Using const int as array size - c++

Why am I able to use a locally declared const int as the size of an array declaration but am not allowed to do the same with a const int passed as an argument?
For example, in the below code why do I get compiler errors only on line 2?
void f1(const int dim){
int nums[dim]; // line 2: errors
}
void f2(){
const int dim = 5;
int nums[dim]; // ok
}

Array size should be known at compile time.
const int with local variables may do not work neither if the value is not known at compile time as:
void f2(){
const int dim = bar();
int nums[dim]; // error
}
In Both case, const int tells that the value doesn't change, not that is it known at compile time.

In f2 the constant dim is known at compile time, in f1 it's not.
And since C++ doesn't have variable-length arrays the dimensions of an array must be known at compile time.
The use of const for function arguments is more of a hint to the compiler that the function will not modify the argument, allowing the compiler to for example make optimizations based on that information.

Your understanding of the const keyword is wrong. const implies that within a certain contextual scope the variable will not change, not that the variable is determined at compile time.

Since c++11 though you can use constexpr which would do what you expect. The constexpr says compiler that apart the variable is const its value can be evaluated at compile time. See: http://en.cppreference.com/w/cpp/language/constexpr

Array size should be known at compile time.
const mean the value doesn't change.
So, this is about value of 'dim` at compile time.
In first case, it is unknown. compiler don't know the value of dim at compile time. It depends on the value passed to the function.
void f1(const int dim){
int nums[dim]; // line 2: errors
}
In this case, dim value is known at compile time, so no issues.
void f2(){
const int dim = 5;
int nums[dim]; // ok
}
You can use a feature in c++ 11 for this.
define your function as constexpr.
constexpr int getDim(......)
{
.......
.......
return dim;
}
then call getDim inside f1.
void f1(){
int dim = getDim(...); //// computed at compile time
int nums[dim];
}
Note that, use of constexpr depend on your application. Further refer this.

Related

constexpr - What does "Evaluate value at compile time" mean exactly?

#include <array>
int value1(int param) {
return param * 2;
}
constexpr int value2(int param) {
return param * 2;
}
int main() {
const int i = 10;
std::array<int, value1(i)> starr1 = {}; // 1
std::array<int, value2(i)> starr2 = {}; // 2
return 0;
}
2 is okay, but 1 gives a compile error because std::array has to make static size array. value2() returns compile-time constant value because of constexpr keyword.
So, how does the compiler infer that value2(i) is compile-time constant? Does it call the function value2() while compiling?
const int value1(int param) {
return param * 2;
}
int main() {
const int i = 10;
std::array<int, value1(i)> starr1 = {}; // 3
return 0;
}
>>> error: call to non-constexpr function ‘const int value1(int)’
Also, 3 still tgives a compile error. Is value1(i) not compile-time constant even though const keyword is applied to the function value1()?
So, how compiler infer value2(i) is compile-time constant?
It doesn't infer that. You state that explicitly when you annotate it with constexpr. It might infer that for functions not marked with constexpr, though. This still won't allow you to use their results in compile-time expressions, and is only used as an optimization strategy.
Does it call the function value2() while compiling?
In a sense, yes. It's probably closer to interpreting it directly, since I don't think any compiler actually compiles that function for the purposes of executing it during the build. What matters is that it's able to establish its result before the entire program is built and ran, and that it can use that result to e.g. determine the size of your array when generating the code.
Is value1(i) not compile constant even though const keyword is applied to the function value1()?
It's not. const only applies to the return type (and in this case, it's effectively useless), not the evaluation possibility in compile-time.

'Constant Expression Required' Error while keeping formal argument as a constant

This is a C++ programming code to display the values of array1 and array2 but I am getting a compile time error as 'Constant Expression Required'. Please Help
void display(const int const1 = 5)
{
const int const2 = 5;
int array1[const1];
int array2[const2];
for(int i = 1 ; i < 5 ; i++)
{
array1[i] = i;
array2[i] = i * 10;
std::cout << array1[i] << std::endl;
}
}
void main()
{
display(5);
}
In C++, const is not always constexpr. Back in the days, constexpr didn't exist, so the only way of having a compile time constant was to either use const with a literal, or to use enum, because both of these are easy for the compiler to check the value.
However, in C++11, we added constexpr, which guaranties that a constexpr variable has a value available at compile-time, and state that constexpr function can be evaluated aat compile time if all arguments are constexpr too.
In your code, you can write your variable const2 like this:
void display(const int const1=5)
{
constexpr int const2 = 5;
// ...
}
Now your code is much more expressive about what you are doing. instead of relying that the const may be available at compile time, you say "this variable has a value known at compile time, here's the value".
However, if you try to change const1, you'll get an error. Parameters, even with default value always as a value known at runtime. If the value is only known at runtime, you can't use it in template parameters or array size.
If you want your function to be able to receive the value const1 as a constant expression from where you can receive it as a template parameter, since template parameters are always known at compile time.
template<int const1 = 5>
void display()
{
constexpr int const2 = 5;
int array1[const1];
int array2[const2];
}
You will have to call your function like that:
// const1 is 5
display();
// const1 is 10
display<10>();
If you want to know more about templates, go check Function templates, or this tutorial

C++: Expression must have a constant value when declaring array inside function [duplicate]

This question already has answers here:
How do I use arrays in C++?
(5 answers)
Closed 6 years ago.
I have looked at all the other posts with a similar topic, and none help, so please don't flag as a duplicate.
I am defining in main() a const int SIZE = 20;. Then, I pass this as an argument to my function, Mode:
int* Mode(int* numbers, int & mode, const int SIZE)
{
int occurences[SIZE];
// Calcualte mode
}
However, I get the error, expression must have a constant value.
My function call (in main) looks like this:
int* occurencesPtr = Mode(numbersPtr, mode, SIZE);
With SIZE being defined at the beginning to the literal 20.
I understand that the error is because the function's version of SIZE only acquires its value when the function is called (?), but I don't know how I could work around this.
I have even tried passing to the function a const int * const SIZEPtr = &SIZE, but that didn't work either. Help?
EDIT: I am not trying to use a variable size!! Notice that I have made SIZE a const everywhere! I just want to use that same SIZE constant to declare my array.
EDIT: Dynamic arrays are not what I need. I just want a normal, named, array, defined with a constant size value passed to the function.
There is a misconception here with what const means, probably because it's a little confusing that this works:
const int SIZE = 20;
int array[SIZE];
but this doesn't:
void foo(const int SIZE) {
int array[SIZE];
// ...
}
const int SIZE = 20;
foo(SIZE);
The issue is that the array size in an array declaration must be a core constant expression. Simplified, that means an expression that's evaluatable at compile time to be a constant. That is true in the first case (you can see that SIZE is the integral constant 20) but that is not true in the second case. There, the SIZE function parameter is just const - in the sense that it is nonmodifiable - and not a core constant expression. You can see the difference in that I can call foo() with something that is clearly unknowable until runtime:
int x;
if (std::cin >> x) {
foo(x);
}
In order to pass an argument into foo, and have that argument be used as an array bound, it is not enough to have it be const - the actual integral value must be encoded into the type (unless you call foo() as constexpr which I'm assuming is not the case here). In which case, you'd have to do something like:
template <int SIZE>
void foo() { ... }
const int SIZE = 20;
foo<SIZE>();
or:
template <int SIZE>
void foo(std::integral_constant<int, SIZE > ) { ... }
const int SIZE = 20;
foo(std::integral_constant<int, SIZE>{} );
or simply have SIZE be a global constant or otherwise accessible to foo() in a way that doesn't have to do with its arguments.
Or, there's always the simple option: use std::vector:
void foo(const int SIZE) {
std::vector<int> v(SIZE);
...
}
I understand that the error is because the function's version of SIZE only acquires its value when the function is called (?), but I don't know how I could work around this.
Option 1
Instead of defining SIZE in main, add a constexpr function. Use the constexpr function instead of passing the size.
constexpr int getSize()
{
return 20;
}
int* Mode(int* numbers, int & mode)
{
int occurences[getSize()];
// ...
}
Option 2
Use std::vector instead of array.
int* Mode(int* numbers, int & mode, int size)
{
std::vector<int> occurences[size];
// ...
}
Option 3
Use a function template.
template <size_t SIZE>
int* Mode(int* numbers, int & mode, int size)
{
int occurences[SIZE];
// ...
}
Option 4
Use a function template and std::array.
template <size_t SIZE>
int* Mode(int* numbers, int & mode, int size)
{
std::array<int, SIZE> occurences;
// ...
}
You're confusing things. A constant expression has nothing to do with const (at least not that much) ;).
let's think we are the compiler and face this function:
void foo(const int SIZE) { }
The constmerely says "we are not able to change the function-local variable SIZE inside the function body.
We need to compile it without assuming that SIZE is compile time constant. Why?
Because there is noone stoping us from doing something like:
int i{};
std::cin >> i;
foo(i);
You can pass any (matching/convertible) value to a by value const function argument.
What should happen when the compiler assumed the value passed to foo was a compile time constant expression?
If you want to pass compile time constants, use templates and while you're at it use std::array instead of T[N]:
template<std::size_t N>
void foo()
{
std::array<int, N> occurences;
}
const isn't doing what you think it's doing in your Mode function.
When const is used in function definition, const is simply telling the compiler that the function will not change the argument declared const inside of the scope of it's function. But that does not make the argument a constant, it is actually called a constant expression. Some compilers enforce this, others do not, and so will allow you to change const expressions (arguments passed with const keyword).
In order to use a globally accessible constant value which you can use, like SIZE, you'll need to declare a global constant before the function is called; which could be declared outside of main(), or at least outside the scope of all other functions but main(), if you must declare all inside main. Pass the global constant to the Mode function just as you would any other variable.
Oh, and, main() needs a return type.
I've edited the code to meet your specific constraints.
Here is a variation on your original code:
int main(){
//Declare constants first.
const int SIZE = 20; /*Could declare here instead.*/
//Declare variables next.
int *intPtr = 0; // to hold the pointer passed from Mode.
int *numbersPointer = 0;
int mode = 0;
//Define Mode (using OP's code.)
int* Mode(int* numbers, int & mode, const int size){
int occurences[size];
// Calculate mode
}
/*Now use constants, variables, and functions.*/
intPtr = Mode(numbersPointer, mode, SIZE); //Call mode.
return 0;
}

Trouble declaring an array using symbolic constant

This code will not compile:
#ifndef RemoteControl_h
#define RemoteControl_h
#include "Arduino.h"
class RemoteControl
{
public:
RemoteControl();
~RemoteControl();
static void prev_track();
static void next_track();
static void play_pause_track();
static void mute();
static void vol_up();
static void vol_down();
void respond(int code);
void add_code(int code, void (*func)());
private:
boolean active = true;
struct pair {
int _code;
void (*_func)();
};
const int max = 1000;
int database_length = 0;
pair database[max]; //This line doesn't compile unless I use a literal constant instead of "max"
};
#endif
But if I put the section below in the constructor for the class instead it works fine.
const int max = 1000;
int database_length = 0;
pair database[max];
Am I not allowed to declare an array within a class in c++ and use a virtual constant as the length? I am working in arduino if that makes a difference, but I expect that I am not understanding something with the c++ language since this is a standard .h file. Oh and the problem isn't the .cpp file because I completely removed it with the same results: compiles with literal constant length but not virtual constant length.
In C or C++,try using malloc() in stdlib.h, cstdlib for c++. Don't forget free()
const int max = 1000;
struct pair *ptr = malloc(sizeof(pair) * max); // allocated 1000 pairs
free(ptr); // when the amount of memory is not needed anymore
Let me first clear a few things up for you.
In C, a const variable is considered as const-qualified, it is not a compile-time constant value (unlike an integer literal, which is a compile time constant value). So, as per the rules for normal array size specification, you cannot even use a const variable in this case.
In C, we may have the provision to use VLA which enables us to use syntax like pair database[max] even if max is not a const variable but that is again some optional feature of the compiler (as per C11).
In C++, we can use a const variable as the size of array, as in C++, a const variable is a compile time constant.
So, to answer your question:
In C, your code will be ok if your compiler supports VLA. and even if max is not const.
In C++, there is no VLA, but it maybe supported as a gnu extension. If max is const, it will be ok.
The easiest fix is to just take the
const int max = 1000;
out of the class and put it above the class.
Even better would be to ensure that it is a compile-time constant like so:
constexpr int max = 1000;

Why aren't fields from constant POD object constants themselves?

I want to specialize a template for a certain GUID, which is a 16 byte struct. The GUID object has internal linkage, so I can't use the address of the object itself, but I thought I could use the contents of the object, since the object was a constant. But this doesn't work, as illustrated by this example code:
struct S
{
int const i;
};
S const s = { 42 };
char arr[s.i];
Why isn't s.i a constant if s is? Any workaround?
The initialization of the struct s can happen at run time. However, the size of an array must be known at compile time. The compiler won't (for sure) know that the value of s.i is known at compile time, so it just sees you're using a variable for something you shouldn't be. The issue isn't with constness, it's an issue of when the size of the array is needed.
You may be misunderstanding what const means. It only means that after the variable is initialized, it is never changed. For example this is legal:
void func(int x){
const int i = x*5; //can't be known at compile-time, but still const
//int array[i]; //<-- this would be illegal even though i is const
}
int main(){
int i;
std::cin >> i;
func(i);
return 0;
}
To get around this limitation, in C++11 you can mark it as constexpr to indicate that the value can be determined at compile time. This seems to be what you want.
struct S
{
int const i;
};
int main(){
constexpr S const s = { 42 };
char arr[s.i];
return 0;
}
compile with:
$ c++ -std=c++11 -pedantic file.cpp
in C99, what you're doing is legal, the size of an array does not need to be known at compile time.
struct S
{
int const i;
};
int main(){
struct S const s = { 42 };
char arr[s.i];
return 0;
}
compile with:
$ cc -std=c99 -pedantic file.c
At least most of the time, const really means something much closer to "read-only" than to "constant". In C89/90, essentially all it means is "read-only". C++ adds some circumstances in which it can be constant, but it still doesn't even close to all the time (and, unfortunately, keeping track of exactly what it means when is non-trivial).
Fortunately, the "workaround" is to write your code the way you almost certainly should in any case:
std::vector<char> arr(s.i);
Bottom line: most use of a built-in array in C++ should be considered suspect. The fact that you can initialize a vector from a non-constant expression is only one of many advantages.