Should I use different mutexes for different objects? - c++

I am new to threading . Correct me if I am wrong that mutex locks the access to a shared data structure so that it cannot be used by other threads until it is unlocked . So, lets consider that there are 2 or more shared data structures . So , should I make different mutex objects for different data structures ? If no ,then how std::mutex will know which object it should lock ? What If I have to lock more than 1 objects at the same time ?

There are several points in your question that can be made more precise. Perhaps clearing this will solve things for you.
To begin with, a mutex, by itself, does not lock access to anything. It is basically something that your code can lock and unlock, and some "magic" ensures that only one thread can lock it at a time.
If, by convention, you decide that any code accessing some data structure foo will first begin by locking a mutex foo_mutex, then it will have the effect of protecting this data structure.
So, having said that, regarding your questions:
It depends on whether the two data structures need to be accessed together or not (e.g., can updating one without the other leave the system in an inconsistent state). If so, you should lock them with a single mutex. If not, you can improve parallelism by using two.
The mutex does not lock anything. It is you who decide by convention whether you can access 1, 2, or a million data structures, while holding it.

If you always needs to access both structures then it could be considered as a single resource so only a single lock is needed.
If you sometimes, even just once, need to access one of the structures independently then they can no longer be considered a single resource and you might need two locks. Of course, a single lock could still be sufficient, but then that lock would lock both resources at once, prohibiting other threads from accessing any of the structures.

Mutex does not "know" anything other than about itself. The lock is performed on mutex itself.
If there are two objects (or pieces of code) that need synchronized access (but can be accessed at the same time) then you have the liberty to use just one mutex for both or one for each. If you use one mutex they will not be accessed at the same time from two different threads.
If it cannot happen that access to one object is required while accessing the other object then you can use two mutexes, one for each. But if it can happen that one object must be accessed while the thread already holds another mutex then care must be taken that code never can reach a deadlock, where two threads hold one mutex each, and both at the same time wait that the other mutex is released.

Related

Thread safety among classes with other classes for private variables

I'm writing a game engine (for fun), and have a lot of threads running concurrently. I have a class which holds an instance of another class as a private variable, which in turn holds and instance of a different class as a private variable. My question is, which one of these classes should I strive to make thread safe?
Do I make all of them thread safe, and have each of them protect their data with a mutex, do I make just one of them thread safe, and assume that anybody using my code must understand that if you are using underlying classes they aren't inherently thread safe.
Example:
class A {
private:
B b;
}
class B {
private:
C c;
}
class C {
// data
}
I understand I need every class's data to avoid being corrupted via a data race, however I would like to avoid throwing a ton of mutexes on every single method of every class. I'm not sure what the proper convention is.
You almost certainly don't want to try to make every class thread-safe, since doing so would end up being very inefficient (with lots of unnecessary locking and unlocking of mutexes for no benefit) and also prone to deadlocks (the more mutexes you have to lock at once, the more likely you are to have different threads locking sequences of mutexes in a different order, which is the entry condition for a deadlock and therefore your program freezing up on you).
What you want to do instead if figure out which data structures needs to be accessed by which thread(s). When designing your data structures, you want to try to design them in such a way that the amount of data shared between threads is as minimal as possible -- if you can reduce it to zero, then you don't need to do any serialization at all! (you probably won't manage that, but if you do a CSP/message-passing design you can get pretty close, in that the only mutexes you ever need to lock are the ones protecting your message-passing queues)
Keep in mind also that your mutexes are there not just to "protect the data" but also to allow a thread to make a series of changes appear to be atom from the viewpoint of the other threads that might access that data. That is, if your thread #1 needs to make changes to objects A, B, and C, and all three of those objects each have their own mutex, which thread #1 locks before modifying the object and then unlocks afterwards, you can still have a race condition, because thread #2 might "see" the update half-completed (i.e. thread #2 might examine the objects after you've updated A but before you've updated B and C). Therefore you usually need to push your mutexes up to a level where they cover all the objects you might need to change in one go -- in the ABC example case, that means you might want to have a single mutex that is used to serialize access to A, B, and C.
One way to approach it would be to start with just a single global mutex for your entire program -- anytime any thread needs to read or write any data structure that is accessible to other threads, that is the mutex it locks (and unlocks afterwards). That design probably won't be very efficient (since threads might spend a lot of time waiting for the mutex), but it will definitely not suffer from deadlock problems. Then once you have that working, you could look to see if that single mutex is actually a noticeable performance bottleneck for you -- if not, you're done, ship your program :) OTOH if it is a bottleneck, you can then analyze which of your data structures are logically independent from each other, and split your global mutex into two mutexes -- one to serialize access to subset A of the data structures, and another one to serialize access to subset B. (Note that the subsets don't need to be equal size -- subset B might contain just one particular data structure that is critical to performance) Repeat as necessary until either you're happy with performance, or your program starts to get too complicated or buggy (in which case you might want to dial the mutex-granularity back again a bit in order to regain your sanity).

Shared Variables in C++11

So I took an OS class last semester and we had a concurrency/threading project. It was an airport sim that landed planes / had them take off into the direction that the wind was blowing. We had to do it in Java. So now that finals are over and I'm bored, I'm trying to do it in C++11. In Java I used a synchronized variable for the wind (0 - 360) in main and passed it to the 3 threads I was using. My question is: Can you do that in C++11? It's a basic reader/writer, one thread writes/updates the wind, the other 2 (takeoff/land) read.
I got it working by having a global wind variable in my "threads.cpp" implementation file. But is there a way to pass a variable to as many threads as I want and all of them keep up with it? Or is it actually better for me to just use the global variable and not pass anything?(why/why not?) I was looking at std::ref() but that didn't work.
EDIT: I'm already using mutex and lock_guard. I'm just trying to figure out how to pass and keep a variable up to date in all threads. Right now it only updates in the write thread.
You can use a std::mutex with std::lock_guard to synchronize access to the shared data. Or if the shared data fits in an integer, you can use std::atomic<int> without locking.
If you want to avoid global variables, simply pass the address of the shared state to the thread functions when you launch them. For example:
void thread_entry1(std::atomic<int>* val) {}
void thread_entry2(std::atomic<int>* val) {}
std::atomic<int> shared_value;
std::thread t1(thread_entry1, &shared_value);
std::thread t2(thread_entry2, &shared_value);
Using std::mutex and std::lock_guard mimicks what a Java synchronized variable does (only in Java this happens secretly without you knowing, in C++ you do it explicitly).
However, having one producer (there is just one direction of wind) and otherwise only consumers, it suffices to write to a e.g. std::atomic<int> variable with relaxed ordering, and to read from that variable from each consumer, again with relaxed ordering. Unless you have the requirement that the global view of all airplanes are consistent (but then you would have to run a lockstep simulation, which makes threading nonsensical), there is no need for synchronization, you only have to make sure that any value that any airplane reads at any time is eventually correct and that no garbled intermediate results can occur. In other words, you need an atomic update.
Relaxed memory ordering is sufficient too, since if all you read is one value, you do not need any happens-before guarantees.
An atomic update (or rather, atomic write) is at least an order of magnitude, if not more, faster. Atomic reads and writes with relaxed ordering are indeed plain normal reads and writes on many (most) mainstream architectures.
The variable needs not be global, you can as well keep it in the main thread's simultion loop's scope and pass a reference (or pointer) to the threads.
You might want to create say, the wind object, on the heap with new through an std::shared_ptr. Pass this pointer to all interested threads and use a std::mutex and std::lock_guard to change it.

C++: Boost::mutex individually locking multiple variables in same scope

I'm new to multi-threading and am trying to use mutexes. I'm pretty sure that I understand what the CONCEPT of what mutexes are, however I'm finding the documentation on actually using them to be quite lacking. One of the main issues that I'm having is trying to control access to specific variables.
What exactly happens when I lock a mutex (regardless of which kind of lock I use)? There doesn't seem to be any way of assigning specific variables/resources to mutexes, so does it just lock all variables in scope? What if I have variable A and variable B both declared in the same scope which I want to be mutexed individually (i.e. thread 1 can access variable A WHILE thread 2 accesses variable B)?
Mutex locks access to every scope it protects, it does not lock variables themselves.
If you want to protect single variable, wrap it with std::atomic<T> or boost::atomic<T> respectively, or dedicate separate mutex for each.
Mutexes don't get assigned explicitly to variables. It is more of an association that you are making as a developer that when the mutex is locked, the thread that got the lock gets to mess around with whatever variables you want protected.
One way to associate mutexes with variables is to have the variables being protected held in a structure together with the mutex. So for example, if I had a vector of integers that I wanted to make sure was only accessed by one thread at a time, I could create a structure like:
struct VectorDataType {
boost::mutex theLock;
std::vector<int> theData;
};
VectorDataType myVector;
Then anytime I wanted to modify the integer vector, I would make sure to first get the lock, and likewise remember to unlock it after I'm done:
myVector.theLock.lock();
myVector.theData.push_back(1234);
myVector.theLock.unlock();
It may already be obvious, but keep in mind if you want to keep a mutex in a structure with the data it protects, you can't make copies of instances of that structure, since a mutex is not copyable.

Boost, mutex concept

I am new to multi-threading programming, and confused about how Mutex works. In the Boost::Thread manual, it states:
Mutexes guarantee that only one thread can lock a given mutex. If a code section is surrounded by a mutex locking and unlocking, it's guaranteed that only a thread at a time executes that section of code. When that thread unlocks the mutex, other threads can enter to that code region:
My understanding is that Mutex is used to protect a section of code from being executed by multiple threads at the same time, NOT protect the memory address of a variable. It's hard for me to grasp the concept, what happen if I have 2 different functions trying to write to the same memory address.
Is there something like this in Boost library:
lock a memory address of a variable, e.g., double x, lock (x); So
that other threads with a different function can not write to x.
do something with x, e.g., x = x + rand();
unlock (x)
Thanks.
The mutex itself only ensures that only one thread of execution can lock the mutex at any given time. It's up to you to ensure that modification of the associated variable happens only while the mutex is locked.
C++ does give you a way to do that a little more easily than in something like C. In C, it's pretty much up to you to write the code correctly, ensuring that anywhere you modify the variable, you first lock the mutex (and, of course, unlock it when you're done).
In C++, it's pretty easy to encapsulate it all into a class with some operator overloading:
class protected_int {
int value; // this is the value we're going to share between threads
mutex m;
public:
operator int() { return value; } // we'll assume no lock needed to read
protected_int &operator=(int new_value) {
lock(m);
value = new_value;
unlock(m);
return *this;
}
};
Obviously I'm simplifying that a lot (to the point that it's probably useless as it stands), but hopefully you get the idea, which is that most of the code just treats the protected_int object as if it were a normal variable.
When you do that, however, the mutex is automatically locked every time you assign a value to it, and unlocked immediately thereafter. Of course, that's pretty much the simplest possible case -- in many cases, you need to do something like lock the mutex, modify two (or more) variables in unison, then unlock. Regardless of the complexity, however, the idea remains that you centralize all the code that does the modification in one place, so you don't have to worry about locking the mutex in the rest of the code. Where you do have two or more variables together like that, you generally will have to lock the mutex to read, not just to write -- otherwise you can easily get an incorrect value where one of the variables has been modified but the other hasn't.
No, there is nothing in boost(or elsewhere) that will lock memory like that.
You have to protect the code that access the memory you want protected.
what happen if I have 2 different functions trying to write to the same
memory address.
Assuming you mean 2 functions executing in different threads, both functions should lock the same mutex, so only one of the threads can write to the variable at a given time.
Any other code that accesses (either reads or writes) the same variable will also have to lock the same mutex, failure to do so will result in indeterministic behavior.
It is possible to do non-blocking atomic operations on certain types using Boost.Atomic. These operations are non-blocking and generally much faster than a mutex. For example, to add something atomically you can do:
boost::atomic<int> n = 10;
n.fetch_add(5, boost:memory_order_acq_rel);
This code atomically adds 5 to n.
In order to protect a memory address shared by multiple threads in two different functions, both functions have to use the same mutex ... otherwise you will run into a scenario where threads in either function can indiscriminately access the same "protected" memory region.
So boost::mutex works just fine for the scenario you describe, but you just have to make sure that for a given resource you're protecting, all paths to that resource lock the exact same instance of the boost::mutex object.
I think the detail you're missing is that a "code section" is an arbitrary section of code. It can be two functions, half a function, a single line, or whatever.
So the portions of your 2 different functions that hold the same mutex when they access the shared data, are "a code section surrounded by a mutex locking and unlocking" so therefore "it's guaranteed that only a thread at a time executes that section of code".
Also, this is explaining one property of mutexes. It is not claiming this is the only property they have.
Your understanding is correct with respect to mutexes. They protect the section of code between the locking and unlocking.
As per what happens when two threads write to the same location of memory, they are serialized. One thread writes its value, the other thread writes to it. The problem with this is that you don't know which thread will write first (or last), so the code is not deterministic.
Finally, to protect a variable itself, you can find a near concept in atomic variables. Atomic variables are variables that are protected by either the compiler or the hardware, and can be modified atomically. That is, the three phases you comment (read, modify, write) happen atomically. Take a look at Boost atomic_count.

How to synchronize access to many objects

I have a thread pool with some threads (e.g. as many as number of cores) that work on many objects, say thousands of objects. Normally I would give each object a mutex to protect access to its internals, lock it when I'm doing work, then release it. When two threads would try to access the same object, one of the threads has to wait.
Now I want to save some resources and be scalable, as there may be thousands of objects, and still only a hand full of threads. I'm thinking about a class design where the thread has some sort of mutex or lock object, and assigns the lock to the object when the object should be accessed. This would save resources, as I only have as much lock objects as I have threads.
Now comes the programming part, where I want to transfer this design into code, but don't know quite where to start. I'm programming in C++ and want to use Boost classes where possible, but self written classes that handle these special requirements are ok. How would I implement this?
My first idea was to have a boost::mutex object per thread, and each object has a boost::shared_ptr that initially is unset (or NULL). Now when I want to access the object, I lock it by creating a scoped_lock object and assign it to the shared_ptr. When the shared_ptr is already set, I wait on the present lock. This idea sounds like a heap full of race conditions, so I sort of abandoned it. Is there another way to accomplish this design? A completely different way?
Edit:
The above description is a bit abstract, so let me add a specific example. Imagine a virtual world with many objects (think > 100.000). Users moving in the world could move through the world and modify objects (e.g. shoot arrows at monsters). When only using one thread, I'm good with a work queue where modifications to objects are queued. I want a more scalable design, though. If 128 core processors are available, I want to use all 128, so use that number of threads, each with work queues. One solution would be to use spatial separation, e.g. use a lock for an area. This could reduce number of locks used, but I'm more interested if there's a design which saves as much locks as possible.
You could use a mutex pool instead of allocating one mutex per resource or one mutex per thread. As mutexes are requested, first check the object in question. If it already has a mutex tagged to it, block on that mutex. If not, assign a mutex to that object and signal it, taking the mutex out of the pool. Once the mutex is unsignaled, clear the slot and return the mutex to the pool.
Without knowing it, what you were looking for is Software Transactional Memory (STM).
STM systems manage with the needed locks internally to ensure the ACI properties (Atomic,Consistent,Isolated). This is a research activity. You can find a lot of STM libraries; in particular I'm working on Boost.STM (The library is not yet for beta test, and the documentation is not really up to date, but you can play with). There are also some compilers that are introducing TM in (as Intel, IBM, and SUN compilers). You can get the draft specification from here
The idea is to identify the critical regions as follows
transaction {
// transactional block
}
and let the STM system to manage with the needed locks as far as it ensures the ACI properties.
The Boost.STM approach let you write things like
int inc_and_ret(stm::object<int>& i) {
BOOST_STM_TRANSACTION {
return ++i;
} BOOST_STM_END_TRANSACTION
}
You can see the couple BOOST_STM_TRANSACTION/BOOST_STM_END_TRANSACTION as a way to determine a scoped implicit lock.
The cost of this pseudo transparency is of 4 meta-data bytes for each stm::object.
Even if this is far from your initial design I really think is what was behind your goal and initial design.
I doubt there's any clean way to accomplish your design. The problem that assigning the mutex to the object looks like it'll modify the contents of the object -- so you need a mutex to protect the object from several threads trying to assign mutexes to it at once, so to keep your first mutex assignment safe, you'd need another mutex to protect the first one.
Personally, I think what you're trying to cure probably isn't a problem in the first place. Before I spent much time on trying to fix it, I'd do a bit of testing to see what (if anything) you lose by simply including a Mutex in each object and being done with it. I doubt you'll need to go any further than that.
If you need to do more than that I'd think of having a thread-safe pool of objects, and anytime a thread wants to operate on an object, it has to obtain ownership from that pool. The call to obtain ownership would release any object currently owned by the requesting thread (to avoid deadlocks), and then give it ownership of the requested object (blocking if the object is currently owned by another thread). The object pool manager would probably operate in a thread by itself, automatically serializing all access to the pool management, so the pool management code could avoid having to lock access to the variables telling it who currently owns what object and such.
Personally, here's what I would do. You have a number of objects, all probably have a key of some sort, say names. So take the following list of people's names:
Bill Clinton
Bill Cosby
John Doe
Abraham Lincoln
Jon Stewart
So now you would create a number of lists: one per letter of the alphabet, say. Bill and Bill would go in one list, John, Jon Abraham all by themselves.
Each list would be assigned to a specific thread - access would have to go through that thread (you would have to marshall operations to an object onto that thread - a great use of functors). Then you only have two places to lock:
thread() {
loop {
scoped_lock lock(list.mutex);
list.objectAccess();
}
}
list_add() {
scoped_lock lock(list.mutex);
list.add(..);
}
Keep the locks to a minimum, and if you're still doing a lot of locking, you can optimise the number of iterations you perform on the objects in your lists from 1 to 5, to minimize the amount of time spent acquiring locks. If your data set grows or is keyed by number, you can do any amount of segregating data to keep the locking to a minimum.
It sounds to me like you need a work queue. If the lock on the work queue became a bottle neck you could switch it around so that each thread had its own work queue then some sort of scheduler would give the incoming object to the thread with the least amount of work to do. The next level up from that is work stealing where threads that have run out of work look at the work queues of other threads.(See Intel's thread building blocks library.)
If I follow you correctly ....
struct table_entry {
void * pObject; // substitute with your object
sem_t sem; // init to empty
int nPenders; // init to zero
};
struct table_entry * table;
object_lock (void * pObject) {
goto label; // yes it is an evil goto
do {
pEntry->nPenders++;
unlock (mutex);
sem_wait (sem);
label:
lock (mutex);
found = search (table, pObject, &pEntry);
} while (found);
add_object_to_table (table, pObject);
unlock (mutex);
}
object_unlock (void * pObject) {
lock (mutex);
pEntry = remove (table, pObject); // assuming it is in the table
if (nPenders != 0) {
nPenders--;
sem_post (pEntry->sem);
}
unlock (mutex);
}
The above should work, but it does have some potential drawbacks such as ...
A possible bottleneck in the search.
Thread starvation. There is no guarantee that any given thread will get out of the do-while loop in object_lock().
However, depending upon your setup, these potential draw-backs might not matter.
Hope this helps.
We here have an interest in a similar model. A solution we have considered is to have a global (or shared) lock but used in the following manner:
A flag that can be atomically set on the object. If you set the flag you then own the object.
You perform your action then reset the variable and signal (broadcast) a condition variable.
If the acquire failed you wait on the condition variable. When it is broadcast you check its state to see if it is available.
It does appear though that we need to lock the mutex each time we change the value of this variable. So there is a lot of locking and unlocking but you do not need to keep the lock for any long period.
With a "shared" lock you have one lock applying to multiple items. You would use some kind of "hash" function to determine which mutex/condition variable applies to this particular entry.
Answer the following question under the #JohnDibling's post.
did you implement this solution ? I've a similar problem and I would like to know how you solved to release the mutex back to the pool. I mean, how do you know, when you release the mutex, that it can be safely put back in queue if you do not know if another thread is holding it ?
by #LeonardoBernardini
I'm currently trying to solve the same kind of problem. My approach is create your own mutex struct (call it counterMutex) with a counter field and the real resource mutex field. So every time you try to lock the counterMutex, first you increment the counter then lock the underlying mutex. When you're done with it, you decrement the coutner and unlock the mutex, after that check the counter to see if it's zero which means no other thread is trying to acquire the lock . If so put the counterMutex back to the pool. Is there a race condition when manipulating the counter? you may ask. The answer is NO. Remember you have a global mutex to ensure that only one thread can access the coutnerMutex at one time.