I have a Java web app hosted on Google App Engine (GAE). The User clicks on a button and he gets a data table with 100 rows. At the bottom of the page, there is a "Make Web service calls" button. Clicking on that, the application will take one row at a time and make a third party web-service call using the URLConnection class. That part is working fine.
However, since there is a 60 second limit to the HttpRequest/Response cycle, all the 100 transactions don't go through as the timeout happens around row 50 or so.
How do I create a loop and send the Web service calls without the User having to click on the 'Make Webservice calls' more than once?
Is there a way to stop the loop before 60 seconds and then start again without committing the HttpResponse? (I don't want to use asynchronous Google backend).
Also, does GAE support file upload (to get the 100 rows from a file instead of a database)
Thank you.
Adding some code as per the comments:
URL url = new URL(urlString);
HttpURLConnection connection = (HttpURLConnection) url
.openConnection();
connection.setDoOutput(true);
connection.setRequestMethod("POST");
connection.setConnectTimeout(35000);
connection.setRequestProperty("Accept-Language", "en-US,en;q=0.5");
connection.setRequestProperty("Authorization", encodedCredentials);
// Send post request
DataOutputStream wr = new DataOutputStream(
connection.getOutputStream());
wr.writeBytes(submitRequest);
It all depends on what happens with the results of these calls.
If results are not returned to a UI, there is no need to block it. You can use Tasks API to create 100 tasks and return a response to a user. This will take a few seconds at most. The additional benefit is that you can make up to 10 calls in parallel by using tasks.
If results have to be returned to a user, you can still use up to 10 threads to process as many requests in parallel as possible. Hopefully, this will bring your time under 1 minute, but you cannot guarantee it since you depend on responses from third-party resources which maybe unavailable at the moment. You will have to implement your own retry mechanism.
Also note that users are not accustomed to waiting for several minutes for a website to respond. You may consider a different approach when a user is notified after the last request is processed without blocking your client code.
And yes, you can load data from files on App Engine.
Try using asynchronous urlfetch calls:
LinkedList<Future<HttpResponse>> futures;
// Start all the request
for (Url url : urls) {
HttpRequest request = new HttpRequest(url, HTTPMethod.POST);
request.setPayload(...)
futures.add(urlfetchservice.fetchAsync(request);
}
// Collect all the results
for (Future<HttpResponse> future : futures) {
HttpResponse response = future.get()
// Do something with future
}
Related
I have a request that lasts more than 3 minutes, I want the request to be sent and immediately give the answer 200 and after the end of the work - give the result
The workflow you've described is called asynchronous task execution.
The main idea is to remove time or resource consuming parts of work from the code that handles HTTP requests and deligate it to some kind of worker. The worker might be a diffrent thread or process or even a separate service that runs on a different server.
This makes your application more responsive, as the users gets the HTTP response much quicker. Also, with this approach you can display such UI-friendly things as progress bars and status marks for the task, create retrial policies if task failes etc.
Example workflow:
user makes HTTP request initiating the task
the server creates the task, adds it to the queue and returns the HTTP response with task_id immediately
the front-end code starts ajax polling to get the results of the task passing task_id
the server handles polling HTTP requests and gets status information for this task_id. It returns the info (whether results or "still waiting") with the HTTP response
the front-end displays spinner if server returns "still waiting" or the results if they are ready
The most popular way to do this in Django is using the celery disctributed task queue.
Suppose a request comes, you will have to verify it. Then send response and use a mechanism to complete the request in the background. You will have to be clear that the request can be completed. You can use pipelining, where you put every task into pipeline, Django-Celery is an option but don't use it unless required. Find easy way to resolve the issue
We are working on setting up an API Management portal for one of our Web API. We are using eventhubs for logging the events and we are transferring the event messages to Azure Blob storage using Azure functions.
We would like to know how can we find the Time taken by API Management portal for providing the response for a message (we are capturing the time taken at the back end api layer but not from the API Management layer).
Regards,
John
The simpler solution is to enable Azure Monitor Diagnostic Logs for the Apimanagement service. You will get raw logs for each request including
durationMs - interval between receiving request line and headers from a client and writing last chunk of response body to a client. All writes and reads include network latency.
BackendTime - time spent waiting on backend response
ClientTime - time spent with client for request and response
CacheTime - time spent on fetching from cache
You can also refer this video.
Not the correct way of doing this, but still get an idea of how much time each request is taking. We can actually use the context variable to set the start time in the inbound policy node and then calculate the end time in the outbound node.
My django rest app accepts request to scrape multiple pages for prices & compare them (which takes time ~5 seconds) then returns a list of the prices from each page as a json object.
I want to update the user with the current operation, for example if I scrape 3 pages I want to update the interface like this :
Searching 1/3
Searching 2/3
Searching 3/3
How can I do this?
I am using Angular 2 for my front end but this shouldn't make a big difference as it's a backend issue.
This isn't the only way, but this is how I do this in Django.
Things you'll need
Asynchronous worker procecess
This allows you to do work outside the context of the request-response cycle. The most common are either django-rq or Celery. I'd recommend django-rq for its simplicity, especially if all you're implementing is a progress indicator.
Caching layer (optional)
While you can use the database for persistence in this case, temporary cache key-value stores make more sense here as the progress information is ephemeral. The Memcached backend is built into Django, however I'd recommend switching to Redis as it's more fully featured, super fast, and since it's behind Django's caching abstraction, does not add complexity. (It's also a requirement for using the django-rq worker processes above)
Implementation
Overview
Basically, we're going to send a request to the server to start the async worker, and poll a different progress-indicator endpoint which gives the current status of that worker's progress until it's finished (or failed).
Server side
Refactor the function you'd like to track the progress of into an async task function (using the #job decorator in the case of django-rq)
The initial POST endpoint should first generate a random unique ID to identify the request (possibly with uuid). Then, pass the POST data along with this unique ID to the async function (in django-rq this would look something like function_name.delay(payload, unique_id)). Since this is an async call, the interpreter does not wait for the task to finish and moves on immediately. Return a HttpResponse with a JSON payload that includes the unique ID.
Back in the async function, we need to set the progress using cache. At the very top of the function, we should add a cache.set(unique_id, 0) to show that there is zero progress so far. Using your own math implementation, as the progress approaches 100% completion, change this value to be closer to 1. If for some reason the operation fails, you can set this to -1.
Create a new endpoint to be polled by the browser to check the progress. This looks for a unique_id query parameter and uses this to look up the progress with cache.get(unique_id). Return a JSON object back with the progress amount.
Client side
After sending the POST request for the action and receiving a response, that response should include the unique_id. Immediately start polling the progress endpoint at a regular interval, setting the unique_id as a query parameter. The interval could be something like 1 second using setInterval(), with logic to prevent sending a new request if there is still a pending request.
When the progress received equals to 1 (or -1 for failures), you know the process is finished and you can stop polling
That's it! It's a bit of work just to get progress indicators, but once you've done it once it's much easier to re-use the pattern in other projects.
Another way to do this which I have not explored is via Webhooks / Channels. In this way, polling is not required, and the server simply sends the messages to the client directly.
I have a requirement to count the jetty transactions and measure the time it took to process the request and get back the response using JMX for our monitoring system.
I am using Jetty 8.1.7 and I can’t seem to find a proper way to do this. I basically need to identify when request is sent (due to Jetty Async approach this is triggered from thread A) and when the response is complete (as the oncompleteResponse is done in another thread).
I usually use ThreadLocal for such state in other areas I need similar functionality, but obviously this won’t work here.
Any ideas how to overcome?
To use jetty's async requests you basically have to subclass ContentExchange and override its methods. So you can add an extra field to it which would contain a timestamp of when the request was sent, and use it later in your onResponseComplete() method to measure the processing time. If you need to know the time when your request was actually sent to the server instead of when it was created you can override the onRequestCommitted() and onRequestComplete() methods.
I've got a django site that is producing a csv download. The content of the csv is dictated by user defined parameters. It's possible that users will set parameters that require significant thinking time on the server. I need a way of sustaining the http connection so the browser doesn't kick up an error message. I heard that it's possible to send intermittent http headers to do this. Can anyone point me in the right direction to set this up on a django site?
(unfortunatly I'm stuck with the possibility of slow reports - improving my sql won't mitigate this)
Don't do it online. Trigger an offline task, use a bit of Javascript to repeatedly call a view that checks if the task has finished, and redirect to the finished file when it's ready.
Instead of blocking the user and it's browser for 20 minutes (which is not a good idea) do the time-consuming task in the background. When the task will finish and generate the result simply notify the user so that he/she will just need to download the ready result.