I am attempting to get my array wrapper class to compile, but I'm new to c++. I keep getting a series of relating to the last function:
Line 81
Invalid Use of template-name 'warray' without an arugment list
Line 81
ISO C++ forbids declaration of 'parameter' with not type
line 81
error expected ',' or '...' before < town
line 83
rhs was not declared in this scope
and finally, line 86
rhs was not declared in this scope
This function is so confusing, and I think I implemented it all correct.
IDK! Please help!
#ifndef WARRAY
#define WARRAY
#include <iostream>
#include <stdexcept>
template <typename T>
class warray {
private:
unsigned int theSize;
T* theData;
public:
//will default to a size of 10 - bump to 10 if below
warray(unsigned int size = 10){
if(size < 10){
size = 10;
}
theSize = size;
theData = new T[theSize];
}
//copy
warray(const warray &rhs):theSize(rhs.theSize){
theData = new T[theSize];
//use assignment*this = rhs;
*this = rhs;
}
//assignment
warray & operator=(const warray &rhs){
//only resize array if lhs < than rhs//this also remedies
if(theSize < rhs.theSize){
delete [] theData;
theData = new T[rhs.theSize];
}
theSize = rhs.theSize;
for(unsigned int i = 0; i < theSize; ++i){
(*this);
}
return *this;
}
//destrctor
~warray(){
delete [] theData;
}
//operator+ will concatenate two arrays should be const
warray operator+(const warray &rhs) const{
warray toRet(theSize + rhs.size);
for(unsigned int i = 0; i < theSize; ++i){
toRet[i] = (*this)[i];
}
for(unsigned int i = 0; i < theSize; ++i){
toRet[i+theSize] = rhs[i];
}
return warray();
}
//operator[unsigned T index]
//will index and allow access to requested element
// - two versions, const and non-const
T operator[](unsigned int index) const{
if(index >= theSize){
throw std::out_of_range ("in operator [] ");
}
return theData[theSize];
}
//size
unsigned int size() const{
return theSize;
}
};
std::ostream &operator<< (std::ostream &os, const warray&<T> rhs){
os << "[ ";
for(unsigned i = 0; i < rhs.size()-1; ++i){
os << rhs[i] << " , ";
}
os << rhs[rhs.size() - 1] << " ]";
return os;
}
#endif
This line:
T *theData [theSize];
attempts to declare an array of pointers of size theSize, but theSize is not a constant and is not known at compile time. You also don't want an array of pointers to T, you want a pointer to an array of T.
change it to
T *theData;
There are other problems with your code. e.g. your << operator needs to be a template and I have no idea what (*this) is trying to achieve.
Note: I am assuming you are doing this for learning purposes and can't simply use a vector.
Edit: The "Invalid Use of template-name 'warray' without an argument list" error is caused by the << operator not having template<typename T> in front of it. It needs this to make it a templated function.
You have marked this as C++.
I recommend you change from:
class warray {
private:
unsigned int theSize;
T* theData;
And perhaps try:
class warray {
private:
std::vector<T> theData;
What you call "theSize" is now available as theData.size().
To append values of T, use push_back().
If you desire, you can allocate a start size using theData.reserve(size), but not necessary.
Remove
delete [] theData;
because you no longer 'new'd it in the ctor.
The vector's dtor will be called automagically when your warray instance is dtor'd.
Can't define theData this way:
T *theData[theSize];
defining the size of a static array with a variable is non-standard. Some compilers allow it, some don't. Best practice is not to do it so you don't get tripped up. As it is, the Size has no defined value at that point so even if your compiler did that trick, there is a ton of ka-boom potential.
Fortunately, based on the rest of the code, you don't need to. You keep defining the size of the array yourself, so:
T *theData;
Should do you just fine.
Related
I have written a DynamicArray class in the past analogous to vector which worked.
I have also written as a demo, one where the performance is bad because it has only length and pointer, and has to grow every time. Adding n elements is therefore O(n^2).
The purpose of this code was just to demonstrate placement new. The code works for types that do not use dynamic memory, but with string it crashes and -fsanitize=address shows that the memory allocated in the addEnd() method is being used in printing. I commented out removeEnd, the code is only adding elements, then printing them. I'm just not seeing the bug. can anyone identify what is wrong?
#include <iostream>
#include <string>
#include <memory.h>
using namespace std;
template<typename T>
class BadGrowArray {
private:
uint32_t size;
T* data;
public:
BadGrowArray() : size(0), data(nullptr) {}
~BadGrowArray() {
for (uint32_t i = 0; i < size; i++)
data[i].~T();
delete [] (char*)data;
}
BadGrowArray(const BadGrowArray& orig) : size(orig.size), data((T*)new char[orig.size*sizeof(T)]) {
for (int i = 0; i < size; i++)
new (data + i) T(orig.data[i]);
}
BadGrowArray& operator =(BadGrowArray copy) {
size = copy.size;
swap(data, copy.data);
return *this;
}
void* operator new(size_t sz, void* p) {
return p;
}
void addEnd(const T& v) {
char* old = (char*)data;
data = (T*)new char[(size+1)*sizeof(T)];
memcpy(data, old, size*sizeof(T));
new (data+size) T(v); // call copy constructor placing object at data[size]
size++;
delete [] (char*)old;
}
void removeEnd() {
const char* old = (char*)data;
size--;
data[size].~T();
data = (T*)new char[size*sizeof(T)];
memcpy(data, old, size*sizeof(T));
delete [] (char*)old;
}
friend ostream& operator <<(ostream& s, const BadGrowArray& list) {
for (int i = 0; i < list.size; i++)
s << list.data[i] << ' ';
return s;
}
};
class Elephant {
private:
string name;
public:
Elephant() : name("Fred") {}
Elephant(const string& name) {}
};
int main() {
BadGrowArray<int> a;
for (int i = 0; i < 10; i++)
a.addEnd(i);
for (int i = 0; i < 9; i++)
a.removeEnd();
// should have 0
cout << a << '\n';
BadGrowArray<string> b;
b.addEnd("hello");
string s[] = { "test", "this", "now" };
for (int i = 0; i < sizeof(s)/sizeof(string); i++)
b.addEnd(s[i]);
// b.removeEnd();
cout << b << '\n';
BadGrowArray<string> c = b; // test copy constructor
c.removeEnd();
c = b; // test operator =
}
The use of memcpy is valid only for trivially copyable types.
The compiler may even warn you on that, with something like:
warning: memcpy(data, old, size * sizeof(T));
writing to an object of non-trivially copyable type 'class string'
use copy-assignment or copy-initialization instead [-Wclass-memaccess]
Note that your code do not move the objects, but rather memcpy them, which means that if they have for example internal pointers that point to a position inside the object, then your mem-copied object will still point to the old location.
Trivially Copyable types wouldn't have internal pointers that point to a position in the object itself (or similar issues that may prevent mem-copying), otherwise the type must take care of them in copying and implement proper copy and assignemnt operations, which would make it non-trivially copyable.
To fix your addEnd method to do proper copying, for non-trivially copyable types, if you use C++17 you may add to your code an if-constexpr like this:
if constexpr(std::is_trivially_copyable_v<T>) {
memcpy(data, old, size * sizeof(T));
}
else {
for(std::size_t i = 0; i < size; ++i) {
new (data + i) T(std::move_if_noexcept(old[i]));
}
}
In case you are with C++14 or before, two versions of copying with SFINAE would be needed.
Note that other parts of the code may also require some fixes.
I can't seem to overload the << operator correctly. This is the code I have so far and the instructions for my assignment will be down below. If you point out other mistakes I made that would be kind, BUT my questions is how do I correctly overload my << operator in my case?
INTCOLLECTION.h:
#ifndef INTCOLLECTION_H
#define INTCOLLECTION_H
// Allocate memory in chunks of ints of this size.
const int CHUNK_SIZE = 5;
class IntCollection
{
private:
// The number of ints currently stored in the int
int size;
// the total number of elements available for storage
// in the data array
int capacity;
// A pointer to the dynamically allocated data array
int* data;
// a private member function to allocate more memory
// if necessary
void addCapacity();
public:
// Constructor
IntCollection();
// Destructor
~IntCollection();
// Copy constructor:
IntCollection(const IntCollection &c);
void add(int value);
int get(int index);
int getSize();
IntCollection& operator=(const IntCollection &c);
bool operator==(const IntCollection &c);
IntCollection& operator<<(int value);
};
#endif
INTCOLLECTION.cpp:
#include "IntCollection.h"
#include <iostream>
#include <cstdlib>
using namespace std;
IntCollection::IntCollection()
{
// Initialize member data to reflect an empty
// IntCollection
size = capacity = 0;
data = NULL;
}
IntCollection::~IntCollection()
{
delete [] data;
}
IntCollection::IntCollection(const IntCollection &c)
{
size = c.size;
capacity = c.capacity;
data = c.data;
for(int i = 0; i < c.size; i++)
{
data[i] = c.data[i];
}
}
void IntCollection::addCapacity()
{
// Create a new, bigger buffer, copy the current data to
// it, delete the old buffer, and point our data
// pointer to the new buffer
int *newData;
data = new int[capacity];
capacity += CHUNK_SIZE;
newData = new int[capacity];
for(int i = 0; i < size; i++)
{
newData[i] = data[i];
delete [] data;
data = newData;
}
}
void IntCollection::add(int value)
{
//first, allocate more memory if we need to
if(size == capacity)
{
addCapacity();
}
//Now, add the data to our array and increment size
data[size++] = value;
}
int IntCollection::get(int index)
{
if (index < 0 || index >= size)
{
cout << "ERROR: get() trying to access index out of range.\n";
exit(1);
}
return data[index];
}
int IntCollection::getSize()
{
return size;
}
IntCollection& IntCollection::operator=(const IntCollection &c)
{
size = c.size;
capacity = c.capacity;
data = c.data;
return *this;
}
bool IntCollection::operator==(const IntCollection &c)
{
if((size == c.size) && (capacity == c.capacity))
{
for(int m = 0; m < size; m++)
{
if(data[m] == c.data[m])
{
continue;
}
else
{
return false;
}
}
}
return true;
}
IntCollection& IntCollection::operator<<(int value)
{
return value; // <-- THIS IS WHERE I GET LOST!
/* I also tried changing the parameters to
(IntCollection &b, int value) to return b
but my teacher wants only one parameter
and it wasn't working that way either. */
}
INSTRUCTIONS:
For this assignment you will add a copy constructor, a destructor, and three overloaded operators to the IntCollection class. In the design diagram below, the black member functions represent code that has already been implemented. You will be implementing the green items. Each item that you will be adding to the class is described below the diagram.
Private:
int size // the number of ints currently stored in the int collection
int capacity // total number of elements available in data array
int* data // a pointer to the dynamically allocated data array
void addCapacity(); // private function to allocate more memory if necessary
Public:
IntCollection()
~IntCollection()
IntCollection(const IntCollection &c)
void add(int value)
int get(int index)
int getSize()
IntCollection& operator=(const IntCollection &c)
bool operator==(const IntCollection &c)
IntCollection& operator<<(int value)
The Copy Constructor. The copy constructor should perform a deep copy of the argument object, i.e. it should construct an IntCollection with the same size and capacity as the argument, with its own complete copy of the argument's data array.
The Assignment Operator (=). The assignment operator should also perform a deep copy of the argument object. It must return itself (or more efficiently, a reference to itself) in order to support multiple assignments on the same line, e.g. a = b = c. If you implement your assignment operator first it could be used in the copy constructor, but this is not a requirement.
The Is Equals operator (==). The "is equals" operator should return true if the argument object has the same size as the receiving object, and the values in both objects’ data arrays are identical.
The insertion operator (<<). The insertion operator should add the int parameter into the receiving IntCollection. The functionality is exactly the same as the add() function, i.e. add ints to the collection. Note, however, that this function must return a reference to itself in order to support multiple insertions on the same line, e.g. c << 45 << -210. Unlike the assignment operator, this return must be done by reference, because each insertion actually modifies the IntCollection object, and insertion is done from left to right.
The destructor. Function add() calls addCapacity() to allocate memory when it needs more room. Nowhere in this program is the memory deallocated with delete [], which means we have a memory leak! Add a destructor which correctly handles this.
addCapacity. Note that addCapacity() is a private member function. What happens if you try to call it from outside the class, i.e. by adding the line below to main()?
You need to return *this, i.e. the object being operated upon. Returning "by reference" has the same syntax as returning "by value"; the only difference is in the addition of & to the function declaration, which is already provided.
Try this:
IntCollection& IntCollection::operator<<(int value)
{
add(value);
return *this;
}
Consider the task of writing an indexable class which automatically synchronizes its state with some external data-store (e.g. a file). In order to do this the class would need to be made aware of changes to the indexed value which might occur. Unfortunately the usual approach to overloading operator[] does not allow for this, for example...
Type& operator[](int index)
{
assert(index >=0 && index < size);
return state[index];
}
I there any way to distinguish between a value being accessed and a value being modified?
Type a = myIndexable[2]; //Access
myIndexable[3] = a; //Modification
Both of these cases occur after the function has returned. Is there some other approach to overloading operator[] which would perhaps make more sense?
From the operator[] you can only really tell access.
Even if the external entity uses the non cost version this does not mean that a write will take place rather that it could take place.
As such What you need to do is return an object that can detect modification.
The best way to do this is to wrap the object with a class that overrides the operator=. This wrapper can then inform the store when the object has been updated. You would also want to override the operator Type (cast) so that a const version of the object can be retrieved for read accesses.
Then we could do something like this:
class WriteCheck;
class Store
{
public:
Type const& operator[](int index) const
{
return state[index];
}
WriteCheck operator[](int index);
void stateUpdate(int index)
{
// Called when a particular index has been updated.
}
// Stuff
};
class WriteCheck
{
Store& store;
Type& object;
int index;
public: WriteCheck(Store& s, Type& o, int i): store(s), object(o), index(i) {}
// When assignment is done assign
// Then inform the store.
WriteCheck& operator=(Type const& rhs)
{
object = rhs;
store.stateUpdate(index);
}
// Still allow the base object to be read
// From within this wrapper.
operator Type const&()
{
return object;
}
};
WriteCheck Store::operator[](int index)
{
return WriteCheck(*this, state[index], index);
}
An simpler alternative is:
Rather than provide the operator[] you provide a specific set method on the store object and only provide read access through the operator[]
You can have (the non-const) operator[] return a proxy object that keeps a reference or pointer to the container, and in which operator= signals the container of the update.
(The idea of using const vs non-const operator[] is a red herring... you may know that you've just given away non-const access to the object, but you don't know if that access is still being used for a read or a write, when that write completes, or have any mechanism for updating the container thereafter.)
Another elegant (IMHO) solution...
Actually it is based on the fact that the const overload is called only when used on const object.
Lets first create two [] overloads - as it is required, but using different locations:
Type& operator[](int index)
{
assert(index >=0 && index < size);
return stateWrite[index];
}
const Type& operator[](int index) const
{
assert(index >=0 && index < size);
return stateRead[index];
}
Now you should create a shadow reference of your object when you need to "read" it as follows:
const Indexable& myIndexableRead = myIndexable; // create the shadow
Type a = myIndexableRead[2]; //Access
myIndexable[3] = a; //Modification
Creating this shadow declaration does not actually create anything in the memory. It just creates another name for your object with "const" access. It is all resolved at the compilation stage (including usage of const overload) and does not affect anything in runtime - neither memory nor performance.
And the bottom line - it is much more elegant (IMHO) than creating any assignment proxies, etc. I must state that the statement "From the operator[] you can only really tell access" is incorrect. According to the C++ Standard, returning dynamically allocatted object or global variable by reference is ultimate way to allow its direct modification, including [] overload case.
Following code has been tested:
#include <iostream>
using namespace std;
class SafeIntArray {
int* numbers;
int size;
static const int externalValue = 50;
public:
SafeIntArray( unsigned int size = 20 ) {
this->size = size;
numbers = new int[size];
}
~SafeIntArray() {
delete[] numbers;
}
const int& operator[]( const unsigned int i ) const {
if ( i < size )
return numbers[i];
else
return externalValue;
}
int& operator[]( const unsigned int i ) {
if ( i < size )
return numbers[i];
else
return *numbers;
}
unsigned int getSize() { return size; }
};
int main() {
SafeIntArray arr;
const SafeIntArray& arr_0 = arr;
int size = arr.getSize();
for ( int i = 0; i <= size ; i++ )
arr[i] = i;
for ( int i = 0; i <= size ; i++ ) {
cout << arr_0[i] << ' ';
}
cout << endl;
return 0;
}
And the results are:
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 50
Return a proxy object which will have:
operator=(Type const &) overloaded for writes
operator Type() for reads
in the access example you give you can get a distinction by using a const version:
const Type& operator [] ( int index ) const;
on a sidenote, using size_t as index gets rid of the need for checking if index >= 0
#include "stdafx.h"
#include <iostream>
template<typename T>
class MyVector
{
T* _Elem; // a pointer to the elements
int _Size; // the size
public:
// constructor
MyVector(int _size):_Size(_size), _Elem(new T[_size])
{
// Initialize the elemets
for( int i=0; i< _size; ++i )
_Elem[i] = 0.0;
}
// destructor to cleanup the mess
~MyVector(){ delete []_Elem; }
public:
// the size of MyVector
int Size() const
{
return _Size;
}
// overload subscript operator
T& operator[]( int i )
{
return _Elem[i];
}
};
int _tmain(int argc, _TCHAR* argv[])
{
MyVector<int> vec(10);
vec[0] =10;
vec[1] =20;
vec[2] =30;
vec[3] =40;
vec[4] =50;
std::cout<<"Print vector Element "<<std::endl;
for (int i = 0; i < vec.Size(); i++)
{
std::cout<<"Vec["<<i<<"] = "<<vec[i]<<std::endl;
}
return 0;
}
Consider the task of writing an indexable class which automatically synchronizes its state with some external data-store (e.g. a file). In order to do this the class would need to be made aware of changes to the indexed value which might occur. Unfortunately the usual approach to overloading operator[] does not allow for this, for example...
Type& operator[](int index)
{
assert(index >=0 && index < size);
return state[index];
}
I there any way to distinguish between a value being accessed and a value being modified?
Type a = myIndexable[2]; //Access
myIndexable[3] = a; //Modification
Both of these cases occur after the function has returned. Is there some other approach to overloading operator[] which would perhaps make more sense?
From the operator[] you can only really tell access.
Even if the external entity uses the non cost version this does not mean that a write will take place rather that it could take place.
As such What you need to do is return an object that can detect modification.
The best way to do this is to wrap the object with a class that overrides the operator=. This wrapper can then inform the store when the object has been updated. You would also want to override the operator Type (cast) so that a const version of the object can be retrieved for read accesses.
Then we could do something like this:
class WriteCheck;
class Store
{
public:
Type const& operator[](int index) const
{
return state[index];
}
WriteCheck operator[](int index);
void stateUpdate(int index)
{
// Called when a particular index has been updated.
}
// Stuff
};
class WriteCheck
{
Store& store;
Type& object;
int index;
public: WriteCheck(Store& s, Type& o, int i): store(s), object(o), index(i) {}
// When assignment is done assign
// Then inform the store.
WriteCheck& operator=(Type const& rhs)
{
object = rhs;
store.stateUpdate(index);
}
// Still allow the base object to be read
// From within this wrapper.
operator Type const&()
{
return object;
}
};
WriteCheck Store::operator[](int index)
{
return WriteCheck(*this, state[index], index);
}
An simpler alternative is:
Rather than provide the operator[] you provide a specific set method on the store object and only provide read access through the operator[]
You can have (the non-const) operator[] return a proxy object that keeps a reference or pointer to the container, and in which operator= signals the container of the update.
(The idea of using const vs non-const operator[] is a red herring... you may know that you've just given away non-const access to the object, but you don't know if that access is still being used for a read or a write, when that write completes, or have any mechanism for updating the container thereafter.)
Another elegant (IMHO) solution...
Actually it is based on the fact that the const overload is called only when used on const object.
Lets first create two [] overloads - as it is required, but using different locations:
Type& operator[](int index)
{
assert(index >=0 && index < size);
return stateWrite[index];
}
const Type& operator[](int index) const
{
assert(index >=0 && index < size);
return stateRead[index];
}
Now you should create a shadow reference of your object when you need to "read" it as follows:
const Indexable& myIndexableRead = myIndexable; // create the shadow
Type a = myIndexableRead[2]; //Access
myIndexable[3] = a; //Modification
Creating this shadow declaration does not actually create anything in the memory. It just creates another name for your object with "const" access. It is all resolved at the compilation stage (including usage of const overload) and does not affect anything in runtime - neither memory nor performance.
And the bottom line - it is much more elegant (IMHO) than creating any assignment proxies, etc. I must state that the statement "From the operator[] you can only really tell access" is incorrect. According to the C++ Standard, returning dynamically allocatted object or global variable by reference is ultimate way to allow its direct modification, including [] overload case.
Following code has been tested:
#include <iostream>
using namespace std;
class SafeIntArray {
int* numbers;
int size;
static const int externalValue = 50;
public:
SafeIntArray( unsigned int size = 20 ) {
this->size = size;
numbers = new int[size];
}
~SafeIntArray() {
delete[] numbers;
}
const int& operator[]( const unsigned int i ) const {
if ( i < size )
return numbers[i];
else
return externalValue;
}
int& operator[]( const unsigned int i ) {
if ( i < size )
return numbers[i];
else
return *numbers;
}
unsigned int getSize() { return size; }
};
int main() {
SafeIntArray arr;
const SafeIntArray& arr_0 = arr;
int size = arr.getSize();
for ( int i = 0; i <= size ; i++ )
arr[i] = i;
for ( int i = 0; i <= size ; i++ ) {
cout << arr_0[i] << ' ';
}
cout << endl;
return 0;
}
And the results are:
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 50
Return a proxy object which will have:
operator=(Type const &) overloaded for writes
operator Type() for reads
in the access example you give you can get a distinction by using a const version:
const Type& operator [] ( int index ) const;
on a sidenote, using size_t as index gets rid of the need for checking if index >= 0
#include "stdafx.h"
#include <iostream>
template<typename T>
class MyVector
{
T* _Elem; // a pointer to the elements
int _Size; // the size
public:
// constructor
MyVector(int _size):_Size(_size), _Elem(new T[_size])
{
// Initialize the elemets
for( int i=0; i< _size; ++i )
_Elem[i] = 0.0;
}
// destructor to cleanup the mess
~MyVector(){ delete []_Elem; }
public:
// the size of MyVector
int Size() const
{
return _Size;
}
// overload subscript operator
T& operator[]( int i )
{
return _Elem[i];
}
};
int _tmain(int argc, _TCHAR* argv[])
{
MyVector<int> vec(10);
vec[0] =10;
vec[1] =20;
vec[2] =30;
vec[3] =40;
vec[4] =50;
std::cout<<"Print vector Element "<<std::endl;
for (int i = 0; i < vec.Size(); i++)
{
std::cout<<"Vec["<<i<<"] = "<<vec[i]<<std::endl;
}
return 0;
}
I am currently in a collage second level programing course... We are working on operator overloading... to do this we are to rebuild the vector class...
I was building the class and found that most of it is based on the [] operator. When I was trying to implement the + operator I run into a weird error that my professor has not seen before (apparently since the class switched IDE's from MinGW to VS express...) (I am using Visual Studio Express 2008 C++ edition...)
Vector.h
#include <string>
#include <iostream>
using namespace std;
#ifndef _VECTOR_H
#define _VECTOR_H
const int DEFAULT_VECTOR_SIZE = 5;
class Vector
{
private:
int * data;
int size;
int comp;
public:
inline Vector (int Comp = 5,int Size = 0)
: comp(Comp), size(Size) { if (comp > 0) { data = new int [comp]; }
else { data = new int [DEFAULT_VECTOR_SIZE];
comp = DEFAULT_VECTOR_SIZE; }
}
int size_ () const { return size; }
int comp_ () const { return comp; }
bool push_back (int);
bool push_front (int);
void expand ();
void expand (int);
void clear ();
const string at (int);
int& operator[ ](int);
int& operator[ ](int) const;
Vector& operator+ (Vector&);
Vector& operator- (const Vector&);
bool operator== (const Vector&);
bool operator!= (const Vector&);
~Vector() { delete [] data; }
};
ostream& operator<< (ostream&, const Vector&);
#endif
Vector.cpp
#include <iostream>
#include <string>
#include "Vector.h"
using namespace std;
const string Vector::at(int i) {
this[i];
}
void Vector::expand() {
expand(size);
}
void Vector::expand(int n ) {
int * newdata = new int [comp * 2];
if (*data != NULL) {
for (int i = 0; i <= (comp); i++) {
newdata[i] = data[i];
}
newdata -= comp;
comp += n;
data = newdata;
delete newdata;
}
else if ( *data == NULL || comp == 0) {
data = new int [DEFAULT_VECTOR_SIZE];
comp = DEFAULT_VECTOR_SIZE;
size = 0;
}
}
bool Vector::push_back(int n) {
if (comp = 0) { expand(); }
for (int k = 0; k != 2; k++) {
if ( size != comp ){
data[size] = n;
size++;
return true;
}
else {
expand();
}
}
return false;
}
void Vector::clear() {
delete [] data;
comp = 0;
size = 0;
}
int& Vector::operator[] (int place) { return (data[place]); }
int& Vector::operator[] (int place) const { return (data[place]); }
Vector& Vector::operator+ (Vector& n) {
int temp_int = 0;
if (size > n.size_() || size == n.size_()) { temp_int = size; }
else if (size < n.size_()) { temp_int = n.size_(); }
Vector newone(temp_int);
int temp_2_int = 0;
for ( int j = 0; j <= temp_int &&
j <= n.size_() &&
j <= size;
j++) {
temp_2_int = n[j] + data[j];
newone[j] = temp_2_int;
}
////////////////////////////////////////////////////////////
return newone;
////////////////////////////////////////////////////////////
}
ostream& operator<< (ostream& out, const Vector& n) {
for (int i = 0; i <= n.size_(); i++) {
////////////////////////////////////////////////////////////
out << n[i] << " ";
////////////////////////////////////////////////////////////
}
return out;
}
Errors:
out << n[i] << " "; error C2678:
binary '[' : no operator found which
takes a left-hand operand of type
'const Vector' (or there is no
acceptable conversion)
return newone;
error C2106: '=' : left
operand must be l-value
As stated above, I am a student going into Computer Science as my selected major I would appreciate tips, pointers, and better ways to do stuff :D
This:
int operator[ ](int);
is a non-const member function. It means that it cannot be called on a const Vector.
Usually, the subscript operator is implemented such that it returns a reference (if you return a value, like you are doing, you can't use it as an lvalue, e.g. you can't do newone[j] = temp_2_int; like you have in your code):
int& operator[](int);
In order to be able to call it on a const object, you should also provide a const version of the member function:
const int& operator[](int) const;
Since you ask for "tips, pointers, and better ways to do stuff:"
You cannot name your include guard _VECTOR_H. Names beginning with an underscore followed by a capital letter are reserved for the implementation. There are a lot of rules about underscores.
You should never use using namespace std in a header.
Your operator+ should take a const Vector& since it is not going to modify its argument.
Your at should return an int and should match the semantics of the C++ standard library containers (i.e., it should throw an exception if i is out of bounds. You need to use (*this)[i] to call your overloaded operator[].
You need to learn what the * operator does. In several places you've confused pointers and the objects to which they point.
Watch out for confusing = with == (e.g. in if (comp = 0)). The compiler will warn you about this. Don't ignore warnings.
Your logic will be much simpler if you guarantee that data is never NULL.
Can't fit this into a comment on Neil's answer, so I'm gonna have to go into more detail here.
Regarding your expand() function. It looks like this function's job is to expand the internal storage, which has comp elements, by n elements, while maintaining the size of the Vector. So let's walk through what you have.
void Vector::expand(int n) {
int * newdata = new int [comp * 2];
Okay, you just created a new array that is twice as big as the old one. Error: Why doesn't the new size have anything to do with n?
if (*data != NULL) {
Error: *data is the first int element in your array. It's not a pointer. Why is it being compared to NULL?
Concept Error: Even if you said if (data != NULL), which could be a test to see if there is an array at all, at what point in time is data ever set to NULL? new [] doesn't return NULL if it's out of memory; it throws an exception.
for (int i = 0; i <= (comp); i++) {
newdata[i] = data[i];
}
Warning: You're copying the whole array, but only the first size elements are valid. The loop could just run up to size and you'd be fine.
newdata -= comp;
Error: Bad pointer math. newdata is set to a pointer to who knows where (comp ints back from the start of newdata?!), and almost certainly a pointer that will corrupt memory if given to delete [].
comp += n;
This is fine, for what it is.
data = newdata;
delete newdata;
}
Error: You stored a pointer and then immediately deleted its memory, making it an invalid pointer.
else if ( *data == NULL || comp == 0) {
data = new int [DEFAULT_VECTOR_SIZE];
comp = DEFAULT_VECTOR_SIZE;
size = 0;
}
}
Error: This should be in your constructor, not here. Again, nothing ever sets data to NULL, and *data is an int, not a pointer.
What this function should do:
create a new array of comp + n elements
copy size elements from the old array to the new one
delete the old array
set data to point to the new array
Good luck.
Besides of what others already wrote about your operator[]():
Your operator+() takes the right-hand side per non-const reference - as if it would attempt to change it. However, with A+B everyone would expect B to remain unchanged.
Further, I would implement all binary operators treating their operands equally (i.e., not changing either of them) as non-member functions. As member functions the left-hand side (this) could be treated differently. (For example, it could be subjected to overwritten versions in derived classes.)
Then, IME it's always good to base operator+() on operator+=(). operator+=() does not treat its operands equally (it changes its left one), so it's best done as a member function. Once this is done, implementing operator+() on top of it is a piece of cake.
Finally, operator+() should never, never ever return a reference to an object. When you say A+B you expect this to return a new object, not to change some existing object and return a reference to that.
There are so many errors in your code that it is hard to know where to start. Here's one:
delete [] data;
*data = *newdata;
You delete a pointer and then immediately dereference it.
And:
const string Vector::at(int i) {
this[i];
}
This is (I think) a vector of ints. why is this returning a string? And applying the [] operator to this does not call your operator[] overload - it treats this as an array, which it isn't.
You need to provide two versions of your operator[]. For accessing:
T operator[](std::size_t idx)const;
For writing to the element:
T& operator[](std::size_t idx);
In both of the above, replace T with the type of the elements. The reason you have this problem is that only functions that are marked "const" may be invoked on an object declared to be "const". Marking all non-mutating functions as "const" is definitely something you should do and is called "const-correctness". Since returning a reference to an element (necessary for writing) allows the underlying object to be mutated, that version of the function cannot be made "const". Therefore, a read-only "const" overload is needed.
You may also be interested in reading:
Const Correctness from the C++ FAQ Lite
Const Correctness in C++
int Vector::operator[] (int place) { return (data[place]); }
This should be
int Vector::operator[] (int place) const { return (data[place]); }
so that you will be able to do the [] operation on const vectors. The const after the function declaration means that the class instance (this) is treated as const Vector, meaning you won't be able to modify normal attributes. Or in other words: A method that only has read access to attributes.