I want to store output of a mapreduce job in two different directories.
Eventhough my code is designed to store the same output in different directories.
My Driver class code below
public class WordCountMain {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job myhadoopJob = new Job(conf);
myhadoopJob.setJarByClass(WordCountMain.class);
myhadoopJob.setJobName("WORD COUNT JOB");
FileInputFormat.addInputPath(myhadoopJob, new Path(args[0]));
myhadoopJob.setMapperClass(WordCountMapper.class);
myhadoopJob.setReducerClass(WordCountReducer.class);
myhadoopJob.setInputFormatClass(TextInputFormat.class);
myhadoopJob.setOutputFormatClass(TextOutputFormat.class);
myhadoopJob.setMapOutputKeyClass(Text.class);
myhadoopJob.setMapOutputValueClass(IntWritable.class);
myhadoopJob.setOutputKeyClass(Text.class);
myhadoopJob.setOutputValueClass(IntWritable.class);
MultipleOutputs.addNamedOutput(myhadoopJob, "output1", TextOutputFormat.class, Text.class, IntWritable.class);
MultipleOutputs.addNamedOutput(myhadoopJob, "output2", TextOutputFormat.class, Text.class, IntWritable.class);
FileOutputFormat.setOutputPath(myhadoopJob, new Path(args[1]));
System.exit(myhadoopJob.waitForCompletion(true) ? 0 : 1);
}
}
My Mapper Code
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>
{
#Override
protected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {
String line = value.toString();
String word =null;
StringTokenizer st = new StringTokenizer(line,",");
while(st.hasMoreTokens())
{
word= st.nextToken();
context.write(new Text(word), new IntWritable(1));
}
}
}
My Reducer Code is below
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>
{
MultipleOutputs mout =null;
protected void reduce(Text key, Iterable<IntWritable> values, Context context)throws IOException, InterruptedException {
int count=0;
int num =0;
Iterator<IntWritable> ie =values.iterator();
while(ie.hasNext())
{
num = ie.next().get();//1
count= count+num;
}
mout.write("output1", key, new IntWritable(count));
mout.write("output2", key, new IntWritable(count));
#Override
protected void setup(org.apache.hadoop.mapreduce.Reducer.Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
super.setup(context);
mout = new MultipleOutputs<Text, IntWritable>(context);
}
}
#Override
protected void setup(org.apache.hadoop.mapreduce.Reducer.Context context)
throws IOException, InterruptedException {
super.setup(context);
mout = new MultipleOutputs<Text, IntWritable>(context);
}
}
I am simply giving the output directories in reduce method itself
But when I run this mapreduce job using the below command, it does nothing. Even Mapreduce is not at all started. just a blank and stays idle.
hadoop jar WordCountMain.jar /user/cloudera/inputfiles/words.txt /user/cloudera/outputfiles/mapreduce/multipleoutputs
Could someone explain me what went wrong and how do I correct this with my code
Actually what happens is two output files with different name are stored inside /user/cloudera/outputfiles/mapreduce/multipleoutputs.
but what I need is storing output files in different directories.
In pig we can use by two STORE statement by giving different directories
How do I achieve the same in mapreduce
Can you try closing multiple output object in cleanup method for Reducer.
Related
I am trying to split a string using mapreduce2(yarn) in Hortonworks Sandbox.
It throws a ArrayOutOfBound Exception if I try to access val[1] , Works fine with when I don't split the input file.
Mapper:
public class MapperClass extends Mapper<Object, Text, Text, Text> {
private Text airline_id;
private Text name;
private Text country;
private Text value1;
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
String s = value.toString();
if (s.length() > 1) {
String val[] = s.split(",");
context.write(new Text("blah"), new Text(val[1]));
}
}
}
Reducer:
public class ReducerClass extends Reducer<Text, Text, Text, Text> {
private Text result = new Text();
public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
String airports = "";
if (key.equals("India")) {
for (Text val : values) {
airports += "\t" + val.toString();
}
result.set(airports);
context.write(key, result);
}
}
}
MainClass:
public class MainClass {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
#SuppressWarnings("deprecation")
Job job = new Job(conf, "Flights MR");
job.setJarByClass(MainClass.class);
job.setMapperClass(MapperClass.class);
job.setReducerClass(ReducerClass.class);
job.setNumReduceTasks(0);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(KeyValueTextInputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
Can you help?
Update:
Figured out that it doesn't convert Text to String.
If the string you are splitting does not contain a comma, the resulting String[] will be of length 1 with the entire string in at val[0].
Currently, you are making sure that the string is not the empty string
if (s.length() > -1)
But you are not checking that the split will actually result in an array of length more than 1 and assuming that there was a split.
context.write(new Text("blah"), new Text(val[1]));
If there was no split this will cause an out of bounds error. A possible solution would be to make sure that the string contains at least 1 comma, instead of checking that it is not the empty string like so:
String s = value.toString();
if (s.indexOf(',') > -1) {
String val[] = s.split(",");
context.write(new Text("blah"), new Text(val[1]));
}
My input file that is of size 10 GB is at
/user/cloudera/inputfiles/records.txt
Here is my Driver class code :
public class WordCountMain {
/**
* #param args
*/
public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
Configuration conf = new Configuration();
Path inputFilePath = new Path(args[0]);
Path outputFilePath = new Path(args[1]);
Job job = new Job(conf,"word count");
job.getConfiguration().set("mapred.job.queue.name","omega");
job.setJarByClass(WordCountMain.class);
FileInputFormat.addInputPath(job, inputFilePath);
FileOutputFormat.setOutputPath(job, outputFilePath);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setMapperClass(WordCountMapper.class);
job.setCombinerClass(WordCountCombiner.class);
job.setNumReduceTasks(0);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
I have code for Mapper and Combiner ,I have set reducer to zero
Here is my Mapper code :
public class WordCountMapper extends Mapper<Object,Text,Text,IntWritable>
{
public static IntWritable one = new IntWritable(1);
protected void map(Object key, Text value, Context context) throws java.io.IOException,java.lang.InterruptedException
{
String line = value.toString();
String eachWord =null;
StringTokenizer st = new StringTokenizer(line,"|");
while(st.hasMoreTokens())
{
eachWord = st.nextToken();
context.write(new Text(eachWord), one);
}
}
}
I have written my Own Combiner
Here is my Combiner Code :
public class WordCountCombiner extends Reducer<Text ,IntWritable,Text,IntWritable> {
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws java.io.IOException, java.lang.InterruptedException
{
int count =0;
for(IntWritable i : values)
{
count =count+i.get();
}
context.write(key, new IntWritable(count));
}
}
My Question here is What output will it get stored .
The Output of Mapper or output of combiner?
Or Combiner will get executed only if there is reducer phase written?
Pls help
You cannot be sure how many times the combiner function will run or if at all it will run. Also running the combiner is not dependent on if you specify reducer for your job. In your case it will simply produce 160 output files (10240/64=160)
By skipping the setting of mapper and reducer, the hadoop will move forward with its default mapping.
For example, it will use
IdentityMapper.class as a default mapper.
The default input format is TextInputFormat.
The default partitioner is HashPartitione.
By default, there is a single reducer, and therefore a single partition.
The default reducer is Reducer, again a generic type.
The default output format is TextOutputFormat, which writes out records, one per line, by converting keys and values to strings and separating them with a tab character
I have implemented a mapreduce operation for log file using amazon and hadoop with custom jar.
My output shows the correct keys and values, but all the records are being displayed in a single line. For example, given the following pairs:
<1387, 2>
<1388, 1>
This is what's printing:
1387 21388 1
This is what I'm expecting:
1387 2
1388 1
How can I fix this?
Cleaned up your code for you :)
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(LogAnalyzer.class);
conf.setJobName("Loganalyzer");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(LogAnalyzer.Map.class);
conf.setCombinerClass(LogAnalyzer.Reduce.class);
conf.setReducerClass(LogAnalyzer.Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
conf.set("mapreduce.textoutputformat.separator", "--");
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String line = ((Text) value).toString();
Matcher matcher = p.matcher(line);
if (matcher.matches()) {
String timestamp = matcher.group(4);
minute.set(getMinuteBucket(timestamp));
output.collect(minute, ONE); //context.write(minute, one);
}
}
This isn't hadoop-streaming, it's just a normal java job. You should amend the tag on the question.
This looks okay to me, although you don't have the mapper inside a class, which I assume is a copy/paste omission.
With regards to the line endings. I don't suppose you are looking at the output on Windows? It could be a problem with unix/windows line endings. If you open up the file in sublime or another advanced text editor you can switch between unix and windows. See if that works.
I need to implement a MR job which access data from both HBase table and HDFS files. E.g., mapper reads data from HBase table and from HDFS files, these data share the same primary key but have different schema. A reducer then join all columns (from HBase table and HDFS files) together.
I tried look online and could not find a way to run MR job with such mixed data source. MultipleInputs seem only work for multiple HDFS data sources. Please let me know if you have some ideas. Sample code would be great.
After a few days of investigation (and get help from HBase user mailing list), I finally figured out how to do it. Here is the source code:
public class MixMR {
public static class Map extends Mapper<Object, Text, Text, Text> {
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
String s = value.toString();
String[] sa = s.split(",");
if (sa.length == 2) {
context.write(new Text(sa[0]), new Text(sa[1]));
}
}
}
public static class TableMap extends TableMapper<Text, Text> {
public static final byte[] CF = "cf".getBytes();
public static final byte[] ATTR1 = "c1".getBytes();
public void map(ImmutableBytesWritable row, Result value, Context context) throws IOException, InterruptedException {
String key = Bytes.toString(row.get());
String val = new String(value.getValue(CF, ATTR1));
context.write(new Text(key), new Text(val));
}
}
public static class Reduce extends Reducer <Object, Text, Object, Text> {
public void reduce(Object key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
String ks = key.toString();
for (Text val : values){
context.write(new Text(ks), val);
}
}
}
public static void main(String[] args) throws Exception {
Path inputPath1 = new Path(args[0]);
Path inputPath2 = new Path(args[1]);
Path outputPath = new Path(args[2]);
String tableName = "test";
Configuration config = HBaseConfiguration.create();
Job job = new Job(config, "ExampleRead");
job.setJarByClass(MixMR.class); // class that contains mapper
Scan scan = new Scan();
scan.setCaching(500); // 1 is the default in Scan, which will be bad for MapReduce jobs
scan.setCacheBlocks(false); // don't set to true for MR jobs
scan.addFamily(Bytes.toBytes("cf"));
TableMapReduceUtil.initTableMapperJob(
tableName, // input HBase table name
scan, // Scan instance to control CF and attribute selection
TableMap.class, // mapper
Text.class, // mapper output key
Text.class, // mapper output value
job);
job.setReducerClass(Reduce.class); // reducer class
job.setOutputFormatClass(TextOutputFormat.class);
// inputPath1 here has no effect for HBase table
MultipleInputs.addInputPath(job, inputPath1, TextInputFormat.class, Map.class);
MultipleInputs.addInputPath(job, inputPath2, TableInputFormat.class, TableMap.class);
FileOutputFormat.setOutputPath(job, outputPath);
job.waitForCompletion(true);
}
}
There is no OOTB feature that supports this. A possible workaround could be to Scan your HBase table and write the Results to a HDFS file first and then do the reduce-side join using MultipleInputs. But this will incur some additional I/O overhead.
A pig script or hive query can do that easily.
sample pig script
tbl = LOAD 'hbase://SampleTable'
USING org.apache.pig.backend.hadoop.hbase.HBaseStorage(
'info:* ...', '-loadKey true -limit 5')
AS (id:bytearray, info_map:map[],...);
fle = LOAD '/somefile' USING PigStorage(',') AS (id:bytearray,...);
Joined = JOIN A tbl by id,fle by id;
STORE Joined to ...
I have a table called User with two columns, one called visitorId and the other called friend which is a list of strings. I want to check whether the VisitorId is in the friendlist. Can anyone direct me as to how to access the table columns in a map function?
I'm not able to picture how data is output from a map function in hbase.
My code is as follows:
ublic class MapReduce {
static class Mapper1 extends TableMapper<ImmutableBytesWritable, Text> {
private int numRecords = 0;
private static final IntWritable one = new IntWritable(1);
private final IntWritable ONE = new IntWritable(1);
private Text text = new Text();
#Override
public void map(ImmutableBytesWritable row, Result values, Context context) throws IOException {
//What should i do here??
ImmutableBytesWritable userKey = new ImmutableBytesWritable(row.get(), 0, Bytes.SIZEOF_INT);
context.write(userkey,One);
}
//context.write(text, ONE);
} catch (InterruptedException e) {
throw new IOException(e);
}
}
}
public static void main(String[] args) throws Exception {
Configuration conf = HBaseConfiguration.create();
Job job = new Job(conf, "CheckVisitor");
job.setJarByClass(MapReduce.class);
Scan scan = new Scan();
Filter f = new RowFilter(CompareOp.EQUAL,new SubstringComparator("mId2"));
scan.setFilter(f);
scan.addFamily(Bytes.toBytes("visitor"));
scan.addFamily(Bytes.toBytes("friend"));
TableMapReduceUtil.initTableMapperJob("User", scan, Mapper1.class, ImmutableBytesWritable.class,Text.class, job);
}
}
So Result values instance would contain the full row from the scanner.
To get the appropriate columns from the Result I would do something like :-
VisitorIdVal = value.getColumnLatest(Bytes.toBytes(columnFamily1), Bytes.toBytes("VisitorId"))
friendlistVal = value.getColumnLatest(Bytes.toBytes(columnFamily2), Bytes.toBytes("friendlist"))
Here VisitorIdVal and friendlistVal are of the type keyValue http://archive.cloudera.com/cdh/3/hbase/apidocs/org/apache/hadoop/hbase/KeyValue.html, to get their values out you can do a Bytes.toString(VisitorIdVal.getValue())
Once you have extracted the values from columns you can check for "VisitorId" in "friendlist"