How to compare two expressions with maxima? - compare

I have two complicated mathematical expressions. How can I compare them, to find if they express the same using Maxima?

is(equal(e1, e2)). Note that "=" is identity (i.e. same expression), while "equal" is equivalence. E.g. is(equal(x*(x + 1), x^2 + x)) => true while is(x*(x + 1) = x^2 + x) => false. Note also that is(equal(e1, e2)) actually computes ratsimp(e1 - e2) and looks to see if the result is 0. Maxima cannot reduce all equivalent expressions to 0 so there are cases in which it will incorrectly return false.

Related

Standard ML: How to compute x to the power of i?

I am new to Standard ML. I am trying to compute x squared i, where x is a real and i is an non-negative integer. The function should take two parameters, x and i
Here is what I have so far:
fun square x i = if (i<0) then 1 else x*i;
The error that I am getting is that the case object and rules do not agree
The unary negation operator in SML is not - as it is in most languages, but instead ~. That is likely what is causing the specific error you cite.
That said, there are some other issues with this code. L is not bound in the example you post for instance.
I think you may want your function to look more like
fun square (x : real) 0 = 1
| square x i = x * (square x (i - 1))
You'll want to recurse in order to compute the square.

How in sympy Disable unnecessary parenthesis?

Tell me please, How to forbid to open brackets? For example,
8 * (x + 1) It should be that way, not 8 * x + 8
Using evaluate = False doesn't help
The global evaluate flag will allow you to do this in the most natural manner:
>>> with evaluate(False):
... 8*(x+1)
...
8*(x + 1)
Otherwise, Mul(8, x + 1, evaluate=False) is a lower level way to do this. And conversion from a string (already in that form) is possible as
>>> S('8*(x+1)',evaluate=False)
8*(x + 1)
In general, SymPy will convert the expression to its internal format, which includes some minimal simplifications. For example, sqrt is represented internally as Pow(x,1/2). Also, some reordering of terms may happen.
In your specific case, you could try:
from sympy import factor
from sympy.abc import x, y
y = x + 1
g = 8 * y
g = factor(g)
print(g) # "8 * (x + 1)"
But, if for example you have g = y * y, SymPy will either represent it as a second power ((x + 1)**2), or expand it to x**2 + 2*x + 1.
PS: See also this answer by SymPy's maintainer for some possible workarounds. (It might complicate things later when you would like to evaluate or simplify this expression in other calculations.)
How about sympy.collect_const(sympy.S("8 * (x + 1)"), 8)?
In general you might be interested in some of these expression manipulations: https://docs.sympy.org/0.7.1/modules/simplify/simplify.html

Tuppled function versus curried function performance in SML/NJ

I'm learning functional programming using the SML language. While reading my study notes, I came across a question, that asks which kind of a function (tuppled or curried) performs faster.
I've looked at the video here, where the instructor says that this is a matter of language implementation and states (at 5:25) that SML/NJ performs faster with tuppled functions, but doesn't state why that is.
I think my instructor once said, that it's because the curried function creates more closures, but I think I didn't hear right.
Can someone, please, elaborate on this?
There's some more intermediate evaluation for curried functions. Let's say we wanted a function so sum three numbers. We consider the following two definitions:
fun sum (x,y,z) = x + y + z
Alternatively,
fun sum x y z = x + y + z
Consider the following rough evaluation trace on the first version:
:> sum(1,2,3)
1 + 2 + 3 (substitution using pattern matching on the contents of the tuple)
(1 + 2) + 3
3 + 3
6
On the other hand, with the curried version SML will construct some anonymous functions on the fly as it is evaluating the expression. This is because curried functions take advantage of the fact that anonymous functions can be returned as the results of other functions in order to capture the behavior of applying multiple arguments to a single function. Constructing the functions takes some constant amount of time.
:> sum 1 2 3
((sum 1) 2) 3
(((fn x => (fn y => (fn z => x + y + z))) 1) 2) 3
((fn y => (fn z => 1 + y + z)) 2) 3
(fn z => 1 + 2 + z) 3
1 + 2 + 3
(1 + 2) + 3
3 + 3
6
So there are some extra steps involved. It certainly should not cause performance issues in your program, however.

Moving out before brackets with XOR

If I had the sum of products like z*a + z*b + z*c + ... + z*y, it would be possible to move the z factor, which is the same, out before brackets: z(a + b + c + ... y).
I'd like to know how it is possible (if it is) to do the same trick if bitwise XOR is used instead of multiplication.
z^a + z^b + ... z^y -> z^(a + b + ... + y)
Perhaps a, b, c ... should be preprocessed, such as logically negated or something else, before adding? z could change, so preprocessing, if it's needed, shouldn't depend on particular z value.
From Wikipedia:
Distributivity: with no binary function, not even with itself
So, no, unfortunately, you can't do anything like that with XOR.
To prove that a general formula does not hold you only need to prove a contradiction in a limited case.
We can reduce it to show that this does not hold:
(a^b) * c = (a^c) * (b^c)
It is trivial to show that one base case fails as such:
a = 3
b = 1
c = 1
(a^b) * c = (3^1) * 1 = 2
(a^c) * (b^c) = 2 * 0 = 0
Using the same case you can show that (a*b) ^ c = (a^c) * (b^c) and (a + b) ^ c = (a^c) + (b^c) do not hold either.
Hence, equality does not hold in a general case.
Equality can hold in special cases though, which is an entirely different subject.

Expression transformation problem

Let's say we have the following statement: s = 3 * a * b - 2 * c, where s, a, b and c are variables. Also, we used Shunting Yard algorithm to build RPN expression, so now we can assign values to variables a, b and c and calculate s value by using simple RPN evaluator.
But, the problem is that I should be able to calculate a value of any variable a, b or c when values of all other variables are set.
So, I need to transform existing expression somehow to get a set of expressions:
a = (s + 2 * c) / (3 * b)
b = (s + 2 * c) / (3 * a)
c = (3 * a * b - s) / 2
How can I generate such expressions on basis of one original statement? Is there any standard approaches for solving such problems?
Constraints:
A set of available operators: +, -, *, /, including unary + and -
operators *, / and = can't have the same variable on both sides (e.g. s = a * a, or s = a + s are not acceptable)
Thanks
See this first: Postfix notation to expression tree to convert your RPN into a tree.
Once you have the equation left expression = right expression change this to left expression - right expression = 0 and create a tree of left expression - right expression via Shunting Yard and the above answer. Thus when you evaluate the tree, you must get the answer as 0.
Now based on your restrictions, observe that if a variable (say x) is unknown, the resulting expression will always be of the form
(ax + b)/(cx + d) where a,b,c,d will depend on the other variables.
You can now recursively compute the expression as a tuple (a,b,c,d).
In the end, you will end up solving the linear equation
(ax + b)/(cx + d) = 0 giving x = -b/a
This way you don't have to compute separate expressions for each variable. One expression tree is enough. And given the other variables, you just recursively compute the tuple (a,b,c,d) and solve the linear equation in the end.
The (incomplete) pseudocode will be
TupleOrValue Eval (Tree t) {
if (!t.ContainsVariable) {
blah;
return value;
}
Tuple result;
if (t.Left.ContainsVariable) {
result = Eval(t.Left);
value = Eval(t.Right);
return Compose(t.Operator, result, value);
} else {
result = Eval(t.Right);
value = Eval(t.Left);
return Compose(t.Operator, result, value);
}
}
Tuple Compose(Operator op, Tuple t, Value v) {
switch (op) {
case 'PLUS': return new Tuple(t.a + v*t.c, t.b + v*t.d, t.c, t.d);
// (ax+b)/(cx+d) + v = ( (a + vc)x + b + dv)/(cx + d)
// blah
}
}
For an example, if the expression is x+y-z = 0. The tree will be
+
/ \
x -
/ \
y z
For y=5 and z=2.
Eval (t.Right) will return y-z = 3 as that subtree does not contain x.
Eval(t.Left) will return (1,0,0,1) which corresponds to (1x + 0)/(0x + 1). Note: the above pseudo-code is incomplete.
Now Compose of (1,0,0,1) with the value 3 will give (1 + 3*0, 0 + 3*1, 0, 1) = (1,3,0,1) which corresponds to (x + 3)/(0x + 1).
Now if you want to solve this you take x to be -b/a = -3/1 = -3
I will leave the original answer:
In general it will be impossible.
For instance consider the expression
x*x*x*x*x + a*x*x*x*x + b*x*x*x + c*x*x + d*x = e
Getting an expression for x basically corresponds to find the roots of the polynomial
x5 + ax4 + bx3 + cx2 + dx -e
which has been proven to be impossible in general, if you want to use +,-,/,* and nth roots. See Abel Ruffini Theorem.
Are there are some restrictions you forgot to mention, which might simplify the problem?
The basic answer is you have to apply algebra to the set of equations you have, to produce equations that you want.
In general, if you start with this symbolic equation:
s = 3 * a * b - 2 * c
and you add constraints for s, a, and c:
s = ...
a = ...
c = ...
you need to apply standard laws of algebra to rearrange the set of equations to produce what you want, in this case, a formula for b:
b = ...
If you add different constraints, you need the same laws of algebra, applied in different ways.
If your equations are all of the form (as your example is not) of
left_hand_side_variable_n = combination_of_variables
then you can use rules for solving simultaneous equations. For linear combinations, this is pretty straightforward (you learned how to do this high school). And you can even set up a standard matrix and solve using a standard solver package without doing algebra.
If the equations are not linear, then you may not be able to find a solution no matter how good your math is (see other answers for examples). To the extent it is possible to do so, you can use a computer algebra system (CAS) to manipulate formulas. They do so by representing the formulas essentially as [math] abstract syntax trees, not as RPN, and apply source-to-source transformation rules (you would call these "algebra rules" from high school). They usually have a pretty big set of built-in rules ("knowledge") already. Some CAS will attempt to solve such systems of equations for you using the built-in rules; others, you have to tell what sequence of algebraic laws to apply in what order.
You may also use a constraint solver, which is a special kind of computer algebra system focused only on answering the kind of question you've posed, e.g., "with this set of constraints, and specific values for variables, what is the value of other variables?". These are pretty good if your equations follows the forms they are designed to solve; otherwise no gaurantee but that's not surprising.
One can also use a program transformation system, which manipulate arbitrary "syntax trees", because algrebra trees are just a special case of syntax trees. To use such a system, you define the langauge to be manipulated (e.g., conventional algebra) and the rules by which it can be manipulated, and the order in which to apply the rules. [The teacher did exactly this for you in your intro algebra class, but not in such a formal way] Here's an example of a my program transformation system manipulating algebra. For equation solving, you want much the same rules, but a different order of application.
Finally, if you want to do this in a C++ program, either you have to simulate one of the above more general mechanisms (which is a huge amount of work), or you have narrow what you are willing to solve significantly (e.g., "linear combinations") so that you can take advantage of a much simpler algorithm.
There is a quite straight-forward one for very basic expressions (like in your example) where each variable occurs mostly once and every operator is binary. The algorithm is mostly what you would do by hand.
The variable we are looking for will be x in the following lines. Transform your expression into the form f(...,x,...) == g(...). Either variable x is already on the left hand side or you just switch both sides.
You now have two functions consisting of applications of binary operators to sub-expressions, i.e. f = o_1(e_1,e_2) where each e_i is either a variable, a number or another function e_i = o_i(e_j, e_k). Think of this as the binary tree representation where nodes are operators and leafs are variables or numbers. Same applies for g.
Yyou can apply the following algorithm (our goal is to transform the tree into one representing the expression x == h(...):
while f != x:
// note: f is not a variable but x is a subexpression of f
// and thus f has to be of the form binop(e_1, e_2)
if x is within e_1:
case f = e_1 + e_2: // i.e. e_1 + e_2 = g
g <- g - e_2
case f = e_1 - e_2: // i.e. e_1 - e_2 = g
g <- g + e_2
case f = e_1 * e_2: // i.e. e_1 * e_2 = g
g <- g / e_2
case f = e_1 / e_2: // i.e. e_1 / e_2 = g
g <- g * e_2
f <- e_1
else if x is within e_2:
case f = e_1 + e_2: // i.e. e_1 + e_2 = g
g <- g - e_2
case f = e_1 - e_2: // i.e. e_1 - e_2 = g
g <- g + e_2
case f = e_1 * e_2: // i.e. e_1 * e_2 = g
g <- g / e_2
case f = e_1 / e_2: // i.e. e_1 / e_2 = g
g <- g * e_2
f <- e_1
Now that f = x and f = g was saved during all steps we have x = g as solution.
In each step you ensure that x remains on the lhs and at the same time you reduce the depth of the lhs by one. Thus this algorithm will terminate after a finite amount of steps.
In your example (solve for b):
f = 3a*b*2c*- and g = s
f = 3a*b* and g = s2c*+
f = b and g = s2c*+3a*/
and thus b = (s + 2*c)/(3*a).
If you have more operators you can extend the algorithm but you might run into problems if they are not invertible.