Error C2668: 'boost::bind' : ambiguous call to overloaded function - c++
I am trying to build Quantlib on VS2013 in the Release x64 mode.
I added the Boost libraries using Property Manager and then Went to solutions explorer and clicked on Build.
The final output was: Build: 18 succeeded, 1 failed. 0 up-to-date, 0 skipped.
When I double clicked on the error this file opened up (convolvedstudentt.cpp)
Copyright (C) 2014 Jose Aparicio
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev#lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/experimental/math/convolvedstudentt.hpp>
#include <ql/errors.hpp>
#include <ql/math/factorial.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/solvers1d/brent.hpp>
#include <boost/function.hpp>
#if defined(__GNUC__) && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)) || (__GNUC__ > 4))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
#endif
#include <boost/bind.hpp>
#include <boost/math/distributions/students_t.hpp>
#if defined(__GNUC__) && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)) || (__GNUC__ > 4))
#pragma GCC diagnostic pop
#endif
namespace QuantLib {
CumulativeBehrensFisher::CumulativeBehrensFisher(
const std::vector<Integer>& degreesFreedom,
const std::vector<Real>& factors
)
: degreesFreedom_(degreesFreedom), factors_(factors),
polyConvolved_(std::vector<Real>(1, 1.)), // value to start convolution
a_(0.)
{
QL_REQUIRE(degreesFreedom.size() == factors.size(),
"Incompatible sizes in convolution.");
for(Size i=0; i<degreesFreedom.size(); i++) {
QL_REQUIRE(degreesFreedom[i]%2 != 0,
"Even degree of freedom not allowed");
QL_REQUIRE(degreesFreedom[i] >= 0,
"Negative degree of freedom not allowed");
}
for(Size i=0; i<degreesFreedom_.size(); i++)
polynCharFnc_.push_back(polynCharactT((degreesFreedom[i]-1)/2));
// adjust the polynomial coefficients by the factors in the linear
// combination:
for(Size i=0; i<degreesFreedom_.size(); i++) {
Real multiplier = 1.;
for(Size k=1; k<polynCharFnc_[i].size(); k++) {
multiplier *= std::abs(factors_[i]);
polynCharFnc_[i][k] *= multiplier;
}
}
//convolution, here it is a product of polynomials and exponentials
for(Size i=0; i<polynCharFnc_.size(); i++)
polyConvolved_ =
convolveVectorPolynomials(polyConvolved_, polynCharFnc_[i]);
// trim possible zeros that might have arised:
std::vector<Real>::reverse_iterator it = polyConvolved_.rbegin();
while(it != polyConvolved_.rend()) {
if(*it == 0.) {
polyConvolved_.pop_back();
it = polyConvolved_.rbegin();
}else{
break;
}
}
// cache 'a' value (the exponent)
for(Size i=0; i<degreesFreedom_.size(); i++)
a_ += std::sqrt(static_cast<Real>(degreesFreedom_[i]))
* std::abs(factors_[i]);
a2_ = a_ * a_;
}
Disposable<std::vector<Real> >
CumulativeBehrensFisher::polynCharactT(Natural n) const {
Natural nu = 2 * n +1;
std::vector<Real> low(1,1.), high(1,1.);
high.push_back(std::sqrt(static_cast<Real>(nu)));
if(n==0) return low;
if(n==1) return high;
for(Size k=1; k<n; k++) {
std::vector<Real> recursionFactor(1,0.); // 0 coef
recursionFactor.push_back(0.); // 1 coef
recursionFactor.push_back(nu/((2.*k+1.)*(2.*k-1.))); // 2 coef
std::vector<Real> lowUp =
convolveVectorPolynomials(recursionFactor, low);
//add them up:
for(Size i=0; i<high.size(); i++)
lowUp[i] += high[i];
low = high;
high = lowUp;
}
return high;
}
Disposable<std::vector<Real> >
CumulativeBehrensFisher::convolveVectorPolynomials(
const std::vector<Real>& v1,
const std::vector<Real>& v2) const {
#if defined(QL_EXTRA_SAFETY_CHECKS)
QL_REQUIRE(!v1.empty() && !v2.empty(),
"Incorrect vectors in polynomial.");
#endif
const std::vector<Real>& shorter = v1.size() < v2.size() ? v1 : v2;
const std::vector<Real>& longer = (v1 == shorter) ? v2 : v1;
Size newDegree = v1.size()+v2.size()-2;
std::vector<Real> resultB(newDegree+1, 0.);
for(Size polyOrdr=0; polyOrdr<resultB.size(); polyOrdr++) {
for(Size i=std::max<Integer>(0, polyOrdr-longer.size()+1);
i<=std::min(polyOrdr, shorter.size()-1); i++)
resultB[polyOrdr] += shorter[i]*longer[polyOrdr-i];
}
return resultB;
}
Probability CumulativeBehrensFisher::operator()(const Real x) const {
// 1st & 0th terms with the table integration
Real integral = polyConvolved_[0] * std::atan(x/a_);
Real squared = a2_ + x*x;
Real rootsqr = std::sqrt(squared);
Real atan2xa = std::atan2(-x,a_);
if(polyConvolved_.size()>1)
integral += polyConvolved_[1] * x/squared;
for(Size exponent = 2; exponent <polyConvolved_.size(); exponent++) {
integral -= polyConvolved_[exponent] *
Factorial::get(exponent-1) * std::sin((exponent)*atan2xa)
/std::pow(rootsqr, static_cast<Real>(exponent));
}
return .5 + integral / M_PI;
}
Probability
CumulativeBehrensFisher::density(const Real x) const {
Real squared = a2_ + x*x;
Real integral = polyConvolved_[0] * a_ / squared;
Real rootsqr = std::sqrt(squared);
Real atan2xa = std::atan2(-x,a_);
for(Size exponent=1; exponent <polyConvolved_.size(); exponent++) {
integral += polyConvolved_[exponent] *
Factorial::get(exponent) * std::cos((exponent+1)*atan2xa)
/std::pow(rootsqr, static_cast<Real>(exponent+1) );
}
return integral / M_PI;
}
InverseCumulativeBehrensFisher::InverseCumulativeBehrensFisher(
const std::vector<Integer>& degreesFreedom,
const std::vector<Real>& factors,
Real accuracy)
: normSqr_(std::inner_product(factors.begin(), factors.end(),
factors.begin(), 0.)),
accuracy_(accuracy), distrib_(degreesFreedom, factors) { }
Real InverseCumulativeBehrensFisher::operator()(const Probability q) const {
Probability effectiveq;
Real sign;
// since the distrib is symmetric solve only on the right side:
if(q==0.5) {
return 0.;
}else if(q < 0.5) {
sign = -1.;
effectiveq = 1.-q;
}else{
sign = 1.;
effectiveq = q;
}
Real xMin =
InverseCumulativeNormal::standard_value(effectiveq) * normSqr_;
// inversion will fail at the Brent's bounds-check if this is not enough
// (q is very close to 1.), in a bad combination fails around 1.-1.e-7
Real xMax = 1.e6;
return sign *
Brent().solve(boost::bind(std::bind2nd(std::minus<Real>(),
effectiveq), boost::bind<Real>(
&CumulativeBehrensFisher::operator (),
distrib_, _1)), accuracy_, (xMin+xMax)/2., xMin, xMax);
}
}
The error seems to be in the third line from the bottom. That's the one that's highlighted.
effectiveq), boost::bind<Real>(
&CumulativeBehrensFisher::operator (),
distrib_, _1)), accuracy_, (xMin+xMax)/2., xMin, xMax);
When I hover a mouse over it, it says
Error: more than one instance of overloaded function "boost::bind" matches the argument list: function template "boost_bi::bind_t " etc. Please see the attached screenshot
How can I fix this? Please help.
This came up quite a few times lately on the QuantLib mailing list. In short, the code worked with Boost 1.57 (the latest version at the time of the QuantLib 1.5 release) but broke with Boost 1.58.
There's a fix for this in the QuantLib master branch on GitHub, but it hasn't made it into a release yet. If you want to (or have to) use Boost 1.58, you can check out the latest code from there. If you want to use a released QuantLib version instead, the workaround is to downgrade to Boost 1.57.
Related
R code containing Rcpp function runs twice as fast on Mac, than on a much more powerful Windows machine
I have written R code containing Rcpp function, which in turn calls other cpp functions through inline, on my Mac. I have switched to a Windows machine with a much more powerful cpu and higher RAM, but the same code takes on average twice as much to run on this new machine. my R session info on Mac is here and that of the Windows machine is here As a clear example, this small function in my code (lik2altcpp.cpp) #ifndef __lik2altcpp__ #define __lik2altcpp__ // [[Rcpp::depends(RcppArmadillo)]] #include "RcppArmadillo.h" #include "FactorialLog.cpp" using namespace arma; using namespace Rcpp; // [[Rcpp::export]] inline vec lik2altF(vec p,int k,double eps) { wall_clock timer; timer.tic(); double ptie=0,arg11=0,arg12=0,arg21=0,arg22=0,ptb=0,pu1=0,pu2=0; double p1,p2,ps; vec prob(2); if (p(0)==0) p1=10e-20; else p1=p(0); if (p(1)==0) p2=10e-20; else p2=p(1); if (p(2)==0) ps=10e-20; else ps=p(2); for (int i=0;i<=k;i++) { if (i!=0) { ptie=ptie+ exp(FactorialLog(2*k-i-1)-(FactorialLog(i-1)+FactorialLog(k-i)+FactorialLog(k-i))+i*log(ps)+(k-i)*log(p1)+(k-i)*log(p2)); } if(i!=k) { arg11=arg11+exp(FactorialLog(k+i-1)-(FactorialLog(i)+FactorialLog(k-1))+k*log(p1)+i*log(p2)); //first argument of the P(1) arg12=arg12+exp(FactorialLog(k+i-1)-(FactorialLog(i)+FactorialLog(k-1))+i*log(p1)+k*log(p2)); //first argument of the P(2) } if((i!=0) && (i!=k)) { for(int j=0; j<=(k-i-1);j++) { arg21=arg21+ exp(FactorialLog(k+j-1)-(FactorialLog(i-1)+FactorialLog(k-i)+FactorialLog(j))+ i*log(ps)+(k-i)*log(p1)+j*log(p2)) + exp(FactorialLog(k+j-1)-(FactorialLog(i)+FactorialLog(k-i-1)+FactorialLog(j)) + i*log(ps)+(k-i)*log(p1)+j*log(p2)); //second argument of the P(1) arg22=arg22+ exp(FactorialLog(k+j-1)-(FactorialLog(i-1)+FactorialLog(k-i)+FactorialLog(j))+ + i*log(ps)+j*log(p1)+(k-i)*log(p2)) + exp(FactorialLog(k+j-1)-(FactorialLog(i)+FactorialLog(k-i-1)+FactorialLog(j)) + i*log(ps)+j*log(p1)+(k-i)*log(p2)); //second argument of the P(2) } } } //summing up the terms of the prob. formula pu1=arg11+arg21 ; pu2=arg12+arg22; // ptb=(p1+eps*ps)/(p1+p2+2*eps*ps); //the actual formula for ptb ///////////REVERT THE CHANGES AFTER THE TEST //////////////// ptb=.5; //Calculating probabilities prob(0)=pu1+ptb*ptie; prob(1)=pu2+(1-ptb)*ptie; double n = timer.toc(); cout << "number of seconds: " << n; return prob; } #endif //__lik2altcpp__ along with the function it includes(FactorialLog.cpp): #ifndef __FactorialLog__ #define __FactorialLog__ #include "RcppArmadillo.h" using namespace arma; using namespace Rcpp; // [[Rcpp::depends(RcppArmadillo)]] // [[Rcpp::export]] inline double FactorialLog(int n) { if (n < 0) { std::stringstream os; os << "Invalid input argument (" << n << "); may not be negative"; throw std::invalid_argument( os.str() ); } else if (n > 254) { const double Pi = 3.141592653589793; double x = n + 1; return (x - 0.5)*log(x) - x + 0.5*log(2*Pi) + 1.0/(12.0*x); } else { double lf[] = { 0.000000000000000, 0.000000000000000, 0.693147180559945, 1.791759469228055, 3.178053830347946, 4.787491742782046, 6.579251212010101, 8.525161361065415, 10.604602902745251, 12.801827480081469, 15.104412573075516, 17.502307845873887, 19.987214495661885, 22.552163853123421, 25.191221182738683, 27.899271383840894, 30.671860106080675, 33.505073450136891, 36.395445208033053, 39.339884187199495, 42.335616460753485, 45.380138898476908, 48.471181351835227, 51.606675567764377, 54.784729398112319, 58.003605222980518, 61.261701761002001, 64.557538627006323, 67.889743137181526, 71.257038967168000, 74.658236348830158, 78.092223553315307, 81.557959456115029, 85.054467017581516, 88.580827542197682, 92.136175603687079, 95.719694542143202, 99.330612454787428, 102.968198614513810, 106.631760260643450, 110.320639714757390, 114.034211781461690, 117.771881399745060, 121.533081515438640, 125.317271149356880, 129.123933639127240, 132.952575035616290, 136.802722637326350, 140.673923648234250, 144.565743946344900, 148.477766951773020, 152.409592584497350, 156.360836303078800, 160.331128216630930, 164.320112263195170, 168.327445448427650, 172.352797139162820, 176.395848406997370, 180.456291417543780, 184.533828861449510, 188.628173423671600, 192.739047287844900, 196.866181672889980, 201.009316399281570, 205.168199482641200, 209.342586752536820, 213.532241494563270, 217.736934113954250, 221.956441819130360, 226.190548323727570, 230.439043565776930, 234.701723442818260, 238.978389561834350, 243.268849002982730, 247.572914096186910, 251.890402209723190, 256.221135550009480, 260.564940971863220, 264.921649798552780, 269.291097651019810, 273.673124285693690, 278.067573440366120, 282.474292687630400, 286.893133295426990, 291.323950094270290, 295.766601350760600, 300.220948647014100, 304.686856765668720, 309.164193580146900, 313.652829949878990, 318.152639620209300, 322.663499126726210, 327.185287703775200, 331.717887196928470, 336.261181979198450, 340.815058870798960, 345.379407062266860, 349.954118040770250, 354.539085519440790, 359.134205369575340, 363.739375555563470, 368.354496072404690, 372.979468885689020, 377.614197873918670, 382.258588773060010, 386.912549123217560, 391.575988217329610, 396.248817051791490, 400.930948278915760, 405.622296161144900, 410.322776526937280, 415.032306728249580, 419.750805599544780, 424.478193418257090, 429.214391866651570, 433.959323995014870, 438.712914186121170, 443.475088120918940, 448.245772745384610, 453.024896238496130, 457.812387981278110, 462.608178526874890, 467.412199571608080, 472.224383926980520, 477.044665492585580, 481.872979229887900, 486.709261136839360, 491.553448223298010, 496.405478487217580, 501.265290891579240, 506.132825342034830, 511.008022665236070, 515.890824587822520, 520.781173716044240, 525.679013515995050, 530.584288294433580, 535.496943180169520, 540.416924105997740, 545.344177791154950, 550.278651724285620, 555.220294146894960, 560.169054037273100, 565.124881094874350, 570.087725725134190, 575.057539024710200, 580.034272767130800, 585.017879388839220, 590.008311975617860, 595.005524249382010, 600.009470555327430, 605.020105849423770, 610.037385686238740, 615.061266207084940, 620.091704128477430, 625.128656730891070, 630.172081847810200, 635.221937855059760, 640.278183660408100, 645.340778693435030, 650.409682895655240, 655.484856710889060, 660.566261075873510, 665.653857411105950, 670.747607611912710, 675.847474039736880, 680.953419513637530, 686.065407301994010, 691.183401114410800, 696.307365093814040, 701.437263808737160, 706.573062245787470, 711.714725802289990, 716.862220279103440, 722.015511873601330, 727.174567172815840, 732.339353146739310, 737.509837141777440, 742.685986874351220, 747.867770424643370, 753.055156230484160, 758.248113081374300, 763.446610112640200, 768.650616799717000, 773.860102952558460, 779.075038710167410, 784.295394535245690, 789.521141208958970, 794.752249825813460, 799.988691788643450, 805.230438803703120, 810.477462875863580, 815.729736303910160, 820.987231675937890, 826.249921864842800, 831.517780023906310, 836.790779582469900, 842.068894241700490, 847.352097970438420, 852.640365001133090, 857.933669825857460, 863.231987192405430, 868.535292100464630, 873.843559797865740, 879.156765776907600, 884.474885770751830, 889.797895749890240, 895.125771918679900, 900.458490711945270, 905.796028791646340, 911.138363043611210, 916.485470574328820, 921.837328707804890, 927.193914982476710, 932.555207148186240, 937.921183163208070, 943.291821191335660, 948.667099599019820, 954.046996952560450, 959.431492015349480, 964.820563745165940, 970.214191291518320, 975.612353993036210, 981.015031374908400, 986.422203146368590, 991.833849198223450, 997.249949600427840, 1002.670484599700300, 1008.095434617181700, 1013.524780246136200, 1018.958502249690200, 1024.396581558613400, 1029.838999269135500, 1035.285736640801600, 1040.736775094367400, 1046.192096209724900, 1051.651681723869200, 1057.115513528895000, 1062.583573670030100, 1068.055844343701400, 1073.532307895632800, 1079.012946818975000, 1084.497743752465600, 1089.986681478622400, 1095.479742921962700, 1100.976911147256000, 1106.478169357800900, 1111.983500893733000, 1117.492889230361000, 1123.006317976526100, 1128.523770872990800, 1134.045231790853000, 1139.570684729984800, 1145.100113817496100, 1150.633503306223700, 1156.170837573242400, }; return lf[n]; } } #endif //__FactorialLog__ runs three times as fast on Mac as it does on Windows. You can try it e.g. with these inputs: > lik2altF(p=c(.3,.3,.4),k=10000,eps=1000)
boost::unit_test::data::random(-FLT_MAX, FLT_MAX) only generates +Infinity
I'm using boost::unit_test::data::random (with boost-1.61.0_1 installed) and I'm having some issues generating random floats using boost::unit_test::data::random(-FLT_MAX,FLT_MAX). It only seems to generate +Infinity. Through trial and error, I found that I could generate random floats in [-FLT_MAX,-FLT_MAX * 2^-25) and [-FLT_MAX * 2^-25, FLT_MAX) separately, which gives me a possible work-around, but I'm still curious as to what I'm doing wrong trying to generate floats in [-FLT_MAX, FLT_MAX). #define BOOST_TEST_MODULE example #include <boost/test/included/unit_test.hpp> #include <boost/test/data/monomorphic.hpp> #include <boost/test/data/test_case.hpp> #include <cfloat> inline void in_range(float const & min, float const & x, float const & max) { BOOST_TEST_REQUIRE(min <= x); BOOST_TEST_REQUIRE(x < max); } static constexpr float lo{-FLT_MAX / (1024.0 * 1024.0 * 32.0)}; // this test passes namespace bdata = boost::unit_test::data; BOOST_DATA_TEST_CASE(low_floats, bdata::random(-FLT_MAX, lo) ^ bdata::xrange(100), x, index) { #pragma unused(index) in_range(-FLT_MAX, x, lo); } // this test passes BOOST_DATA_TEST_CASE(high_floats, bdata::random(lo, FLT_MAX) ^ bdata::xrange(100), x, index) { #pragma unused(index) in_range(lo, x, FLT_MAX); } // this test fails BOOST_DATA_TEST_CASE(all_floats, bdata::random(-FLT_MAX, FLT_MAX) ^ bdata::xrange(100), x, index) { #pragma unused(index) in_range(-FLT_MAX, x, FLT_MAX); } results in: $ ./example Running 300 test cases... example.cpp:9: fatal error: in "all_floats": critical check x < max has failed [inf >= 3.40282347e+38] Failure occurred in a following context: x = inf; index = 0; ... example.cpp:9: fatal error: in "all_floats": critical check x < max has failed [inf >= 3.40282347e+38] Failure occurred in a following context: x = inf; index = 99; *** 100 failures are detected in the test module "example"
boost::unit_test::data::random uses std::uniform_real_distribution, which has the requirement: Requires: a ≤ b and b - a ≤ numeric_limits<RealType>::max(). In your case, b - a is 2 * FLT_MAX, which is +Inf in float. You could use your workaround, or you could generate in double and cast back to float.
Unresolved External symbol, C++, VS 2015 [duplicate]
This question already has answers here: What is an undefined reference/unresolved external symbol error and how do I fix it? (39 answers) Closed 7 years ago. I have read the model answer on unresolved externals and found it to be incredibly useful and have got it down to just these last two stubborn errors which are beyond me. I've attached all the code just in case, if you would like to see the headers or anything else please say. // Stokes theory calculations #include <math.h> #include <stdio.h> #include <process.h> #include <string.h> #include <conio.h> #include <stdlib.h> #define ANSI #include "../Allocation.h" #define Main #define Char char #define Int int #define Double double #include "../Allocation.h" #include "../Headers.h" Double kH, skd, ckd, tkd, SU; Double ss[6], t[6], C[6], D[6], E[6], e[6]; // Main program int main(void) { int i, Read_data(void), iter, Iter_limit = 40; double F(double), kd1, kd2, kFM, omega, delta, accuracy = 1.e-6, F1, F2, Fd; void CDE(double), AB(void), Output(void); Input1 = fopen("../Data.dat", "r"); strcpy(Convergence_file, "../Convergence.dat"); strcpy(Points_file, "../Points.dat"); monitor = stdout; strcpy(Theory, "Stokes"); strcpy(Diagname, "../Catalogue.res"); Read_data(); z = dvector(0, 2 * n + 10); Y = dvector(0, n); B = dvector(0, n); coeff = dvector(0, n); Tanh = dvector(0, n); monitor = stdout; H = MaxH; iff(Case, Wavelength) { kd = 2. * pi / L; kH = kd * H; CDE(kd); } // If period is specified, solve dispersion relation using secant method // Until February 2015 the bisection method was used for this. // I found that in an extreme case (large current) the bracketting // of the solution was not correct, and the program failed, // without printing out a proper error message. iff(Case, Period) { fprintf(monitor, "\n# Period has been specified.\n# Now solving for L/d iteratively, printing to check convergence\n\n"); omega = 2 * pi / T; // Fenton & McKee for initial estimate kFM = omega*omega*pow(1 / tanh(pow(omega, 1.5)), (2. / 3.)); kd1 = kFM; kd2 = kFM*1.01; CDE(kd2); F2 = F(kd2); for (iter = 1; iter <= Iter_limit; ++iter) { CDE(kd1); F1 = F(kd1); Fd = (F2 - F1) / (kd2 - kd1); delta = F1 / Fd; kd2 = kd1; kd1 = kd1 - delta; fprintf(monitor, "%8.4f\n", 2 * pi / kd1); if (fabs(delta / kd1) < accuracy) break; F2 = F1; if (iter >= Iter_limit) { printf("\n\nSecant for solution of wavenumber has not converged"); printf("\nContact John Fenton johndfenton#gmail.com"); getch(); exit(1); } } kd = kd1; kH = kd * H; } z[1] = kd; z[2] = kH; SU = 0.5*kH / pow(kd, 3); printf("\n# Stokes-Ursell no.: %7.3f", SU); if (SU > 0.5) printf(" > 1/2. Results are unreliable"); else printf(" < 1/2, Stokes theory should be valid"); e[1] = 0.5 * kH; for (i = 2; i <= n; i++) e[i] = e[i - 1] * e[1]; // Calculate coefficients AB(); z[7] = C[0] + e[2] * C[2] + e[4] * C[4]; // ubar z[8] = -e[2] * D[2] - e[4] * D[4]; z[9] = 0.5 * C[0] * C[0] + e[2] * E[2] + e[4] * E[4]; if (Current_criterion == 1) { z[5] = Current*sqrt(kd); z[4] = z[7] + z[5]; z[6] = z[4] + z[8] / kd - z[7]; } if (Current_criterion == 2) { z[6] = Current*sqrt(kd); z[4] = z[6] - z[8] / kd + z[7]; z[5] = z[4] - z[7]; } iff(Case, Wavelength) z[3] = 2 * pi / z[4]; iff(Case, Period) z[3] = T * sqrt(kd); for (i = 1; i <= n; i++) Tanh[i] = tanh(i*z[1]); // Output results and picture of wave Solution = fopen("Solution.res", "w"); Elevation = fopen("Surface.res", "w"); Flowfield = fopen("Flowfield.res", "w"); Output(); fflush(NULL); printf("\nTouch key to continue "); getch(); printf("\n\nFinished\n"); } I get these error messages: LNK2019 unresolved external symbol "void __cdecl Output(void)" (?Output##YAXXZ) referenced in function _main Stokes LNK2019 unresolved external symbol "double * __cdecl dvector(long,long)" (?dvector##YAPANJJ#Z) referenced in function _main Stokes I have checked everything on the list given to try and find where these errors are coming from and have whittled it down to just these two left. Things tried so far: Checking basic syntax Checking and ensuring correct headers are available Looked at external dependencies (but i don't really know what i'm doing here) Looked at the solutions tried here but none worked. Any help would be greatly appreciated!
Unresolved External Symbols means that your code can't find the definition of the method or class you're trying to use. This usually means one (or more) of several things has happened: You didn't point to the directory that contains the object library (.lib on Windows, .so on Linux) for the library you're using You forgot to specify in the linker that you need to use the library in question (that list of kernel32.lib, user32.lib,... needs to include the name of the library you're using) The library you're trying to use is meant to be linked statically and you're trying to link it dynamically (or vise-versa). Check the documentation for the library and make sure you're using the correct form. Some libraries expect extra #define statements to be included or omitted depending on whether you're linking statically or dynamically. You changed build options and forgot to update the libraries in the other build options. If you're set to Release or x64, check to make sure that your build options are set correctly in all environments. EDIT: I'll also corroborate what the others said in the original comment thread: make sure that the code that defines Output() and dvector() are being linked to by your code. There's a few other options, but those are the big ones that happen most frequently.
How to give different implementation for ARM in NaCl
I'm trying to implement in log2 for integer in C++ in NaCl, I used the asm way as the nacl documentation said it's the only permitted way to write ASM, which is as follow int log2(int x) { int ret; asm ( "\tbsr %1, %0\n" : "=r"(ret) : "r" (x) ); return y; } , but turns out ARM does not support this instruction, so I want to write another version for ARM only. Is there any way to do that? Btw, I found one solution to this particular function already, which is by using static inline int log2(int x) { return sizeof(int) * 8 - __builtin_clz(x) - 1; } mentioned in another post, so my question is purely about the way to give different implementation for different CPU Architecture. ( I've tried #ifdef ARCH_ARM, but it didn't work)
chromium native client use NACL_BUILD_ARCH to discriminate between x86, arm and mips : https://chromium.googlesource.com/chromium/chromium/+/trunk/components/nacl/nacl_defines.gypi (NB: you can't use it if you're using PNaCl) ex: (from here ) #elif NACL_ARCH(NACL_BUILD_ARCH) == NACL_x86 && NACL_BUILD_SUBARCH == 64 if (regs->prog_ctr >= NaClUserToSys(nap, NACL_TRAMPOLINE_START) && regs->prog_ctr < NaClUserToSys(nap, NACL_TRAMPOLINE_END)) { *unwind_case = NACL_UNWIND_in_trampoline; regs->stack_ptr += 8; /* Pop user return address */ return 1; } #elif NACL_ARCH(NACL_BUILD_ARCH) == NACL_arm if (regs->prog_ctr >= NACL_TRAMPOLINE_START && regs->prog_ctr < NACL_TRAMPOLINE_END) { *unwind_case = NACL_UNWIND_in_trampoline; regs->prog_ctr = NaClSandboxCodeAddr(nap, regs->lr); return 1; } #elif NACL_ARCH(NACL_BUILD_ARCH) == NACL_mips if (regs->prog_ctr >= NACL_TRAMPOLINE_START && regs->prog_ctr < NACL_TRAMPOLINE_END) { *unwind_case = NACL_UNWIND_in_trampoline; regs->prog_ctr = NaClSandboxCodeAddr(nap, regs->return_addr); return 1; } #endif Also, bsr has an equivalent in arm if I recall correctly : http://fgiesen.wordpress.com/2013/10/18/bit-scanning-equivalencies/
Random generator test. Where is error?
Strange tests behaviour. I have class that generate random values. std::random_device RandomProvider::rd; std::mt19937 RandomProvider::rnb(RandomProvider::rd()); #define mainDataType unsigned int mainDataType RandomProvider::GetNextValue(mainDataType upperLimit) { static std::uniform_int_distribution<int> uniform_dist(1, upperLimit); return uniform_dist(rnb); } And unit-test that test it's behavior. TEST_METHOD(TestRandomNumber) { CreateOper(RandomNumber); int one = 0, two = 0, three = 0, unlim = 0; const int cycles = 10000; for (int i = 0; i < cycles; i++) { mainDataType res = RandomProvider::GetNextValue(3); if (res == 1) one++; if (res == 2) two++; if (res == 3) three++; } double onePerc = one / (double)cycles; double twoPerc = two / (double)cycles; double threePerc = three / (double)cycles; Assert::IsTrue(onePerc > 0.20 && onePerc < 0.40); Assert::IsTrue(twoPerc > 0.20 && twoPerc < 0.40); Assert::IsTrue(threePerc > 0.20 && threePerc < 0.40); } Test passed all-times in debug and if i chose it and Run only it. But it fails all times when i run it with other tests. I added debug output to text file and got unreal values onePerc = 0.0556, twoPerc= 0.0474 and threePerc = 0.0526... What is going on here? (i am using VS2013 RC)
Since you use a static uniform_int_distribution the first time you call GetNextValue the max limit is set, never being changed in any subsequent call. Presumably in the test case you mentioned, your first call to GetNextValue had a different value than 3. Judging from the values returned it looks like probably either 19 or 20 was used in the first such call.