How to maintain an immutable list when you impact object linked to each other into this list - list

I'm trying to code the fast Non Dominated Sorting algorithm (NDS) of Deb used in NSGA2 in immutable way using Scala.
But the problem seems more difficult than i think, so i simplify here the problem to make a MWE.
Imagine a population of Seq[A], and each A element is decoratedA with a list which contains pointers to other elements of the population Seq[A].
A function evalA(a:decoratedA) take the list of linkedA it contains, and decrement value of each.
Next i take a subset list decoratedAPopulation of population A, and call evalA on each. I have a problem, because between each iteration on element on this subset list decoratedAPopulation, i need to update my population of A with the new decoratedA and the new updated linkedA it contain ...
More problematic, each element of population need an update of 'linkedA' to replace the linked element if it change ...
Hum as you can see, it seem complicated to maintain all linked list synchronized in this way. I propose another solution bottom, which probably need recursion to return after each EvalA a new Population with element replaced.
How can i do that correctly in an immutable way ?
It's easy to code in a mutable way, but i don't find a good way to do this in an immutable way, do you have a path or an idea to do that ?
object test extends App{
case class A(value:Int) {def decrement()= new A(value - 1)}
case class decoratedA(oneAdecorated:A, listOfLinkedA:Seq[A])
// We start algorithm loop with A element with value = 0
val population = Seq(new A(0), new A(0), new A(8), new A(1))
val decoratedApopulation = Seq(new decoratedA(population(1),Seq(population(2),population(3))),
new decoratedA(population(2),Seq(population(1),population(3))))
def evalA(a:decoratedA) = {
val newListOfLinked = a.listOfLinkedA.map{e => e.decrement()
new decoratedA(a.oneAdecorated,newListOfLinked)}
}
def run()= {
//decoratedApopulation.map{
// ?
//}
}
}
Update 1:
About the input / output of the initial algorithm.
The first part of Deb algorithm (Step 1 to Step 3) analyse a list of Individual, and compute for each A : (a) domination count, the number of A which dominate me (the value attribute of A) (b) a list of A i dominate (listOfLinkedA).
So it return a Population of decoratedA totally initialized, and for the entry of Step 4 (my problem) i take the first non dominated front, cf. the subset of elements of decoratedA with A value = 0.
My problem start here, with a list of decoratedA with A value = 0; and i search the next front into this list by computing each listOfLinkedA of each of this A
At each iteration between step 4 to step 6, i need to compute a new B subset list of decoratedA with A value = 0. For each , i decrementing first the domination count attribute of each element into listOfLinkedA, then i filter to get the element equal to 0. A the end of step 6, B is saved to a list List[Seq[DecoratedA]], then i restart to step 4 with B, and compute a new C, etc.
Something like that in my code, i call explore() for each element of B, with Q equal at the end to new subset of decoratedA with value (fitness here) = 0 :
case class PopulationElement(popElement:Seq[Double]){
implicit def poptodouble():Seq[Double] = {
popElement
}
}
class SolutionElement(values: PopulationElement, fitness:Double, dominates: Seq[SolutionElement]) {
def decrement()= if (fitness == 0) this else new SolutionElement(values,fitness - 1, dominates)
def explore(Q:Seq[SolutionElement]):(SolutionElement, Seq[SolutionElement])={
// return all dominates elements with fitness - 1
val newSolutionSet = dominates.map{_.decrement()}
val filteredSolution:Seq[SolutionElement] = newSolutionSet.filter{s => s.fitness == 0.0}.diff{Q}
filteredSolution
}
}
A the end of algorithm, i have a final list of seq of decoratedA List[Seq[DecoratedA]] which contain all my fronts computed.
Update 2
A sample of value extracted from this example.
I take only the pareto front (red) and the {f,h,l} next front with dominated count = 1.
case class p(x: Int, y: Int)
val a = A(p(3.5, 1.0),0)
val b = A(p(3.0, 1.5),0)
val c = A(p(2.0, 2.0),0)
val d = A(p(1.0, 3.0),0)
val e = A(p(0.5, 4.0),0)
val f = A(p(0.5, 4.5),1)
val h = A(p(1.5, 3.5),1)
val l = A(p(4.5, 1.0),1)
case class A(XY:p, value:Int) {def decrement()= new A(XY, value - 1)}
case class ARoot(node:A, children:Seq[A])
val population = Seq(
ARoot(a,Seq(f,h,l),
ARoot(b,Seq(f,h,l)),
ARoot(c,Seq(f,h,l)),
ARoot(d,Seq(f,h,l)),
ARoot(e,Seq(f,h,l)),
ARoot(f,Nil),
ARoot(h,Nil),
ARoot(l,Nil))
Algorithm return List(List(a,b,c,d,e), List(f,h,l))
Update 3
After 2 hour, and some pattern matching problems (Ahum...) i'm comming back with complete example which compute automaticaly the dominated counter, and the children of each ARoot.
But i have the same problem, my children list computation is not totally correct, because each element A is possibly a shared member of another ARoot children list, so i need to think about your answer to modify it :/ At this time i only compute children list of Seq[p], and i need list of seq[A]
case class p(x: Double, y: Double){
def toSeq():Seq[Double] = Seq(x,y)
}
case class A(XY:p, dominatedCounter:Int) {def decrement()= new A(XY, dominatedCounter - 1)}
case class ARoot(node:A, children:Seq[A])
case class ARootRaw(node:A, children:Seq[p])
object test_stackoverflow extends App {
val a = new p(3.5, 1.0)
val b = new p(3.0, 1.5)
val c = new p(2.0, 2.0)
val d = new p(1.0, 3.0)
val e = new p(0.5, 4.0)
val f = new p(0.5, 4.5)
val g = new p(1.5, 4.5)
val h = new p(1.5, 3.5)
val i = new p(2.0, 3.5)
val j = new p(2.5, 3.0)
val k = new p(3.5, 2.0)
val l = new p(4.5, 1.0)
val m = new p(4.5, 2.5)
val n = new p(4.0, 4.0)
val o = new p(3.0, 4.0)
val p = new p(5.0, 4.5)
def isStriclyDominated(p1: p, p2: p): Boolean = {
(p1.toSeq zip p2.toSeq).exists { case (g1, g2) => g1 < g2 }
}
def sortedByRank(population: Seq[p]) = {
def paretoRanking(values: Set[p]) = {
//comment from #dk14: I suppose order of values isn't matter here, otherwise use SortedSet
values.map { v1 =>
val t = (values - v1).filter(isStriclyDominated(v1, _)).toSeq
val a = new A(v1, values.size - t.size - 1)
val root = new ARootRaw(a, t)
println("Root value ", root)
root
}
}
val listOfARootRaw = paretoRanking(population.toSet)
//From #dk14: Here is convertion from Seq[p] to Seq[A]
val dominations: Map[p, Int] = listOfARootRaw.map(a => a.node.XY -> a.node.dominatedCounter) //From #dk14: It's a map with dominatedCounter for each point
val listOfARoot = listOfARootRaw.map(raw => ARoot(raw.node, raw.children.map(p => A(p, dominations.getOrElse(p, 0)))))
listOfARoot.groupBy(_.node.dominatedCounter)
}
//Get the first front, a subset of ARoot, and start the step 4
println(sortedByRank(Seq(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)).head)
}

Talking about your problem with distinguishing fronts (after update 2):
val (left,right) = population.partition(_.node.value == 0)
List(left, right.map(_.copy(node = node.copy(value = node.value - 1))))
No need for mutating anything here. copy will copy everything but fields you specified with new values. Talking about the code, the new copy will be linked to the same list of children, but new value = value - 1.
P.S. I have a feeling you may actually want to do something like this:
case class A(id: String, level: Int)
val a = A("a", 1)
val b = A("b", 2)
val c = A("c", 2)
val d = A("d", 3)
clusterize(List(a,b,c,d)) === List(List(a), List(b,c), List(d))
It's simple to implement:
def clusterize(list: List[A]) =
list.groupBy(_.level).toList.sortBy(_._1).map(_._2)
Test:
scala> clusterize(List(A("a", 1), A("b", 2), A("c", 2), A("d", 3)))
res2: List[List[A]] = List(List(A(a,1)), List(A(b,2), A(c,2)), List(A(d,3)))
P.S.2. Please consider better naming conventions, like here.
Talking about "mutating" elements in some complex structure:
The idea of "immutable mutating" some shared (between parts of a structure) value is to separate your "mutation" from the structure. Or simply saying, divide and conquerror:
calculate changes in advance
apply them
The code:
case class A(v: Int)
case class AA(a: A, seq: Seq[A]) //decoratedA
def update(input: Seq[AA]) = {
//shows how to decrement each value wherever it is:
val stats = input.map(_.a).groupBy(identity).mapValues(_.size) //domination count for each A
def upd(a: A) = A(a.v - stats.getOrElse(a, 0)) //apply decrement
input.map(aa => aa.copy(aa = aa.seq.map(upd))) //traverse and "update" original structure
}
So, I've introduced new Map[A, Int] structure, that shows how to modify the original one. This approach is based on highly simplified version of Applicative Functor concept. In general case, it should be Map[A, A => A] or even Map[K, A => B] or even Map[K, Zipper[A] => B] as applicative functor (input <*> map). *Zipper (see 1, 2) actually could give you information about current element's context.
Notes:
I assumed that As with same value are same; that's default behaviour for case classess, otherwise you need to provide some additional id's (or redefine hashCode/equals).
If you need more levels - like AA(AA(AA(...)))) - just make stats and upd recursive, if dеcrement's weight depends on nesting level - just add nesting level as parameter to your recursive function.
If decrement depends on parent node (like decrement only A(3)'s, which belongs to A(3)) - add parent node(s) as part of stats's key and analise it during upd.
If there is some dependency between stats calculation (how much to decrement) of let's say input(1) from input(0) - you should use foldLeft with partial stats as accumulator: val stats = input.foldLeft(Map[A, Int]())((partialStats, elem) => partialStats ++ analize(partialStats, elem))
Btw, it takes O(N) here (linear memory and cpu usage)
Example:
scala> val population = Seq(A(3), A(6), A(8), A(3))
population: Seq[A] = List(A(3), A(6), A(8), A(3))
scala> val input = Seq(AA(population(1),Seq(population(2),population(3))), AA(population(2),Seq(population(1),population(3))))
input: Seq[AA] = List(AA(A(6),List(A(8), A(3))), AA(A(8),List(A(6), A(3))))
scala> update(input)
res34: Seq[AA] = List(AA(A(5),List(A(7), A(3))), AA(A(7),List(A(5), A(3))))

Related

Fastest way to remove first n elements from MutableList

I am programming in Kotlin and have a MutableList from which I would like to remove the first n elements from that specific list instance. This means that functions like MutableList.drop(n) are out of the question.
One solution would of course be to loop and call MutableList.removeFirst() n times, but this feels inefficient, being O(n). Another way would be to choose another data type, but I would prefer not to clutter my project by implementing my own data type for this, if I can avoid it.
Is there a faster way to do this with a MutableList? If not, is there another built-in data type that can achieve this in less than O(n)?
In my opinion the best way to achieve this is
abstract fun subList(fromIndex: Int, toIndex: Int): List<E>.
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/sub-list.html
Under the hood it creates a new instance of list(SubList class for AbstractClass) with elements between the selected indexes.
Using:
val yourList = listOf<YourType>(...)
val yourNewList = yourList.subList(5, yourList.size)
// return list from 6th elem to last
One method which seems to be faster if n is sufficiently large seems to be the following:
Store the last listSize - n bytes to keep in a temporary list,
Clear original list instance
Add temporary list to original list
Here is a quick benchmark for some example values that happen to fit my use case:
val numRepetitions = 15_000
val listSize = 1_000
val maxRemove = listSize
val rnd0 = Random(0)
val rnd1 = Random(0)
// 1. Store the last `listSize - n` bytes to keep in a temporary list,
// 2. Clear original list
// 3. Add temporary list to original list
var accumulatedMsClearAddAll = 0L
for (i in 0 until numRepetitions) {
val l = Random.nextBytes(listSize).toMutableList()
val numRemove = rnd0.nextInt(maxRemove)
val numKeep = listSize - numRemove
val startTime = System.currentTimeMillis()
val expectedOutput = l.takeLast(numKeep)
l.clear()
l.addAll(expectedOutput)
val endTime = System.currentTimeMillis()
assert(l == expectedOutput)
accumulatedMsClearAddAll += endTime - startTime
}
// Iteratively remove the first byte `n` times.
var accumulatedMsIterative = 0L
for (i in 0 until numRepetitions) {
val numRemove = rnd1.nextInt(maxRemove)
val l = Random.nextBytes(listSize).toMutableList()
val expectedOutput = l.takeLast(listSize - numRemove)
val startTime = System.currentTimeMillis()
for (ii in 0 until numRemove) {
l.removeFirst()
}
val endTime = System.currentTimeMillis()
assert(l == expectedOutput)
accumulatedMsIterative += endTime - startTime
}
println("clear+addAll removal: $accumulatedMsClearAddAll ms")
println("Iterative removal: $accumulatedMsIterative ms")
Output:
Clear+addAll removal: 478 ms
Iterative removal: 12683 ms

Sort multiple sublists of list to create new list, Dart

I'm trying to sort an entire list according to one property. Afterwards I'd like to sort this list according to a second property, but in groups of 4. So, after sorting the list once, I want to look at the first 4 positions and sort only these 4 according to the second property - then move on to the next 4 positions and sort these again, and so on...
This is what I have so far:
class myElements {
int Position;
String text;
int Top;
int Left;
myElements(int Position, String text, int Top, int Left){
this.Position = Position;
this.text = text;
this.Top = Top;
this.Left = Left;
}
}
var FirstList = new List<myElements>();
var newList = new List<myElements>();
Adding Elements to my first list:
myElements Test = myElements(ElementNumber, text, Top, Left);
FirstList.add(Test);
Then sorting for the first time according to 'Top':
Comparator<myElements> TextComparator = (a, b) => a.Top.compareTo(b.Top);
FirstList.sort(TextComparator);
Here is where I'm stuck. I'm trying to sort the list again, but only in groups of 4 - this time according to 'Left':
for (int i = 0; i < FirstList.length; i += 4) {
Comparator<myElements> TextComparator2 = (a, b) =>
a.Left.compareTo(b.Left);
newList.addAll(FirstList.sublist(i, i + 3).sort(TextComparator2)); //this line does not work
}
I think I am stuck trying to access my sorted sublist: (FirstList.sublist(i, i + 4).sort(TextComparator2) . If I could add these to a new list, it should work.
However any other suggestions are more than welcome.
Thanks so much!
newList.addAll(FirstList.sublist(i, i + 3).sort(TextComparator2)); //this line does not work
Your code is almost correct. You have the right idea, but you ended up trying to do too much in one line of code.
Breaking it down a bit, your code is equivalent to:
var sublist = FirstList.sublist(i, i + 3);
newList.addAll(sublist.sort(...)); // Does not work
And that doesn't work because List.sort does not return a value. It mutates the list instead of returning a new list.
It would work if you instead did:
var sublist = FirstList.sublist(i, i + 3);
sublist.sort();
newList.addAll(sublist);
Also, List.sublist uses an exclusive end index. If you want to create sublists with 4 elements, you would need to use sublist(i, i + 4).

Kotlin a list of random distinct numbers

I am creating a list of random numbers using the following approach
val randomList = List(4) { Random.nextInt(0, 100) }
However, this approach doesn't work as I want to avoid repetitions
One way is to shuffle a Range and take as many items as you want:
val randomList = (0..99).shuffled().take(4)
This is not so efficient if the range is big and you only need just a few numbers.In this case it's better to use a Set like this:
val s: MutableSet<Int> = mutableSetOf()
while (s.size < 4) { s.add((0..99).random()) }
val randomList = s.toList()
Create:
val list = (0 until 100).toMutableList()
val randList = mutableListOf<Int>()
for (i in 0 until 4) {
val uniqueRand = list.random()
randList.add(uniqueRand)
list.remove(uniqueRand)
}
One line approach to get a list of n distinct random elements. Random is not limited in any way.
val list = mutableSetOf<Int>().let { while (it.size() < n) it += Random.nextInt(0, 100) }.toList()

Computing all values or stopping and returning just the best value if found

I have a list of items and for each item I am computing a value. Computing this value is a bit computationally intensive so I want to minimise it as much as possible.
The algorithm I need to implement is this:
I have a value X
For each item
a. compute the value for it, if it is < 0 ignore it completely
b. if (value > 0) && (value < X)
return pair (item, value)
Return all (item, value) pairs in a List (that have the value > 0), ideally sorted by value
To make it a bit clearer, step 3 only happens if none of the items have a value less than X. In step 2, when we encounter the first item that is less than X we should not compute the rest and just return that item (we can obviously return it in a Set() by itself to match the return type).
The code I have at the moment is as follows:
val itemValMap = items.foldLeft(Map[Item, Int)]()) {
(map : Map[Item, Int], key : Item) =>
val value = computeValue(item)
if ( value >= 0 ) //we filter out negative ones
map + (key -> value)
else
map
}
val bestItem = itemValMap.minBy(_._2)
if (bestItem._2 < bestX)
{
List(bestItem)
}
else
{
itemValMap.toList.sortBy(_._2)
}
However, what this code is doing is computing all the values in the list and choosing the best one, rather than stopping as a 'better' one is found. I suspect I have to use Streams in some way to achieve this?
OK, I'm not sure how your whole setup looks like, but I tried to prepare a minimal example that would mirror your situation.
Here it is then:
object StreamTest {
case class Item(value : Int)
def createItems() = List(Item(0),Item(3),Item(30),Item(8),Item(8),Item(4),Item(54),Item(-1),Item(23),Item(131))
def computeValue(i : Item) = { Thread.sleep(3000); i.value * 2 - 2 }
def process(minValue : Int)(items : Seq[Item]) = {
val stream = Stream(items: _*).map(item => item -> computeValue(item)).filter(tuple => tuple._2 >= 0)
stream.find(tuple => tuple._2 < minValue).map(List(_)).getOrElse(stream.sortBy(_._2).toList)
}
}
Each calculation takes 3 seconds. Now let's see how it works:
val items = StreamTest.createItems()
val result = StreamTest.process(2)(items)
result.foreach(r => println("Original: " + r._1 + " , calculated: " + r._2))
Gives:
[info] Running Main
Original: Item(3) , calculated: 4
Original: Item(4) , calculated: 6
Original: Item(8) , calculated: 14
Original: Item(8) , calculated: 14
Original: Item(23) , calculated: 44
Original: Item(30) , calculated: 58
Original: Item(54) , calculated: 106
Original: Item(131) , calculated: 260
[success] Total time: 31 s, completed 2013-11-21 15:57:54
Since there's no value smaller than 2, we got a list ordered by the calculated value. Notice that two pairs are missing, because calculated values are smaller than 0 and got filtered out.
OK, now let's try with a different minimum cut-off point:
val result = StreamTest.process(5)(items)
Which gives:
[info] Running Main
Original: Item(3) , calculated: 4
[success] Total time: 7 s, completed 2013-11-21 15:55:20
Good, it returned a list with only one item, the first value (second item in the original list) that was smaller than 'minimal' value and was not smaller than 0.
I hope that the example above is easily adaptable to your needs...
A simple way to avoid the computation of unneeded values is to make your collection lazy by using the view method:
val weigthedItems = items.view.map{ i => i -> computeValue(i) }.filter(_._2 >= 0 )
weigthedItems.find(_._2 < X).map(List(_)).getOrElse(weigthedItems.sortBy(_._2))
By example here is a test in the REPL:
scala> :paste
// Entering paste mode (ctrl-D to finish)
type Item = String
def computeValue( item: Item ): Int = {
println("Computing " + item)
item.toInt
}
val items = List[Item]("13", "1", "5", "-7", "12", "3", "-1", "15")
val X = 10
val weigthedItems = items.view.map{ i => i -> computeValue(i) }.filter(_._2 >= 0 )
weigthedItems.find(_._2 < X).map(List(_)).getOrElse(weigthedItems.sortBy(_._2))
// Exiting paste mode, now interpreting.
Computing 13
Computing 1
defined type alias Item
computeValue: (item: Item)Int
items: List[String] = List(13, 1, 5, -7, 12, 3, -1, 15)
X: Int = 10
weigthedItems: scala.collection.SeqView[(String, Int),Seq[_]] = SeqViewM(...)
res27: Seq[(String, Int)] = List((1,1))
As you can see computeValue was only called up to the first value < X (that is, up to 1)

Scala objects not changing their internal state

I am seeing a problem with some Scala 2.7.7 code I'm working on, that should not happen if it the equivalent was written in Java. Loosely, the code goes creates a bunch of card players and assigns them to tables.
class Player(val playerNumber : Int)
class Table (val tableNumber : Int) {
var players : List[Player] = List()
def registerPlayer(player : Player) {
println("Registering player " + player.playerNumber + " on table " + tableNumber)
players = player :: players
}
}
object PlayerRegistrar {
def assignPlayersToTables(playSamplesToExecute : Int, playersPerTable:Int) = {
val numTables = playSamplesToExecute / playersPerTable
val tables = (1 to numTables).map(new Table(_))
assert(tables.size == numTables)
(0 until playSamplesToExecute).foreach {playSample =>
val tableNumber : Int = playSample % numTables
tables(tableNumber).registerPlayer(new Player(playSample))
}
tables
}
}
The PlayerRegistrar assigns a number of players between tables. First, it works out how many tables it will need to break up the players between and creates a List of them.
Then in the second part of the code, it works out which table a player should be assigned to, pulls that table from the list and registers a new player on that table.
The list of players on a table is a var, and is overwritten each time registerPlayer() is called. I have checked that this works correctly through a simple TestNG test:
#Test def testRegisterPlayer_multiplePlayers() {
val table = new Table(1)
(1 to 10).foreach { playerNumber =>
val player = new Player(playerNumber)
table.registerPlayer(player)
assert(table.players.contains(player))
assert(table.players.length == playerNumber)
}
}
I then test the table assignment:
#Test def testAssignPlayerToTables_1table() = {
val tables = PlayerRegistrar.assignPlayersToTables(10, 10)
assertEquals(tables.length, 1)
assertEquals(tables(0).players.length, 10)
}
The test fails with "expected:<10> but was:<0>". I've been scratching my head, but can't work out why registerPlayer() isn't mutating the table in the list. Any help would be appreciated.
The reason is that in the assignPlayersToTables method, you are creating a new Table object. You can confirm this by adding some debugging into the loop:
val tableNumber : Int = playSample % numTables
println(tables(tableNumber))
tables(tableNumber).registerPlayer(new Player(playSample))
Yielding something like:
Main$$anon$1$Table#5c73a7ab
Registering player 0 on table 1
Main$$anon$1$Table#21f8c6df
Registering player 1 on table 1
Main$$anon$1$Table#53c86be5
Registering player 2 on table 1
Note how the memory address of the table is different for each call.
The reason for this behaviour is that a Range is non-strict in Scala (until Scala 2.8, anyway). This means that the call to the range is not evaluated until it's needed. So you think you're getting back a list of Table objects, but actually you're getting back a range which is evaluated (instantiating a new Table object) each time you call it. Again, you can confirm this by adding some debugging:
val tables = (1 to numTables).map(new Table(_))
println(tables)
Which gives you:
RangeM(Main$$anon$1$Table#5492bbba)
To do what you want, add a toList to the end:
val tables = (1 to numTables).map(new Table(_)).toList
val tables = (1 to numTables).map(new Table(_))
This line seems to be causing all the trouble - mapping over 1 to n gives you a RandomAccessSeq.Projection, and to be honest, I don't know how exactly they work, but a bit less clever initialising technique does the job.
var tables: Array[Table] = new Array(numTables)
for (i <- 0 to numTables) tables(i) = new Table(i)
Using the first initialisation method I wasn't able to change the objects (just like you), but using a simple array everything seems to be working.