1;
MaxPieces[11] = 1; //Spy
}
void ResetAIPieces()
{
for (int i = 0; i < 11; i++)
AIPieces[i] = 0;
}
void SetPieceNames()
{
PieceNames[0] = "Flags:";
PieceNames[1] = "Bombs:";
PieceNames[2] = "Twos:";
PieceNames[3] = "Threes:";
PieceNames[4] = "Fours:";
PieceNames[5] = "Fives:";
PieceNames[6] = "Sixes:";
PieceNames[7] = "Sevens:";
PieceNames[8] = "Eights:";
PieceNames[9] = "Nines:";
PieceNames[10] = "Tens:";
PieceNames[11] = "Spies:";
}
void PrintBoard()
{
for (int i=0; i<10; i++)
{
for (int j=0; j<10; j++)
{
cout << board[i][j] << " ";
if (board[i][j] >= 0)
{
cout << " ";
}
}
cout << endl;
}
}
void SetBoardStartingConfig()
{
for (int i=0; i<10; i++)
{
for (int j=0; j<10; j++)
{
board[i][j] = EmptySpace;
}
}
//arrays work in [row] and [column].
//below defines areas that the pieces can not move to.
board[4][2] = NullSpace;
board[4][3] = NullSpace;
board[5][2] = NullSpace;
board[5][3] = NullSpace;
board[4][6] = NullSpace;
board[4][7] = NullSpace;
board[5][6] = NullSpace;
board[5][7] = NullSpace;
int FlagSide = rand() % 2;
if (FlagSide == 0)
{
board[0][0] = Flag;
AIPieces[0]++;
AIPieces[board[2][0] = Bomb]++;
AIPieces[board[1][1] = Bomb]++;
AIPieces[board[0][2] = Bomb]++;
AIPieces[board[1][0] = rand() % 3 + 4]++;
AIPieces[board[0][1] = rand() % 3 + 4]++;
}
else if (FlagSide == 1)
{
board[0][9-0] = Flag;
AIPieces[0]++;
AIPieces[board[2][9-0] = Bomb]++;
AIPieces[board[1][9-1] = Bomb]++;
AIPieces[board[0][9-2] = Bomb]++;
AIPieces[board[1][9-0] = rand() % 3 + 4]++;
AIPieces[board[0][9-1] = rand() % 3 + 4]++;
}
//for (int i =0; i < 4; i++)
// for (int j = 0; j < 10; j++)
// {
// if (board[i][j] == 0)
// {
// int Chosen = rand() % 10+1;
// if (AIPieces[Chosen] < MaxPieces[Chosen])
// {
// board[i][j] = Chosen;
// AIPieces[Chosen]++;
// }
// else
// break;
// }
// else
// break;
// // if (AIPieces[0] < MaxPieces[0] || AIPieces[1] < MaxPieces[1] || AIPieces[2] < MaxPieces[2] || AIPieces[3] < MaxPieces[3] || AIPieces[4] < MaxPieces[4] || AIPieces[5] < MaxPieces[5] || AIPieces[5] < MaxPieces[5] || AIPieces[6] < MaxPieces[6] || AIPieces[7] < MaxPieces[7] || AIPieces[8] < MaxPieces[8] || AIPieces[9] < MaxPieces[9] || AIPieces[10] < MaxPieces[10] || AIPieces[11] < MaxPieces[11])
// //{
// // AIPieces[board[i][j] = rand() % 10+1]++;
// //}
// }
}
int main()
{
SetMaxPieces();
SetPieceNames();
int loop = 0;
do
{
SetBoardStartingConfig();
PrintBoard();
cout << endl;
for (int i = 0; i < 11; i++)
{
cout << PieceNames[i] << AIPieces[i] << endl;
}
cout << endl;
ResetAIPieces();
loop++;
} while (loop <= 10);
system("PAUSE");
}
My Results (They seem to be the same every time I run it using the first algorithm)
1 10 5 9 0 0 0 1 5 -5
3 5 6 6 2 8 2 2 1 6
6 3 8 7 2 5 3 4 3 1
3 2 7 0 0 0 0 0 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Flags:1
Bombs:4
Twos:5
Threes:5
Fours:1
Fives:4
Sixes:4
Sevens:2
Eights:2
Nines:1
Tens:1
2 9 10 3 8 0 0 1 4 -5
6 5 4 2 3 4 4 5 1 6
2 2 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Flags:1
Bombs:3
Twos:4
Threes:2
Fours:4
Fives:2
Sixes:2
Sevens:0
Eights:1
Nines:1
Tens:1
8 8 10 4 2 0 0 1 5 -5
9 7 6 1 3 0 0 0 1 6
7 1 3 5 0 0 0 0 0 1
7 6 1 0 0 0 0 0 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Flags:1
Bombs:6
Twos:1
Threes:2
Fours:1
Fives:2
Sixes:3
Sevens:3
Eights:2
Nines:1
Tens:1
-5 4 1 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 4 9 10 4 5 5 7 1 7
0 0 -1 -1 0 0 -1 -1 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Flags:1
Bombs:4
Twos:1
Threes:0
Fours:3
Fives:2
Sixes:1
Sevens:2
Eights:0
Nines:1
Tens:1
-5 5 1 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
5 10 7 4 8 9 0 0 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Flags:1
Bombs:3
Twos:0
Threes:0
Fours:1
Fives:2
Sixes:1
Sevens:1
Eights:1
Nines:1
Tens:1
-5 6 1 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
4 6 10 9 5 1 8 7 4 7
0 0 -1 -1 0 0 -1 -1 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Flags:1
Bombs:4
Twos:0
Threes:0
Fours:3
Fives:1
Sixes:2
Sevens:2
Eights:1
Nines:1
Tens:1
3 1 10 8 4 8 3 1 6 -5
7 1 2 7 6 0 0 0 1 6
6 5 2 3 1 0 0 0 0 1
2 5 7 0 0 0 0 0 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Flags:1
Bombs:6
Twos:3
Threes:3
Fours:1
Fives:2
Sixes:4
Sevens:3
Eights:2
Nines:0
Tens:1
8 8 0 0 0 0 0 1 5 -5
4 4 6 10 0 0 0 0 1 6
9 2 0 0 0 0 0 0 0 1
3 7 7 1 4 0 0 0 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Flags:1
Bombs:4
Twos:1
Threes:1
Fours:3
Fives:1
Sixes:2
Sevens:2
Eights:2
Nines:1
Tens:1
-5 4 1 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
6 1 10 5 8 9 4 6 2 3
0 0 -1 -1 0 0 -1 -1 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Flags:1
Bombs:4
Twos:1
Threes:1
Fours:2
Fives:1
Sixes:3
Sevens:0
Eights:1
Nines:1
Tens:1
-5 6 1 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
5 1 7 2 9 10 0 0 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Flags:1
Bombs:4
Twos:1
Threes:0
Fours:0
Fives:2
Sixes:1
Sevens:1
Eights:0
Nines:1
Tens:1
-5 4 1 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
4 10 9 0 0 0 0 0 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 -1 -1 0 0 -1 -1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Flags:1
Bombs:3
Twos:0
Threes:0
Fours:2
Fives:1
Sixes:0
Sevens:0
Eights:0
Nines:1
Tens:1
Press any key to continue . . .
I'm not really clear what you expect to happen or what is happening, you should try explaining why what you get is wrong, so people don't have to spend ages analysing the code and results. Is the first algorithm working and the second not? Or are both wrong? The changes below will make the program easier to reason about anyway.
Your variable and function naming is a bit unconventional. It's more usual to see variables and functions start with a lowercase letter, and classes start with an uppercase letter. Your program looks as though Everything Is Very Important.
Why are you using macros here?
#define NullSpace -1 // Spaces that pieces can not move to
#define Flag -5
#define Bomb 1
#define EmptySpace 0 //Empty board spaces
In general, macros suck, especially if you don't name them to avoid clashing with other names. The inventor of C++ recommends using ALL_CAPS for macros. Better still, don't use them:
const int NullSpace = -1; // Spaces that pieces can not move to
const int Flag -5;
const int Bomb 1;
const int EmptySpace 0; //Empty board spaces
This is a very tedious way to set arrays:
void SetMaxPieces()
{
MaxPieces[0] = 1;
MaxPieces[Bomb] = 6;
MaxPieces[2] = 8;
...
MaxPieces[10] = 1;
MaxPieces[11] = 1; //Spy
}
Just initialize the array when you define it:
int MaxPieces[11] = {
1, 6, 8, 5, 4, 4, 4, 3, 2, 1, 1, 1
};
string PieceNames[11] = {
"Flags:", "Bombs:", "Twos:", "Threes:", "Fours:", "Fives:", "Sixes:",
"Sevens:", "Eights:", "Nines:", "Tens:", "Spies:"
};
But wait! Now the compiler refuses to compile the program:
game.cc:13:1: error: too many initializers for ‘int [11]’
game.cc:17:1: error: too many initializers for ‘std::string [11] {aka std::basic_string [11]}’
You are setting twelve values in an array of eleven! The compiler didn't complain when you did MaxPieces[11] (but maybe should have done) but it definitely won't let you initialize an array with too many values. Are your arrays supposed have twelve elements? Or are you just filling them wrong?
As a commenter pointed out, you must seed rand() or the pseudo-random number generator always starts in the same initial state and produces the exact same sequence of "random" numbers.
Why are you using do-while in main? do-while is only useful in a few situations, when the condition can't be tested initially (or for some clever hacks to make its block scope act as a single statement in evil macros). In your case the condition is initially true (loop is less than 10) so just use a for or while loop. I would prefer a for because your loop variable doesn't need to exist after the for so you can initialize it there:
for (int loop = 0; loop <= 10; ++loop)
{
SetBoardStartingConfig();
PrintBoard();
cout << '\n';
for (int i = 0; i < 11; i++)
{
cout << PieceNames[i] << AIPieces[i] << '\n';
}
cout << '\n';
ResetAIPieces();
}
cout << flush;
Using endl every time you want a newline is unnecessary, endl adds a newline and flushes the stream, which doesn't need to be done on every line. The code above does it just once after the loop.
Now for the first algorithm:
for (int i =0; i < 4; i++)
for (int j = 0; j < 10; j++)
{
if (board[i][j] == 0)
{
int Chosen = rand() % 10+1;
if (AIPieces[Chosen] < MaxPieces[Chosen])
{
board[i][j] = Chosen;
AIPieces[Chosen]++;
}
else
break;
}
else
break;
Surrounding the first for in braces could help readability too. It would also help to write rand()%10 + 1 rather than the spacing you have above, so that the operator precedence is more obvious, currently it looks like you mean it to be rand() % 11 because you've grouped the addition operands.
Shouldn't the check board[i][j] == 0 be board[i][j] == EmptySpace ? Otherwise what's the point of having that constant?
Do you really want to break there? Doesn't that mean you stop filling a row as soon as you find a non-empty square or run out of a particular kind of piece? If the break should be there, where do they go for the second algo? Your code is impossible to reason about, partly because all the important logic is commented out (that's not a helpful way to read code!) and because of the inconsistent indentation.
Your second algorithm is completely unreadable, do you have a screen wide enough to see that line without wrapping? Even if you do it would be easier to read broken up.
Does the second algo check board[i][j] == EmptySpace? It doesn't seem to, but maybe that's just your formatting.
Also, all those comments make it awkward to switch between implementations to compare the results. If you do this:
for (int i =0; i < 4; i++)
{
for (int j = 0; j < 10; j++)
{
if (board[i][j] == EmptySpace)
{
#if 0
int Chosen = rand()%10 +1;
if (AIPieces[Chosen] < MaxPieces[Chosen])
{
board[i][j] = Chosen;
AIPieces[Chosen]++;
}
else
break;
#else
if (AIPieces[0] < MaxPieces[0]
|| AIPieces[1] < MaxPieces[1]
|| AIPieces[2] < MaxPieces[2]
|| AIPieces[3] < MaxPieces[3]
|| AIPieces[4] < MaxPieces[4]
|| AIPieces[5] < MaxPieces[5]
|| AIPieces[5] < MaxPieces[5]
|| AIPieces[6] < MaxPieces[6]
|| AIPieces[7] < MaxPieces[7]
|| AIPieces[8] < MaxPieces[8]
|| AIPieces[9] < MaxPieces[9]
|| AIPieces[10] < MaxPieces[10]
|| AIPieces[11] < MaxPieces[11])
{
AIPieces[board[i][j] = rand() % 10+1]++;
}
#endif
}
else
break;
}
}
Then you only need to change one character (change #if 0 to #if 1) to switch between them.
Now I can see the second algorithm properly it's obvious that if any pieces remain you will place a piece, but that could place a piece which you've run out of. e.g. if AIPieces[1] < MaxPieces[1] but AIPieces[2] == MaxPieces[2] the condition is true, but then if rand()%10 + 1 returns 2 you put a piece you aren't allowed to place. That means you place too many of some types of piece.
I think Scott has a much better idea, separate the placing of pieces into a function, which will make that loop much easier to read:
for (int i =0; i < 4; i++)
for (int j = 0; j < 10; j++)
AddPiece(rand() % 3 + 4, 1, 0);
Now you could write AddPiece2 and change the call to that to experiment with different implementations. Comparing the two algorithms could help find where it goes wrong.
I'm not sure I'm understanding the question well. But, trying to answer it. Something like this seems to be what you're asking for:
Instead of incrementing AIPieces, you need to first check that the board doesn't already have something on it and that MaxPieces haven't already been used.
AIPieces[board[1][0] = rand() % 3 + 4]++;
So try a function to do this:
void AddPiece(int pieceType, int locationX, int locationY)
{
if( board[locationX][locationY] != 0 )
return; // board already has something here, so don't add.
if( AIPieces[pieceType] >= MaxPieces[pieceType] )
return; // Can't add as all of these pieces have already been used.
board[locationX][locationY] = pieceType;
AIPieces[pieceType]++;
}
And in place of the original line, call the function like this:
AddPiece(rand() % 3 + 4, 1, 0);
Your second algorithm won't work because when you try and add a piece, the if statement checks if any type of piece has been used, instead of just checking the type of piece you're trying to add.