Comparing monocular SLAM path to ground truth - compare

I have created a dataset with a very accurate ground truth in 6DoF (both position and attitude) and would like to use this to compare the accuracy of the path in 6DoF for different monocular SLAM algorithms.
The ground truth results in a path in 6DoF relative to the ground truth's coordinate frame. The SLAM algorithms results in a path in 6DoF relative to the SLAM's coordinate frame
Due to the nature of monocular SLAM algorithms, I do not have a scale of the path.
How can I solve this with my dataset? Is there any available scripts?

What you want to do is find a transform between local and global coordinates. Depending on your exact state model the equations will change. But the basic idea is to start off with a known point in both frames. Say at initial time in our Global frame we have (Position global) Pg=[xg0 yg0 zg0 rg0 pg0 yg0] and the robots coordinate is Pr =[xr0 yr0 zr0 rr0 pr0 yr0] at this point we need create the mapping from Pg to Pr Once we have this we can represent all data in the same.
Mapping from 6dof to another 6dof is very difficult and highly nonlinear. It can usually be thought of in two steps
map between xyz to get the axis in the same area.
map the orientations between the two axis (roll, pitch yaw)
I couldn't find many sources on doing both simultaneously, but if you do them sequentially it will still work (order matters so be consistent) here is a nice post that has xyz transforms https://gamedev.stackexchange.com/questions/79765/how-do-i-convert-from-the-global-coordinate-space-to-a-local-space
this website is great (I used it for a 3d SLAM problem, it was incredibly helpful) and it has information on roll pitch yaw transforms. http://planning.cs.uiuc.edu/node104.html if you explore the website you should also find xyz transforms. Sometimes it helsp to start off with the 2D examples first so you understand the concept then look at the 3D after
Good luck
edit
I originally posted the wrong link to the planning website but its fixed. Here is the main equation
Your landmark points for SLAM are the output of this equation Global landmark = T * Landmark w/respect Robot and each point is represented as [x,y,z,1] the 1 is needed to preserve translation. The roll(alpha) pitch(beta) and yaw(gamma) are obtained from the rotation matrix between the Global coordinates and the robots coordinates

Related

OpenCV triangulatePoints varying distance

I am using OpenCV's triangulatePoints function to determine 3D coordinates of a point imaged by a stereo camera.
I am experiencing that this function gives me different distance to the same point depending on angle of camera to that point.
Here is a video:
https://www.youtube.com/watch?v=FrYBhLJGiE4
In this video, we are tracking the 'X' mark. In the upper left corner info is displayed about the point that is being tracked. (Youtube dropped the quality, the video is normally much sharper. (2x1280) x 720)
In the video, left camera is the origin of 3D coordinate system and it's looking in positive Z direction. Left camera is undergoing some translation, but not nearly as much as the triangulatePoints function leads to believe. (More info is in the video description.)
Metric unit is mm, so the point is initially triangulated at ~1.94m distance from the left camera.
I am aware that insufficiently precise calibration can cause this behaviour. I have ran three independent calibrations using chessboard pattern. The resulting parameters vary too much for my taste. ( Approx +-10% for focal length estimation).
As you can see, the video is not highly distorted. Straight lines appear pretty straight everywhere. So the optimimum camera parameters must be close to the ones I am already using.
My question is, is there anything else that can cause this?
Can a convergence angle between the two stereo cameras can have this effect? Or wrong baseline length?
Of course, there is always a matter of errors in feature detection. Since I am using optical flow to track the 'X' mark, I get subpixel precision which can be mistaken by... I don't know... +-0.2 px?
I am using the Stereolabs ZED stereo camera. I am not accessing the video frames using directly OpenCV. Instead, I have to use the special SDK I acquired when purchasing the camera. It has occured to me that this SDK I am using might be doing some undistortion of its own.
So, now I wonder... If the SDK undistorts an image using incorrect distortion coefficients, can that create an image that is neither barrel-distorted nor pincushion-distorted but something different altogether?
The SDK provided with the ZED Camera performs undistortion and rectification of images. The geometry model is based on the same as openCV :
intrinsic parameters and distortion parameters for both Left and Right cameras.
extrinsic parameters for rotation/translation between Right and Left.
Through one of the tool of the ZED ( ZED Settings App), you can enter your own intrinsic matrix for Left/Right and distortion coeff, and Baseline/Convergence.
To get a precise 3D triangulation, you may need to adjust those parameters since they have a high impact on the disparity you will estimate before converting to depth.
OpenCV gives a good module to calibrate 3D cameras. It does :
-Mono calibration (calibrateCamera) for Left and Right , followed by a stereo calibration (cv::StereoCalibrate()). It will output Intrinsic parameters (focale, optical center (very important)), and extrinsic (Baseline = T[0], Convergence = R[1] if R is a 3x1 matrix). the RMS (return value of stereoCalibrate()) is a good way to see if the calibration has been done correctly.
The important thing is that you need to do this calibration on raw images, not by using images provided with the ZED SDK. Since the ZED is a standard UVC Camera, you can use opencv to get the side by side raw images (cv::videoCapture with the correct device number) and extract Left and RIght native images.
You can then enter those calibration parameters in the tool. The ZED SDK will then perform the undistortion/rectification and provide the corrected images. The new camera matrix is provided in the getParameters(). You need to take those values when you triangulate, since images are corrected as if they were taken from this "ideal" camera.
hope this helps.
/OB/
There are 3 points I can think of and probably can help you.
Probably the least important, but from your description you have separately calibrated the cameras and then the stereo system. Running an overall optimization should improve the reconstruction accuracy, as some "less accurate" parameters compensate for the other "less accurate" parameters.
If the accuracy of reconstruction is important to you, you need to have a systematic approach to reducing it. Building an uncertainty model, thanks to the mathematical model, is easy and can write a few lines of code to build that for you. Say you want to see if the 3d point is 2 meters away, at a particular angle to the camera system, and you have a specific uncertainty on the 2d projections of the 3d point, it's easy to backproject the uncertainty to the 3d space around your 3d point. By adding uncertainty to the other parameters of the system then you can see which ones are more important and need to have lower uncertainty.
This inaccuracy is inherent in the problem and the method you're using.
First if you model the uncertainty you will see the reconstructed 3d points further away from the center of cameras have a much higher uncertainty. The reason is that the angle <left-camera, 3d-point, right-camera> is narrower. I remember the MVG book had a good description of this with a figure.
Second, if you look at the implementation of triangulatePoints you see that the pseudo-inverse method is implemented using SVD to construct the 3d point. That can lead to many issues, which you probably remember from linear algebra.
Update:
But I consistently get larger distance near edges and several times
the magnitude of the uncertainty caused by the angle.
That's the result of using pseudo-inverse, a numerical method. You can replace that with a geometrical method. One easy method is to back-project the 2d-projections to get 2 rays in 3d space. Then you want to find where the intersect, which doesn't happen due to the inaccuracies. Instead you want to find the point where the 2 rays have the least distance. Without considering the uncertainty you will consistently favor a point from the set of feasible solutions. That's why with pseudo inverse you don't see any fluctuation but a gross error.
Regarding the general optimization, yes, you can run an iterative LM optimization on all the parameters. This is the method used in applications like SLAM for autonomous vehicles where accuracy is very important. You can find some papers by googling bundle adjustment slam.

Camera pose estimation

I am trying to write a program from scratch that can estimate the pose of a camera. I am open to any programming language and using inbuilt functions/methods for feature detection...
I have been exploring different ways of estimating pose like SLAM, PTAM, DTAM etc... but I don't really need need tracking and mapping, I just need the pose.
Can any of you suggest an approach or any resource that can help me ? I know what pose is and a rough idea of how to estimate it but I am unable to find any resources that explain how it can be done.
I was thinking of starting with a video recorded, extracting features from the video and then using these features and geometry to estimate the pose.
(Please forgive my naivety, I am not a computer vision person and am fairly new to all of this)
In order to compute a camera pose, you need to have a reference frame that is given by some known points in the image.
These known points come for example from a calibration pattern, but can also be some known landmarks in your images (for example, the 4 corners of teh base of Gizeh pyramids).
The problem of estimating the pose of the camera given known landmarks seen by the camera (ie, finding 3D position from 2D points) is classically known as PnP.
OpenCV provides you a ready-made solver for this problem.
However, you need first to calibrate your camera, ie, you need to determine what makes it unique.
The parameters that you need to estimate are called intrinsic parameters, because they will depend on the camera focal length, sensor size... but not on the camera location or orientation.
These parameters will mathematically explain how world points are projected onto your camera sensor frame.
You can estimate them from known planar patterns (again, OpenCV has some ready-made functions for that).
Generally, you can extract the pose of a camera only relative to a given reference frame.
It is quite common to estimate the relative pose between one view of a camera to another view.
The most general relationship between two views of the same scene from two different cameras, is given by the fundamental matrix (google it).
You can calculate the fundamental matrix from correspondences between the images. For example look in the Matlab implementation:
http://www.mathworks.com/help/vision/ref/estimatefundamentalmatrix.html
After calculating this, you can use a decomposition of the fundamental matrix in order to get the relative pose between the cameras. (Look here for example: http://www.daesik80.com/matlabfns/function/DecompPMatQR.m).
You can work a similar procedure in case you have a calibrated camera, and then you need the Essential matrix instead of fundamnetal.

how do I re-project points in a camera - projector system (after calibration)

i have seen many blog entries and videos and source coude on the internet about how to carry out camera + projector calibration using openCV, in order to produce the camera.yml, projector.yml and projectorExtrinsics.yml files.
I have yet to see anyone discussing what to do with this files afterwards. Indeed I have done a calibration myself, but I don't know what is the next step in my own application.
Say I write an application that now uses the camera - projector system that I calibrated to track objects and project something on them. I will use contourFind() to grab some points of interest from the moving objects and now I want to project these points (from the projector!) onto the objects!
what I want to do is (for example) track the centre of mass (COM) of an object and show a point on the camera view of the tracked object (at its COM). Then a point should be projected on the COM of the object in real time.
It seems that projectPoints() is the openCV function I should use after loading the yml files, but I am not sure how I will account for all the intrinsic & extrinsic calibration values of both camera and projector. Namely, projectPoints() requires as parameters the
vector of points to re-project (duh!)
rotation + translation matrices. I think I can use the projectorExtrinsics here. or I can use the composeRT() function to generate a final rotation & a final translation matrix from the projectorExtrinsics (which I have in the yml file) and the cameraExtrinsics (which I don't have. side question: should I not save them too in a file??).
intrinsics matrix. this tricky now. should I use the camera or the projector intrinsics matrix here?
distortion coefficients. again should I use the projector or the camera coefs here?
other params...
So If I use either projector or camera (which one??) intrinsics + coeffs in projectPoints(), then I will only be 'correcting' for one of the 2 instruments . Where / how will I use the other's instruments intrinsics ??
What else do I need to use apart from load() the yml files and projectPoints() ? (perhaps undistortion?)
ANY help on the matter is greatly appreciated .
If there is a tutorial or a book (no, O'Reilly "Learning openCV" does not talk about how to use the calibration yml files either! - only about how to do the actual calibration), please point me in that direction. I don't necessarily need an exact answer!
First, you seem to be confused about the general role of a camera/projector model: its role is to map 3D world points to 2D image points. This sounds obvious, but this means that given extrinsics R,t (for orientation and position), distortion function D(.) and intrisics K, you can infer for this particular camera the 2D projection m of a 3D point M as follows: m = K.D(R.M+t). The projectPoints function does exactly that (i.e. 3D to 2D projection), for each input 3D point, hence you need to give it the input parameters associated to the camera in which you want your 3D points projected (projector K&D if you want projector 2D coordinates, camera K&D if you want camera 2D coordinates).
Second, when you jointly calibrate your camera and projector, you do not estimate a set of extrinsics R,t for the camera and another for the projector, but only one R and one t, which represent the rotation and translation between the camera's and projector's coordinate systems. For instance, this means that your camera is assumed to have rotation = identity and translation = zero, and the projector has rotation = R and translation = t (or the other way around, depending on how you did the calibration).
Now, concerning the application you mentioned, the real problem is: how do you estimate the 3D coordinates of a given point ?
Using two cameras and one projector, this would be easy: you could track the objects of interest in the two camera images, triangulate their 3D positions using the two 2D projections using function triangulatePoints and finally project this 3D point in the projector 2D coordinates using projectPoints in order to know where to display things with your projector.
With only one camera and one projector, this is still possible but more difficult because you cannot triangulate the tracked points from only one observation. The basic idea is to approach the problem like a sparse stereo disparity estimation problem. A possible method is as follows:
project a non-ambiguous image (e.g. black and white noise) using the projector, in order to texture the scene observed by the camera.
as before, track the objects of interest in the camera image
for each object of interest, correlate a small window around its location in the camera image with the projector image, in order to find where it projects in the projector 2D coordinates
Another approach, which unlike the one above would use the calibration parameters, could be to do a dense 3D reconstruction using stereoRectify and StereoBM::operator() (or gpu::StereoBM_GPU::operator() for the GPU implementation), map the tracked 2D positions to 3D using the estimated scene depth, and finally project into the projector using projectPoints.
Anyhow, this is easier, and more accurate, using two cameras.
Hope this helps.

How to verify that the camera calibration is correct? (or how to estimate the error of reprojection)

The quality of calibration is measured by the reprojection error (is there an alternative?), which requires a knowledge world coordinates of some 3d point(s).
Is there a simple way to produce such known points? Is there a way to verify the calibration in some other way (for example, Zhang's calibration method only requires that the calibration object be planar and the geometry of the system need not to be known)
You can verify the accuracy of the estimated nonlinear lens distortion parameters independently of pose. Capture images of straight edges (e.g. a plumb line, or a laser stripe on a flat surface) spanning the field of view (an easy way to span the FOV is to rotate the camera keeping the plumb line fixed, then add all the images). Pick points on said line images, undistort their coordinates, fit mathematical lines, compute error.
For the linear part, you can also capture images of multiple planar rigs at a known relative pose, either moving one planar target with a repeatable/accurate rig (e.g. a turntable), or mounting multiple planar targets at known angles from each other (e.g. three planes at 90 deg from each other).
As always, a compromise is in order between accuracy requirements and budget. With enough money and a friendly machine shop nearby you can let your fantasy run wild with rig geometry. I had once a dodecahedron about the size of a grapefruit, machined out of white plastic to 1/20 mm spec. Used it to calibrate the pose of a camera on the end effector of a robotic arm, moving it on a sphere around a fixed point. The dodecahedron has really nice properties in regard to occlusion angles. Needless to say, it's all patented.
The images used in generating the intrinsic calibration can also be used to verify it. A good example of this is the camera-calib tool from the Mobile Robot Programming Toolkit (MRPT).
Per Zhang's method, the MRPT calibration proceeds as follows:
Process the input images:
1a. Locate the calibration target (extract the chessboard corners)
1b. Estimate the camera's pose relative to the target, assuming that the target is a planar chessboard with a known number of intersections.
1c. Assign points on the image to a model of the calibration target in relative 3D coordinates.
Find an intrinsic calibration that best explains all of the models generated in 1b/c.
Once the intrinsic calibration is generated, we can go back to the source images.
For each image, multiply the estimated camera pose with the intrinsic calibration, then apply that to each of the points derived in 1c.
This will map the relative 3D points from the target model back to the 2D calibration source image. The difference between the original image feature (chessboard corner) and the reprojected point is the calibration error.
MRPT performs this test on all input images and will give you an aggregate reprojection error.
If you want to verify a full system, including both the camera intrinsics and the camera-to-world transform, you will probably need to build a jig that places the camera and target in a known configuration, then test calculated 3D points against real-world measurements.
On Engine's question: the pose matrix is a [R|t] matrix where R is a pure 3D rotation and t a translation vector. If you have computed a homography from the image, section 3.1 of Zhang's Microsoft Technical Report (http://research.microsoft.com/en-us/um/people/zhang/Papers/TR98-71.pdf) gives a closed form method to obtain both R and t using the known homography and the intrinsic camera matrix K. ( I can't comment, so I added as a new answer)
Should be just variance and bias in calibration (pixel re-projection) errors given enough variability in calibration rig poses. It is better to visualize these errors rather than to look at the values. For example, error vectors pointing to the center would be indicative of wrong focal length. Observing curved lines can give intuition about distortion coefficients.
To calibrate the camera one has to jointly solve for extrinsic and intrinsic. The latter can be known from manufacturer, the solving for extrinsic (rotation and translation) involves decomposition of calculated homography: Decompose Homography matrix in opencv python
Calculate a Homography with only Translation, Rotation and Scale in Opencv
The homography is used here since most calibration targets are flat.

Rigid motion estimation

Now what I have is the 3D point sets as well as the projection parameters of the camera. Given two 2D point sets projected from the 3D point by using the camera and transformed camera(by rotation and translation), there should be an intuitive way to estimate the camera motion...I read some parts of Zisserman's book "Muliple view Geometry in Computer Vision", but I still did not get the solution..
Are there any hints, how can the rigid motion be estimated in this case?
THANKS!!
What you are looking for is a solution to the PnP problem. OpenCV has a function which should work called solvePnP. Just to be clear, for this to work you need point locations in world space, a camera matrix, and the points projections onto the image plane. It will then tell you the rotation and translation of the camera or points depending on how you choose to think of it.
Adding to the previous answer, Eigen has an implementation of Umeyama's method for estimation of the rigid transformation between two sets of 3d points. You can use it to get an initial estimation, and then refine it using an optimization algorithm and considering the projections of the 3d points onto the images too. For example, you could try to minimize the reprojection error between 2d points on the first image and projections of the 3d points after you bring them from the reference frame of one camera to the the reference frame of the other using the previously estimated transformation. You can do this in both ways, using the transformation and its inverse, and try to minimize the bidirectional reprojection error. I'd recommend the paper "Stereo visual odometry for autonomous ground robots", by Andrew Howard, as well as some of its references for a better explanation, especially if you are considering an outlier removal/inlier detection step before the actual motion estimation.