Multiply vectorized 2D square matrix and compressed tridiagonal matrix in CUDA - c++

I have two matrices
#define MATRIX_SIZE 20
#define BLOCK_SIZE 2
#define TILE_SIZE 2
double** A
double** B
Matrix A is dense, Matrix B is tridiagonal. I have created a vectorized representation of A
/* sz = A.rowlen = B.rowlen = A.collen = B.collen */
double* A1d = matrix_to_vector(sz, A);
I have also created a compressed representation of B with the following function
double* l_array = new double(sz - 1);
double* m_array = new double(sz);
double* r_array = new double(sz-1);
int current_l_idx = 0;
int current_m_idx = 0;
int current_r_idx = 0;
for (int i = 0; i < sz; i++) {
for (int j = 0; j < sz; j++) {
if ((i == j+1) || (i-1 == j)) {
l_array[current_l_idx] = B[i][j];
current_l_idx++;
}
else if ((i == j-1) || (i+1 == j)) {
r_array[current_r_idx] = B[i][j];
current_r_idx++;
}
else if (i == j) {
m_array[current_m_idx] = B[i][j];
current_m_idx++;
}
}
}
I then create an empty 2D vectorized matrix E as well as all my objects for CUDA
double* E1d = matrix_to_vector(sz, E);
double* d_A
double* d_B_l;
double* d_B_m;
double* d_B_r;
double* d_E;
size_t sizeA = sz * sz * sizeof(double);
size_t sizeB_lr = (sz - 1) * sizeof(double);
size_t sizeB_m = sz * sizeof(double);
cudaMalloc(&d_A, sizeA);
cudaMalloc(&d_B_l. sizeB_lr);
cudaMalloc(&d_B_m, sizeB_m);
cudaMalloc(&d_B_r, sizeB_lr);
cudaMalloc(&d_E, sizeA);
cudaMemcpy(d_A, A1d, sizeA, cudaMemcpyHostToDevice);
cudaMemcpy(d_B_l, l_array, sizeB_lr, cudaMemcpyHostToDevice);
cudaMemcpy(d_B_m, m_array, sizeB_m, cudaMemcpyHostToDevice);
cudaMemcpy(d_B_r, r_array, sizeB_lr, cudaMemcpyHostToDevice);
cudaMemcpy(d_E, E1d, sizeA, cudaMemcpyHostToDevice);
dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
dim3 grid(MATRIX_SIZE / threads.x, MATRIX_SIZE / threads.y);
cudakernel<<<grid, threads>>>(sz, d_A, d_B_l, d_B_m, d_B_r, d_E);
I can perform this multiplication serially but I, unfortunately, have NO idea how to implement this on the CUDA device
Assumptions
A and B are always square
sz will always be evenly divisible by BLOCK_SIZE and TILE_SIZE
BLOCK_SIZE will always equal TILE_SIZE

I suspect based on your setup code that you are looking for a tiled shared-memory approach to this kind of matrix multiplication, and I'm not really wanting to do your homework for you, so I'll demonstrate an example that doesn't use shared memory.
If you understand how matrix multiplication works, and you also understand how to create an ordinary shared memory GPU matrix multiply kernel, converting the following code to use shared memory should be relatively straightforward:
#include <stdio.h>
#define DSIZE 256
#define BSIZE 32
#define TOL 0.0001
typedef double mytype;
#define cudaCheckErrors(msg) \
do { \
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
msg, cudaGetErrorString(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)
// C = A x B
// A,B,C are all dense
template <typename T>
__global__ void mm(const T * __restrict__ A, const T * __restrict__ B, T * __restrict__ C, const int sz){
int idx = threadIdx.x+blockDim.x*blockIdx.x;
int idy = threadIdx.y+blockDim.y*blockIdx.y;
if ((idx < sz) && (idy < sz)){
T temp = 0;
for (int i = 0; i < sz; i++)
temp += A[idy*sz+i]*B[i*sz+idx];
C[idy*sz+idx] = temp;}
}
// C = A x B
// A,C are dense, B is tridiagonal
template <typename T>
__global__ void mmt(const T * __restrict__ A, const T * __restrict__ B_l, const T * __restrict__ B_m, const T * __restrict__ B_r, T * __restrict__ C, const int sz){
int idx = threadIdx.x+blockDim.x*blockIdx.x;
int idy = threadIdx.y+blockDim.y*blockIdx.y;
if ((idx < sz) && (idy < sz)){
T temp = 0;
if (idx > 0) temp += A[idy*sz+(idx-1)]*B_r[idx-1];
temp += A[idy*sz+(idx) ]*B_m[idx];
if (idx < (sz-1)) temp += A[idy*sz+(idx+1)]*B_l[idx];
C[idy*sz+idx] = temp;}
}
int main(){
mytype *d_A, *h_A, *d_B, *h_B, *d_C, *h_Cd, *h_Cs, *d_B_l, *h_B_l, *d_B_m, *h_B_m, *d_B_r, *h_B_r;
size_t msz = DSIZE*DSIZE;
size_t mszb = msz*sizeof(mytype);
// host side allocations
h_A = (mytype *)malloc(mszb);
h_B = (mytype *)malloc(mszb);
h_Cd =(mytype *)malloc(mszb);
h_Cs =(mytype *)malloc(mszb);
h_B_l = (mytype *)malloc((DSIZE-1)*sizeof(mytype));
h_B_r = (mytype *)malloc((DSIZE-1)*sizeof(mytype));
h_B_m = (mytype *)malloc( DSIZE*sizeof(mytype));
if (!h_A || !h_B || !h_Cd || !h_Cs || !h_B_l || !h_B_r || !h_B_m) {printf("malloc fail\n"); return -1;}
// device side allocations
cudaMalloc(&d_A, mszb);
cudaMalloc(&d_B, mszb);
cudaMalloc(&d_C, mszb);
cudaMalloc(&d_B_l, (DSIZE-1)*sizeof(mytype));
cudaMalloc(&d_B_r, (DSIZE-1)*sizeof(mytype));
cudaMalloc(&d_B_m, DSIZE*sizeof(mytype));
cudaCheckErrors("cudaMalloc fail");
// prepare A, B matrices
/*
|1 1 1 ...|
A = |2 2 2 ...|
|3 3 3 ...|
|4 4 4 ...|
|... |
|2 1 0 ...| B_l = left/lower subdiagonal (i.e. all 3's)
B = |3 2 1 ...| B_m = middle/main diagonal (i.e. all 2's)
|0 3 2 ...| B_r = right/upper superdiagonal (i.e. all 1's)
|0 0 3 ...|
|... |
*/
for (int i = 0; i < DSIZE; i++){
if (i < DSIZE-1){
h_B_r[i] = 1;
h_B_l[i] = 3;}
h_B_m[i] = 2;
for (int j = 0; j < DSIZE; j++){
h_A[i*DSIZE+j] = i+1;
if (j==i+1) h_B[i*DSIZE+j] = 1;
else if (j==i) h_B[i*DSIZE+j] = 2;
else if (j==i-1) h_B[i*DSIZE+j] = 3;
else h_B[i*DSIZE+j] = 0;}}
// copy data to device
cudaMemcpy(d_A, h_A, mszb, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, mszb, cudaMemcpyHostToDevice);
cudaMemcpy(d_B_l, h_B_l, (DSIZE-1)*sizeof(mytype), cudaMemcpyHostToDevice);
cudaMemcpy(d_B_r, h_B_r, (DSIZE-1)*sizeof(mytype), cudaMemcpyHostToDevice);
cudaMemcpy(d_B_m, h_B_m, DSIZE*sizeof(mytype), cudaMemcpyHostToDevice);
cudaCheckErrors("cudaMemcpy1 fail");
// perform dense-dense multiply
dim3 block(BSIZE,BSIZE);
dim3 grid((DSIZE+block.x-1)/block.x, (DSIZE+block.y-1)/block.y);
cudaMemset(d_C, 0, mszb);
mm<<<grid, block>>>(d_A, d_B, d_C, DSIZE);
cudaMemcpy(h_Cd, d_C, mszb, cudaMemcpyDeviceToHost);
cudaCheckErrors("cudaMemcpy 2/kernel fail");
// perform dense-sparse multiply
cudaMemset(d_C, 0, mszb);
mmt<<<grid, block>>>(d_A, d_B_l, d_B_m, d_B_r, d_C, DSIZE);
cudaMemcpy(h_Cs, d_C, mszb, cudaMemcpyDeviceToHost);
cudaCheckErrors("cudaMemcpy 3/kernel fail");
// compare results
for (int i = 0; i < DSIZE; i++)
for (int j = 0; j < DSIZE; j++)
if (abs(h_Cs[i*DSIZE+j] - h_Cd[i*DSIZE+j]) > TOL) {printf("results mismatch at (%d, %d) dense: %f sparse: %f\n", i, j, h_Cd[i*DSIZE+j], h_Cs[i*DSIZE+j]); return -1;}
printf("Success!\n");
return 0;
}
Notes:
All of the global memory accesses in the mmt kernel (i.e. for A, the B vectors, and C) should properly coalesce across threads. Therefore, a conversion to use shared memory should also easily yield non-bank-conflicted access to shared memory.
While studying this code may be useful for learning, I recommend any serious sparse-dense matrix multiplication be done with routines from CUSPARSE such as csrmm. It will almost certainly be much more efficient (faster) than the above code, and likely faster than any shared memory conversion of the above code as well.

Related

CUDA array filtering kernel without a for loop

I have a large array A with size_A rows and 6 columns. I am going to check the 3rd element of each row, and if that is not zero, copy the row into another array B. Can I have the index to the entries of B without using a for loop, please see the below code?
I probably would need to define b_ptr somehow to make it static (similar to the what we have in C), but I think that is not allowed.
__global__ void filtering_kernel(float* A, int size_A, float* B, float* size_B)
{
/*B and size_B are the outputs*/
int b_ptr = 0;
int x = blockIdx.x * blockDim.x + threadIdx.x;
if (x > size_A) return;
for (int i = 0; i < size_A; i++)
{
if (A[x + 3] != 0)
{
B[b_ptr] = A[x + 0];
B[b_ptr + 1] = A[x + 1];
B[b_ptr + 2] = A[x + 2];
B[b_ptr + 3] = A[x + 3];
B[b_ptr + 4] = A[x + 4];
B[b_ptr + 5] = A[x + 5];
b_ptr += 6;
*size_B = *size_B + 1;
}
}
}
The trick is to launch as many threads as there are elements in your array. If we assume tid (renamed from your x) ranges from 0 to size_A * 6, then we can remove the loop entirely. We do need to first determine what rows must be copied, so a shared array filter is introduced. Assuming you can fit int[size_A] into memory for a single block and have as many threads as entries, you can use the following code, with hints for how you might do this if size_A is big enough to need multiple blocks.
__global__ void filtering_kernel(float *A, const int size_A, const int W,
float *B, int *size_B) {
// We use this to store whether a given row is filtered,
// and then scan this array to tell us how densely packed B is.
extern __shared__ int filter[];
// Assuming 1 block
const int tid = threadIdx.x;
const int offset = 0;
// Multiblock difference
// tid = threadIdx.x
// offset = blockIdx.x * blockDim.x;
// Guard to ensure we are not out of range
if (offset + tid >= size_A * W)
return;
const int row = tid / W;
const int col = tid % W;
// NOTE: You have 3 in your sample code, but the third column is 2
const int mid = (W - 1)/2;
// Dedicate one thread per row to check
// whether we should filter
if (tid < size_A) {
// A boolean will be either 1 or 0
// Whatever filter criterion you want.
filter[tid] = A[offset + tid * W + mid] == 0;
}
// We then need to run a scan to get the cumulative sum
// of the filtered with a dedicated thread. If we consider
// good rows (g) and bad rows (b), for gggbbggbbggg we expect
// 1,2,3,3,3,4,5,5,5,6,7,8
for (int i = 1; i < size_A; i <<= 1) {
if (tid < size_A && tid >= i) {
filter[tid] += filter[tid - i];
}
__syncthreads();
}
__syncthreads();
// We should then only copy if the cumulative sum increases
// And handle for the case of the first row
// Note: If you are thread limited, you can do multiple copies here.
if ((row == 0 && filter[row]) || (row > 0 && filter[row] > filter[row - 1])) {
B[offset + W * (filter[row] - 1) + col] = A[tid];
}
// Also set the expected size for B
if (tid == 0) {
*size_B = filter[size_A - 1];
printf("size_B %d\n", *size_B);
// Multiple blocks: size_B[blockIdx.x] = filtered[size_A - 1];
}
// TODO: For multiple blocks, we still need to densely pack B. (see below)
}
Continuing: as is, filtered needs to be shared across the kernel, so this only works within a single block. With multiple blocks, I would filter a portion of B per block (that is, keep the code above, changing where I note), record how much was filtered with size_B now being an array, cumulatively sum size_B, and then in-place copy B to be more dense (or download from device the dense parts from each portion using size_B).
From the comments, the invoking code:
int example(const float *arr, const size_t size_A, const size_t W ) {
float *d_A;
float *d_B;
cudaMalloc((void **)&d_A, size_A * W * sizeof(float));
cudaMalloc((void **)&d_B, size_A * W * sizeof(float));
cudaMemset(d_B, 0, size_A * W * sizeof(float));
int *size_B;
cudaMalloc((void **)&size_B, sizeof(int));
cudaMemset(size_B, 0, sizeof(int));
cudaMemcpy(d_A, arr, size_A * W * sizeof(float), cudaMemcpyHostToDevice);
filtering_kernel<<<1, W * size_A, size_A * sizeof(int)>>>(d_A, size_A, W, d_B,
size_B);
cudaDeviceSynchronize();
printf("Error %s \n", cudaGetLastError());
int result;
cudaMemcpy(&result, size_B, sizeof(int), cudaMemcpyDeviceToHost);
printf("Error %s \n", cudaGetLastError());
return result;
}
Which we can then test using GTEST:
TEST(FILTER, ROW6) {
size_t size_A = 100;
size_t W = 6;
float *arr = (float *)malloc(sizeof(float) * size_A * W); // initialize arr
int expected = 0;
for (int i = 0; i < size_A * W; i++) {
arr[i] = i % 4;
if (i % W == 2 && arr[i] == 0)
expected++;
}
printf("Expected: %d\n", expected);
const int result = drt::example(arr, size_A, W);
ASSERT_EQ(result, expected) << "Filter Kernel does not work.";
}
This problem is complicated and can't be done with CUDA in one step, you can't search for the desired rows and put them in array B hoping that they will be in the correct order, as CUDA kernels don't necessarily check the rows in order. However, there is a multi-step solution that can do the trick. First, you will run a kernel that will locate the zeros within the third column, whose index is 2 not 3 by the way, then mark these rows with value of 1 in an array P. After that, a simple for loop will count these locations and store them in another array Ind. Finally, a second kernel will copy the required rows from A to B.
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <math.h>
#include <stdio.h>
__global__ void get_indeces(float* A, int* P, int size_A);
__global__ void filtering_kernel(float* A, float* B, int* Ind, int size_B);
int main()
{
int i, size_A, size_B;
size_t size;
int* P, * d_P, * Ind, * d_I;
float* A, * d_A, * B, * d_B;
size_A = ..; // specify number of rows of A
A = new float[size_A * 6];
// input values of array A
...
P = new int[size_A];
for (i = 0; i < size_A; i++)
P[i] = 0;
size = (uint64_t)size_A * 6 * sizeof(float);
cudaMalloc(&d_A, size);
cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice);
size = (uint64_t)size_A * sizeof(int);
cudaMalloc(&d_P, size);
cudaMemcpy(d_P, P, size, cudaMemcpyHostToDevice);
get_indeces<<<(int)ceil(size_A / 1024.0), 1024>>>(d_A, d_P, size_A);
cudaMemcpy(P, d_P, size, cudaMemcpyDeviceToHost);
size_B = 0;
for (i = 0; i < size_A; i++)
if (P[i] == 1)
Ind[size_B++] = i;
Ind = new int[size_A];
size = (uint64_t)size_B * sizeof(int);
cudaMalloc(&d_I, size);
cudaMemcpy(d_I, Ind, size, cudaMemcpyHostToDevice);
B = new float[size_B * 6];
size = (uint64_t)size_B * 6 * sizeof(float);
cudaMalloc(&d_B, size);
dim3 dimBlock(170, 6); // to copy the full row at the same time, 6 * 170 < 1024
dim3 dimGrid((int)ceil(size_B / 170.0), 1);
filtering_kernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_I, size_B);
cudaMemcpy(B, d_B, size, cudaMemcpyDeviceToHost);
}
__global__ void get_indeces(float* A, int* P, int size_A)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
if (x < size_A && A[x * 6 + 2] == 0) // if you want to use return, it should be "if (x >= size_A) return;"
P[x] = 1;
}
__global__ void filtering_kernel(float* A, float* B, int* Ind, int size_B)
{
int i;
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = threadIdx.y;
if (x < size_B)
B[x * 6 + y] = A[Ind[x] * 6 + y];
}

CUDA - compilation error in kernel call

Hi I would like to modify Steam Code from CPU to GPU version. It's not really necessary to understand whole code. So, I will present just fragments if someone is interested, everything (source code and description) can find here:
http://www.dgp.toronto.edu/people/stam/reality/Research/pub.html => "Real-Time Fluid Dynamics for Games".
It is probably quite easy task. But I long time no used C++ and just studying CUDA, so it's hard for me. Trying from long time, but no effects.
CPU version (works):
#define IX(i,j) ((i)+(N+2)*(j))
...
void lin_solve(int N, int b, float * x, float * x0, float a, float c)
{
for (int k = 0; k<20; k++)
{
for (int i = 1; i <= N; i++)
{
for (int j = 1; j <= N; j++)
{
x[IX(i, j)] = (x0[IX(i, j)] + a*(x[IX(i - 1, j)] + x[IX(i + 1, j)] + x[IX(i, j - 1)] + x[IX(i, j + 1)])) / c;
}
}
set_bnd(N, b, x);
}
}
my GPU version (doesn't compile):
#define IX(i,j) ((i)+(N+2)*(j))
__global__
void GPU_lin_solve(int *N, int *b, float * x, float * x0, float *a, float *c)
{
int i = threadIdx.x * blockIdx.x + threadIdx.x;
int j = threadIdx.y * blockIdx.y + threadIdx.y;
if (i < N && j < N)
x[IX(i, j)] = (x0[IX(i, j)] + a*(x[IX(i - 1, j)] + x[IX(i + 1, j)] + x[IX(i, j - 1)] + x[IX(i, j + 1)])) / c;
}
void lin_solve(int N, int b, float * x, float * x0, float a, float c)
{
for (int k = 0; k<20; k++)
{
int *d_N, *d_b;
float **d_x, **d_x0;
float *d_a, *d_c, *d_xx, *d_xx0;
*d_xx = **d_x;
*d_xx0 = **d_x0;
cudaMalloc(&d_N, sizeof(int));
cudaMalloc(&d_b, sizeof(int));
cudaMalloc(&d_xx, sizeof(float));
cudaMalloc(&d_xx0, sizeof(float));
cudaMalloc(&d_a, sizeof(float));
cudaMalloc(&d_c, sizeof(float));
cudaMemcpy(d_N, &N, sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(d_xx, &*x, sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_xx0, &*x0, sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_a, &a, sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_c, &c, sizeof(float), cudaMemcpyHostToDevice);
GPU_lin_solve << <1, 1 >> > (d_N, d_b, d_xx, d_xx0, d_a, d_c);
// compilator showing problem in the line above
// Error 23 error : argument of type "int *" is incompatible with parameter of type "int"
cudaMemcpy(&*x, d_xx, sizeof(float), cudaMemcpyDeviceToHost);
cudaFree(d_N);
cudaFree(d_b);
cudaFree(d_xx);
cudaFree(d_xx0);
cudaFree(d_a);
cudaFree(d_c);
set_bnd(N, b, x);
}
}
The compiler is reporting an error:
Error 23 error : argument of type "int *" is incompatible with parameter of type "int"
at the kernel launch
GPU_lin_solve << <1, 1 >> > (d_N, d_b, d_xx, d_xx0, d_a, d_c);
What I am doing wrong?
if (i < N && j < N)
x[IX(i, j)] = (x0[IX(i, j)] + a*(x[IX(i - 1, j)] + x[IX(i + 1, j)] + x[IX(i, j - 1)] + x[IX(i, j + 1)])) / c;
}
N in your condition and macro is a pointer, you're treating as though it's an integer.
Try dereferencing it?

Allocate 1 Dimension array with cudaMallocPitch and then copy to device with cudaMemcpy2D 3

I have read this post Allocate 2D array with cudaMallocPitch and copying with cudaMemcpy2D among many others including NVIDIA docs and I can't get cudaMallocPitch to work together with cudaMemcpy2D.
I need to copy a very big matrix in an array format (Matrix[width*height]) along with a simple array to perform Matrix * vector operations. It is not optional for me to use cudaMallocPitch in order to avoid conflicts and have a better performance.
So, I started by just trying to copy the matrix (vector in my case) to the device and check if it was correctly copied but my code does not print anything. If I use cudaMalloc and cudaMemcpy everything works fine. But I do not know what to do with cudaMallocPitch and cudaMemcpy2D.
What can I do to fix this?
#include <stdio.h>
__global__ void kernel(size_t mpitch, double * A, int N)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
while (idx < N)
{
double e = *(double *)(((char *) A + idx * mpitch) + N);
printf("(%f)", e);
}
}
int main()
{
int N = 1500;
double * A = new double[N], * d_A;
size_t pitch;
for (int i = 0; i < N; ++i)
{
A[i] = i;
}
cudaMallocPitch(&d_A, &pitch, sizeof(double) * N, 1);
cudaMemcpy2D(d_A, pitch, A, N * sizeof(double), sizeof(double) * N, 1, cudaMemcpyHostToDevice);
unsigned int blocksize = 1024;
unsigned int nblocks = (N + blocksize - 1) / blocksize;
kernel <<<nblocks, blocksize>>>(pitch, d_A, N);
cudaFree(d_A);
delete [] A;
return 0;
}
Error checking can make a big difference in debugging. You should always use it before coming here.
It wasn't clear if you wanted a row or column vector i.e. a matrix of [1xN] or [Nx1]
I've added an explanation on Talomnies suggestion, but first the 'working slabs of code'
Here's [Nx1]
#include <cstdio>
#include <iostream>
#include <cuda.h>
using namespace std;
__global__ void kernel(size_t mpitch, double * A, int N)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if(idx>=N) return;
double e = *(double *)(((char *) A + idx * mpitch));
printf("(%f)", e);
}
int main()
{
int N = 15;
double * A = new double[N], * d_A;
size_t pitch;
for (int i = 0; i < N; ++i)
{
A[i] = i;
}
cudaError_t err = cudaMallocPitch(&d_A, &pitch, sizeof(double), N);
if(err!=cudaSuccess) cout<<"err0:"<<cudaGetErrorString(err)<<endl;
err = cudaMemcpy2D(d_A, pitch, A, sizeof(double), sizeof(double), N, cudaMemcpyHostToDevice);
if(err!=cudaSuccess) cout<<"err1:"<<cudaGetErrorString(err)<<endl;
unsigned int blocksize = 1024;
unsigned int nblocks = (N + blocksize - 1) / blocksize;
kernel <<<nblocks, blocksize>>>(pitch, d_A, N);
cudaDeviceSynchronize();
err = cudaGetLastError();
if(err!=cudaSuccess) cout<<"err2:"<<cudaGetErrorString(err)<<endl;
cudaFree(d_A);
delete [] A;
return 0;
}
[1xN]:
#include <cstdio>
#include <iostream>
#include <cuda.h>
using namespace std;
__global__ void kernel(size_t mpitch, double * A, int N)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if(idx>=N) return;
int row=0;//only one row
double *row_ptr = (double *)( (char *) (A + mpitch * row) );
double e = row_ptr[idx];
printf("(%f)", e);
}
int main()
{
int N = 15;
double * A = new double[N], * d_A;
size_t pitch;
for (int i = 0; i < N; ++i)
{
A[i] = i;
}
cudaError_t err = cudaMallocPitch(&d_A, &pitch, sizeof(double)*N, 1);
if(err!=cudaSuccess) cout<<"err0:"<<cudaGetErrorString(err)<<endl;
err = cudaMemcpy2D(d_A, pitch, A, sizeof(double)*N, sizeof(double)*N, 1, cudaMemcpyHostToDevice);
if(err!=cudaSuccess) cout<<"err1:"<<cudaGetErrorString(err)<<endl;
unsigned int blocksize = 1024;
unsigned int nblocks = (N + blocksize - 1) / blocksize;
kernel <<<nblocks, blocksize>>>(pitch, d_A, N);
cudaDeviceSynchronize();
err = cudaGetLastError();
if(err!=cudaSuccess) cout<<"err2:"<<cudaGetErrorString(err)<<endl;
cudaFree(d_A);
delete [] A;
return 0;
}
Explanation
Firslty, Error Handling:
Considering how easy error handling is in CUDA there isn't a good excuse not to put it in.
cudaError_t err = cudaMallocPitch(&d_A, &pitch, sizeof(double)*N, 1);
if(err!=cudaSuccess) cout<<"err0:"<<cudaGetErrorString(err)<<endl;
Second, you didn't specify if you wanted a column vector or a row vector. Since a row vector is simply a 1-D array in linear memory and you don't need pitched memory to do that, I will assume for this explanation that you meant a column vector.
The reoccurring problem you were having was "misaligned address" in the kernel. This indicates that the problem is book-keeping, so lets walk through the three major steps of handling an aligned 2D array (even though our arrays will be either a column or row vector).
Allocating:
Your allocation was written out as
cudaMallocPitch(&d_A, &pitch, sizeof(double) * N, 1);
This is correct for the row vector as the API is cudaMallocPitch(void*** pointer, size_t* pitch_return, size_t row_width_in_bytes, size_t count_of_rows) However if we would like to do a column vector correct call is
cudaMallocPitch(&d_A, &pitch, sizeof(double), N);
Accessing:
For accessing you were mixing up accessing a row, and accessing an element in the row.
double e = *(double *)(((char *) A + idx * mpitch) + N);
Once again stick to the documentation. The API documentation for cudaMallocPitch includes
T* pElement = (T*)((char*)BaseAddress + Row * pitch) + Column;
for us this translates into
int column=0;
double element=(double*) ((char*)A + idx * mpitch) + column;
I've used column = 0 for completeness since we do not have more than one column.
Copying:
cudaMemcpy2D(d_A, pitch, A, N * sizeof(double), sizeof(double) * N, 1, cudaMemcpyHostToDevice);
For this case this is correct. API for cudaMemcpy2D is
cudaMemcpy2D(void* destination, size_t pitch_from_mallocPitch, const void* source, size_t source_pitch_bytes, size_t src_width_in_bytes, size_t src_rows_count, enum type_of_xfer);

CUDA: please help me to find error in my code

There's code, that uses GPU:
__global__ void gpu_process(float* input, float* weights, float* output, int psize, int size)
{
int i = blockIdx.x*blockDim.x + threadIdx.x;
int j = blockIdx.y*blockDim.y + threadIdx.y;
if(i < psize && j < size)
output[j] += input[i] * weights[i * size + j];
}
void process(float* input, float* weights, float* output, size_t psize, size_t size)
{
float* in_d, *w_d, *out_d;
cudaMalloc((void**)&in_d, psize * sizeof(float));
cudaMalloc((void**)&w_d, psize * size * sizeof(float));
cudaMalloc((void**)&out_d, size * sizeof(float));
for(size_t i = 0; i < size; i++)
output[i] = 0;
cudaMemcpy(in_d, input, psize * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(w_d, weights, psize * size * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(out_d, output, size * sizeof(float), cudaMemcpyHostToDevice);
int rx = psize, ry = size, block_x = min((int)psize, 32), block_y = min((int)size, 32);
dim3 dimBlock(block_x, block_y);
dim3 dimGrid(ceil(float(rx) / block_x), ceil(float(ry) / block_y));
gpu_process<<<dimGrid, dimBlock>>>(in_d, w_d, out_d, psize, size);
cudaThreadSynchronize();
cudaMemcpy(output, out_d, size * sizeof(float), cudaMemcpyDeviceToHost);
cudaFree(in_d);
cudaFree(out_d);
cudaFree(w_d);
}
There's code, that do the same thing, but uses only CPU:
int blockIdxx, blockIdxy, blockDimx, blockDimy, threadIdxx, threadIdxy;
void cpu_process(float* input, float* weights, float* output, int psize, int size)
{
int i = blockIdxx*blockDimx + threadIdxx;
int j = blockIdxy*blockDimy + threadIdxy;
if(i < psize && j < size)
output[j] += input[i] * weights[i * size + j];
}
void process(float* input, float* weights, float* output, size_t psize, size_t size)
{
for(size_t i = 0; i < size; i++)
output[i] = 0;
int rx = psize, ry = size, block_x = min((int)psize, 32), block_y = min((int)size, 32);
blockDimx = block_x;
blockDimy = block_y;
int gridDimx = ceil(float(rx) / block_x), gridDimy = ceil(float(ry) / block_y);
for(blockIdxx = 0; blockIdxx < gridDimx; blockIdxx++)
for(blockIdxy = 0; blockIdxy < gridDimy; blockIdxy++)
for(threadIdxx = 0; threadIdxx < blockDimx; threadIdxx++)
for(threadIdxy = 0; threadIdxy < blockDimy; threadIdxy++)
cpu_process(input, weights, output, psize, size);
}
Why CPU variant works correctly but GPU variant returns garbage in output? What differs in
Version of cuda-toolkit: 4.0
OS: Debian GNU/Linux, cuda installed from it's repositories.
GPU: NVIDIA GeForce GT 525M.
cudaThreadSyncronize is deprecated and should not be used, instead use cudaDeviceSyncronize, check the error codes of these, since they will return an error if a thread has failed. These also block all code thereafter until the task is completed, so you could also add some timing code inbetween to find bottlenecks.

Sparse matrix-vector multiplication in CUDA

I'm trying to implement a matrix-vector Multiplication on GPU (using CUDA).
In my C++ code (CPU), I load the matrix as a dense matrix, and then I perform the matrix-vector multiplication using CUDA. I'm also using shared memory to improve the performance.
How can I load the matrix in an efficient way, knowing that my matrix is a sparse matrix?
Below is my C++ function to load the matrix:
int readMatrix( char* filename, float* &matrix, unsigned int *dim = NULL, int majority = ROW_MAJOR )
{
unsigned int w, h, x, y, num_entries;
float val;
std::ifstream file( filename );
if ( file )
{
file >> h >> w >> num_entries;
cout << w << " " << h << " " << num_entries << "\n";
assert( w == h || w == 1 || h == 1 );
if( dim != NULL ) *dim = std::max( w, h );
matrix = new float[ w * h ];
unsigned int i;
for( i = 0; i < num_entries; i++ ){
if( file.eof() ) break;
file >> y >> x >> val;
if( majority == ROW_MAJOR ){
matrix[ w * y + x ] = val;
} else if( majority == COLUMN_MAJOR ){
matrix[ h * x + y ] = val;
}
}
file.close();
if( i == num_entries )
std::cout << "\nFile read successfully\n";
else
std::cout << "\nFile read successfully but seems defective:\n num entries read = " << i << ", entries epected = " << num_entries << "\n";
// print first few elements
if( w == h ){
for( unsigned int i = 0; i < w; i++ ){
printf("\n");
for( unsigned int j = 0; j < h; j++ ){
printf("%.2f ", matrix[ j + w * i ] );
}
}
}
else{
printf("\n");
for( unsigned int j = 0; j < h; j++ ){
printf("%.2f ", matrix[ j ] );
}
}
} else {
std::cout << "Unable to open file\n";
return false;
}
return true;
}
Below is my CUDA Kernel function that handles the matrix-vector multiplication:
__global__ void
_cl_matrix_vector_( float *A, float *b, float *x, int dim )
{
extern __shared__ float vec[];
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
float temp = 0.0;
int vOffs = 0;
//load vector into shared memory
for (int i = 0; i < (dim/blockDim.x) + 1 ; ++i, vOffs+= blockDim.x) {
vec[vOffs + threadIdx.x] = b[vOffs + threadIdx.x];
}
//make sure all threads are synchronized
__syncthreads();
if (idx < dim) {
temp = 0.0;
//dot product (multiplication)
for (int i = 0; i < dim; i++){
temp += A[idx * dim + i] * vec[i];
}
x[idx] = temp;
}
}
What are the necessary changes that I have to make on my CUDA code to take into account that my matrix is a sparse matrix?
I found out from a forum that we can also use padding to be able to optimize the performance, but this requires me to change the way I read the matrix / sort the matrix. Any ideas how to implement this padding in the way I read the matrix and perform the calculation?
This is a very old post and I want to highlight that cuSPARSE (since some time now) makes routines for the multiplication between sparse matrices or between a sparse matrix and a dense vector available.
For the csr format, the relevant routine for the multiplication between a sparse matrix and a dense vector is cusparse<t>csrmv. Below, a fully worked example showing its use.
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <assert.h>
#include "Utilities.cuh"
#include <cuda_runtime.h>
#include <cusparse_v2.h>
/********/
/* MAIN */
/********/
int main()
{
// --- Initialize cuSPARSE
cusparseHandle_t handle; cusparseSafeCall(cusparseCreate(&handle));
/**************************/
/* SETTING UP THE PROBLEM */
/**************************/
const int N = 4; // --- Number of rows and columns
// --- Host side dense matrices
double *h_A_dense = (double*)malloc(N * N * sizeof(double));
double *h_x_dense = (double*)malloc(N * sizeof(double));
double *h_y_dense = (double*)malloc(N * sizeof(double));
// --- Column-major ordering
h_A_dense[0] = 0.4612; h_A_dense[4] = -0.0006; h_A_dense[8] = 0.3566; h_A_dense[12] = 0.0;
h_A_dense[1] = -0.0006; h_A_dense[5] = 0.4640; h_A_dense[9] = 0.0723; h_A_dense[13] = 0.0;
h_A_dense[2] = 0.3566; h_A_dense[6] = 0.0723; h_A_dense[10] = 0.7543; h_A_dense[14] = 0.0;
h_A_dense[3] = 0.; h_A_dense[7] = 0.0; h_A_dense[11] = 0.0; h_A_dense[15] = 0.1;
// --- Initializing the data and result vectors
for (int k = 0; k < N; k++) {
h_x_dense[k] = 1.;
h_y_dense[k] = 0.;
}
// --- Create device arrays and copy host arrays to them
double *d_A_dense; gpuErrchk(cudaMalloc(&d_A_dense, N * N * sizeof(double)));
double *d_x_dense; gpuErrchk(cudaMalloc(&d_x_dense, N * sizeof(double)));
double *d_y_dense; gpuErrchk(cudaMalloc(&d_y_dense, N * sizeof(double)));
gpuErrchk(cudaMemcpy(d_A_dense, h_A_dense, N * N * sizeof(double), cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_x_dense, h_x_dense, N * sizeof(double), cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_y_dense, h_y_dense, N * sizeof(double), cudaMemcpyHostToDevice));
// --- Descriptor for sparse matrix A
cusparseMatDescr_t descrA; cusparseSafeCall(cusparseCreateMatDescr(&descrA));
cusparseSafeCall(cusparseSetMatType (descrA, CUSPARSE_MATRIX_TYPE_GENERAL));
cusparseSafeCall(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE));
int nnzA = 0; // --- Number of nonzero elements in dense matrix A
const int lda = N; // --- Leading dimension of dense matrix
// --- Device side number of nonzero elements per row of matrix A
int *d_nnzPerVectorA; gpuErrchk(cudaMalloc(&d_nnzPerVectorA, N * sizeof(*d_nnzPerVectorA)));
cusparseSafeCall(cusparseDnnz(handle, CUSPARSE_DIRECTION_ROW, N, N, descrA, d_A_dense, lda, d_nnzPerVectorA, &nnzA));
// --- Host side number of nonzero elements per row of matrix A
int *h_nnzPerVectorA = (int *)malloc(N * sizeof(*h_nnzPerVectorA));
gpuErrchk(cudaMemcpy(h_nnzPerVectorA, d_nnzPerVectorA, N * sizeof(*h_nnzPerVectorA), cudaMemcpyDeviceToHost));
printf("Number of nonzero elements in dense matrix A = %i\n\n", nnzA);
for (int i = 0; i < N; ++i) printf("Number of nonzero elements in row %i for matrix = %i \n", i, h_nnzPerVectorA[i]);
printf("\n");
// --- Device side sparse matrix
double *d_A; gpuErrchk(cudaMalloc(&d_A, nnzA * sizeof(*d_A)));
int *d_A_RowIndices; gpuErrchk(cudaMalloc(&d_A_RowIndices, (N + 1) * sizeof(*d_A_RowIndices)));
int *d_A_ColIndices; gpuErrchk(cudaMalloc(&d_A_ColIndices, nnzA * sizeof(*d_A_ColIndices)));
cusparseSafeCall(cusparseDdense2csr(handle, N, N, descrA, d_A_dense, lda, d_nnzPerVectorA, d_A, d_A_RowIndices, d_A_ColIndices));
// --- Host side sparse matrices
double *h_A = (double *)malloc(nnzA * sizeof(*h_A));
int *h_A_RowIndices = (int *)malloc((N + 1) * sizeof(*h_A_RowIndices));
int *h_A_ColIndices = (int *)malloc(nnzA * sizeof(*h_A_ColIndices));
gpuErrchk(cudaMemcpy(h_A, d_A, nnzA * sizeof(*h_A), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_A_RowIndices, d_A_RowIndices, (N + 1) * sizeof(*h_A_RowIndices), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_A_ColIndices, d_A_ColIndices, nnzA * sizeof(*h_A_ColIndices), cudaMemcpyDeviceToHost));
printf("\nOriginal matrix A in CSR format\n\n");
for (int i = 0; i < nnzA; ++i) printf("A[%i] = %f ", i, h_A[i]); printf("\n");
printf("\n");
for (int i = 0; i < (N + 1); ++i) printf("h_A_RowIndices[%i] = %i \n", i, h_A_RowIndices[i]); printf("\n");
printf("\n");
for (int i = 0; i < nnzA; ++i) printf("h_A_ColIndices[%i] = %i \n", i, h_A_ColIndices[i]);
printf("\n");
for (int i = 0; i < N; ++i) printf("h_x[%i] = %f \n", i, h_x_dense[i]); printf("\n");
const double alpha = 1.;
const double beta = 0.;
cusparseSafeCall(cusparseDcsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nnzA, &alpha, descrA, d_A, d_A_RowIndices, d_A_ColIndices, d_x_dense,
&beta, d_y_dense));
gpuErrchk(cudaMemcpy(h_y_dense, d_y_dense, N * sizeof(double), cudaMemcpyDeviceToHost));
printf("\nResult vector\n\n");
for (int i = 0; i < N; ++i) printf("h_y[%i] = %f ", i, h_y_dense[i]); printf("\n");
}
You might want to have a look at the very good CUSP library. They implement sparse matrices in a variety of formats (coo, csr, ellpack, diagonal and a hybrid between ellpack and coo). Each with their own advantages as described in the documentation. Most of them are "standard" sparse matrix formats about which you can find more information online. Not a complete answer to your question perhaps, but it should provide a starting point.