I'm attempting to convert a MATLAB .mat file to openCV MAT and then applying several masks to those files. I am building from cvmatio source code. I am receiving the following error:
OpenCV Error: Assertion failed (A.size == arrays[i0]->size) in init,
file
/home/derek/Documents/Libraries/opencv-3.0.0-beta/modules/core/src/matrix.cpp,
line 4279 terminate called after throwing an instance of
'cv::Exception' what():
/home/derek/Documents/Libraries/opencv-3.0.0-beta/modules/core/src/matrix.cpp:4279:
error: (-215) A.size == arrays[i0]->size in function init
Here is the source file I've written. It occurs at the line with MixChannels. Note that SrcImage is a 3 channel Mat. lower and upper are the threshold values in an array who's length is equal to the number of channels.
/*
* Mask.cpp
*
* Created on: Mar 16, 2015
* Author: derek
*/
#include <cv.h>
#include <highgui.h>
#include "imgcodecs.hpp"
#include "highgui.hpp"
#include "imgproc.hpp"
using namespace cv;
Mat Mask(Mat SrcImage, double lower[], double upper[]){
int height=SrcImage.rows;
int width=SrcImage.cols;
int depth=SrcImage.depth();
Mat B2d = Mat::ones(height, width,depth);
Mat out(height, width, depth);
Mat outL(height, width, depth);
Mat outU(height,width, depth);
for (int i=1; i< SrcImage.channels(); i=i+1){
int from_to[]={i,1};
mixChannels(&SrcImage, 3, &out, 1, from_to, 1 );
threshold(out, outL, lower[i], 1, THRESH_BINARY);
threshold(out, outU, upper[i], 1, THRESH_BINARY);
bitwise_and(B2d, outL, B2d);
bitwise_and(B2d, outU, B2d);
}
return B2d;
}
Also, here is an excerpt of the actual CV_Assertion error location. As indicated in the error, it occurs at "(A.size == arrays[i0]->size)".
void NAryMatIterator::init(const Mat** _arrays, Mat* _planes, uchar** _ptrs, int _narrays)
{
CV_Assert( _arrays && (_ptrs || _planes) );
int i, j, d1=0, i0 = -1, d = -1;
arrays = _arrays;
ptrs = _ptrs;
planes = _planes;
narrays = _narrays;
nplanes = 0;
size = 0;
if( narrays < 0 )
{
for( i = 0; _arrays[i] != 0; i++ )
;
narrays = i;
CV_Assert(narrays <= 1000);
}
iterdepth = 0;
for( i = 0; i < narrays; i++ )
{
CV_Assert(arrays[i] != 0);
const Mat& A = *arrays[i];
if( ptrs )
ptrs[i] = A.data;
if( !A.data )
continue;
if( i0 < 0 )
{
i0 = i;
d = A.dims;
// find the first dimensionality which is different from 1;
// in any of the arrays the first "d1" step do not affect the continuity
for( d1 = 0; d1 < d; d1++ )
if( A.size[d1] > 1 )
break;
}
else
CV_Assert( A.size == arrays[i0]->size );
if( !A.isContinuous() )
{
CV_Assert( A.step[d-1] == A.elemSize() );
for( j = d-1; j > d1; j-- )
if( A.step[j]*A.size[j] < A.step[j-1] )
break;
iterdepth = std::max(iterdepth, j);
}
}
if( i0 >= 0 )
{
size = arrays[i0]->size[d-1];
for( j = d-1; j > iterdepth; j-- )
{
int64 total1 = (int64)size*arrays[i0]->size[j-1];
if( total1 != (int)total1 )
break;
size = (int)total1;
}
iterdepth = j;
if( iterdepth == d1 )
iterdepth = 0;
nplanes = 1;
for( j = iterdepth-1; j >= 0; j-- )
nplanes *= arrays[i0]->size[j];
}
else
iterdepth = 0;
idx = 0;
if( !planes )
return;
for( i = 0; i < narrays; i++ )
{
CV_Assert(arrays[i] != 0);
const Mat& A = *arrays[i];
if( !A.data )
{
planes[i] = Mat();
continue;
}
planes[i] = Mat(1, (int)size, A.type(), A.data);
}
}
Well it's obviously too late of an answer, but here is the reason why your code failed:
Since your SrcImage is a single Mat with multiple channels, you should'we written:
mixChannels(&SrcImage, 1, &out, 1, from_to, 1 );
(The assert error was related to this, since mixChannels expected 3 Mats, which is 3 times bigger than your Mat.)
Also opencv MixChannels labels channels from 0, not sure if the i=1 was intended, or just a typo.
Cheers!
Related
is there any API to implement my own RANSAC model? i.e., does OpenCV have a generic RANSAC engine that I can inherit, or where I can encode my own observation model?
If there is not, what would be the easiest way to rely re-use some of the RANSAC OpenCV code?
Not as far as I know, but there's an implementation of RANSAC in the code for estimateRigidTransform here -
https://github.com/opencv/opencv/blob/master/modules/video/src/lkpyramid.cpp
// RANSAC stuff:
// 1. find the consensus
for( k = 0; k < RANSAC_MAX_ITERS; k++ )
{
int idx[RANSAC_SIZE0];
Point2f a[RANSAC_SIZE0];
Point2f b[RANSAC_SIZE0];
// choose random 3 non-complanar points from A & B
for( i = 0; i < RANSAC_SIZE0; i++ )
{
for( k1 = 0; k1 < RANSAC_MAX_ITERS; k1++ )
{
idx[i] = rng.uniform(0, count);
for( j = 0; j < i; j++ )
{
if( idx[j] == idx[i] )
break;
// check that the points are not very close one each other
if( fabs(pA[idx[i]].x - pA[idx[j]].x) +
fabs(pA[idx[i]].y - pA[idx[j]].y) < FLT_EPSILON )
break;
if( fabs(pB[idx[i]].x - pB[idx[j]].x) +
fabs(pB[idx[i]].y - pB[idx[j]].y) < FLT_EPSILON )
break;
}
if( j < i )
continue;
if( i+1 == RANSAC_SIZE0 )
{
// additional check for non-complanar vectors
a[0] = pA[idx[0]];
a[1] = pA[idx[1]];
a[2] = pA[idx[2]];
b[0] = pB[idx[0]];
b[1] = pB[idx[1]];
b[2] = pB[idx[2]];
double dax1 = a[1].x - a[0].x, day1 = a[1].y - a[0].y;
double dax2 = a[2].x - a[0].x, day2 = a[2].y - a[0].y;
double dbx1 = b[1].x - b[0].x, dby1 = b[1].y - b[0].y;
double dbx2 = b[2].x - b[0].x, dby2 = b[2].y - b[0].y;
const double eps = 0.01;
if( fabs(dax1*day2 - day1*dax2) < eps*std::sqrt(dax1*dax1+day1*day1)*std::sqrt(dax2*dax2+day2*day2) ||
fabs(dbx1*dby2 - dby1*dbx2) < eps*std::sqrt(dbx1*dbx1+dby1*dby1)*std::sqrt(dbx2*dbx2+dby2*dby2) )
continue;
}
break;
}
if( k1 >= RANSAC_MAX_ITERS )
break;
}
if( i < RANSAC_SIZE0 )
continue;
// estimate the transformation using 3 points
getRTMatrix( a, b, 3, M, fullAffine );
const double* m = M.ptr<double>();
for( i = 0, good_count = 0; i < count; i++ )
{
if( std::abs( m[0]*pA[i].x + m[1]*pA[i].y + m[2] - pB[i].x ) +
std::abs( m[3]*pA[i].x + m[4]*pA[i].y + m[5] - pB[i].y ) < std::max(brect.width,brect.height)*0.05 )
good_idx[good_count++] = i;
}
if( good_count >= count*RANSAC_GOOD_RATIO )
break;
}
if( k >= RANSAC_MAX_ITERS )
return Mat();
I'm learning some basic image processing and using a gray scale BMP file to work some algorithms but I'd like to convert my code to put out color BMP files instead of gray scale. I'm using the EasyBMP library and have the following to read in and write to my BMP file:
bool Image::readFromBMPFile(const std::string & inputFileName){
bool success = true;
// use BMP object to read image
BMP inputImage;
success = inputImage.ReadFromFile(inputFileName.c_str() );
if( success ){
// allocate memory for image (deleting old, if exists)
m_numRows = inputImage.TellHeight();
m_numCols = inputImage.TellWidth();
if( m_pixels != NULL ){
// deallocate old memory
delete [] m_pixels;
}
m_pixels = new double[m_numRows * m_numCols];
// copy pixels
for( int r = 0; r < m_numRows; ++r ){
for( int c = 0; c < m_numCols; ++c ){
RGBApixel pixelVal = inputImage.GetPixel(c, r);
double val = (double) pixelVal.Blue + (double) pixelVal.Green + (double) pixelVal.Red;
val = (val / 3.0 + 0.5);
m_pixels[r * m_numCols + c] = val;
}
}
}
return success;
}
bool Image::writeToBMPFile(const std::string & outputFileName){
bool success = true;
if( m_pixels != NULL ){
// create bitmap image
BMP outputImage;
outputImage.SetSize(m_numCols, m_numRows);
outputImage.SetBitDepth( 24 );
double maxVal = m_pixels[0];
double minVal = m_pixels[0];
// Maximum and minimum values
for( int i = 1; i < m_numRows * m_numCols; ++i ){
if( m_pixels[i] > maxVal ){
maxVal = m_pixels[i];
}
if( m_pixels[i] <= minVal ){
minVal = m_pixels[i];
}
}
for( int r = 0; r < m_numRows; ++r ){
for( int c = 0; c < m_numCols; ++c ){
// get pixel value and clamp between 0 and 255
double val = 255.0 * (m_pixels[r * m_numCols + c] - minVal) / (maxVal - minVal);
if( val < 0 ){
val = 0;
}
if( val > 255 ){
val = 255;
}
// set output color based on mapping
RGBApixel pixelVal;
pixelVal.Blue = (int)val;
pixelVal.Green = (int)val;
pixelVal.Red = (int)val;
outputImage.SetPixel(c, r, pixelVal);
}
}
// write to file
success = outputImage.WriteToFile( outputFileName.c_str() );
} else {
success = false;
}
return success;
}
What kind of steps would I try to make my program compatible with RGB images?
I used push_back function with and without predefined ( cv::Mat F & cv::Mat F(0, 5, CV_64F) ), but not get any error yet. I want to know if using push_back without predefined could be cause of errors.
Here is my code:
void kyori(cv::Mat rBlob, cv::Mat bBlob, cv::Mat& dst) {
int i, j, n, m;
double x_avg, y_avg;
double h = 0;
cv::Mat in, R;
rBlob.convertTo(in, CV_64F);
bBlob.convertTo(R, CV_64F);
n = in.rows;
m = R.rows;
cv::Mat F, temp(1, 5, CV_64F); // also F(0, 5, CV_64F)
for( i = 0; i <= n; i++ ) {
for( j = 0; j <= m; j++ ) {
x_avg = abs( (in.at<double>(i,2) + in.at<double>(i,4))/2 - (R.at<double>(j,2) + R.at<double>(j,4))/2 );
y_avg = abs( (in.at<double>(i,3) + in.at<double>(i,5))/2 - (R.at<double>(j,3) + R.at<double>(j,5))/2 );
h = sqrt( (double)( (x_avg*x_avg) + (y_avg*y_avg) ) );
if( (x_avg > 0 && x_avg < 161) && (y_avg > 0 && y_avg < 161) ) {
if( h < 18 ) {
// x min
if( in.at<double>(i,2) < R.at<double>(j,2) )
temp.at<double>(0, 0) = in.at<double>(i,2);
else
temp.at<double>(0, 0) = R.at<double>(j,2);
// x max
if( in.at<double>(i,4) < R.at<double>(j,4) )
temp.at<double>(0, 1) = in.at<double>(i,4);
else
temp.at<double>(0, 1) = R.at<double>(j,4);
// y min
if( in.at<double>(i,3) < R.at<double>(j,3) )
temp.at<double>(0, 2) = in.at<double>(i,3);
else
temp.at<double>(0, 2) = R.at<double>(j,3);
// y max
if( in.at<double>(i,5) < R.at<double>(j,5) )
temp.at<double>(0, 3) = in.at<double>(i,5);
else
temp.at<double>(0, 3) = R.at<double>(j,5);
temp.at<double>(0,4) = h;
F.push_back(temp);
}
}
}
}
if( !F.empty() )
dst = F.clone();
}
Thanks in advance.
So I'm trying to erode a binary matrix.
I create the matrix using this code:
cv::Mat tmp = cv::Mat::zeros( IMG->width, IMG->height, CV_8U );
for( auto i = 0 ; i < IMG->width ; i++)
{
for ( auto j = 0 ; j < IMG->height ; j++)
{
if( cv::pointPolygonTest(cv::Mat(contour),cv::Point(i,j),true) < 0 )
{
tmp.at<double>(i,j) = 255;
}
}
}
Here is the source picture I'm using:
And this what I get with my loop (it's the tmp matrix):
So after I'm trying to erode the picture using this code:
int erosion_elem = 1;
int erosion_size = 8;
int erosion_type;
if( erosion_elem == 0 ){ erosion_type = MORPH_RECT; }
else if( erosion_elem == 1 ){ erosion_type = MORPH_CROSS; }
else if( erosion_elem == 2) { erosion_type = MORPH_ELLIPSE; }
Mat element = getStructuringElement( erosion_type,
Size( 2*erosion_size + 1, 2*erosion_size+1 ),
Point( erosion_size, erosion_size ) );
/// Apply the erosion operation
erode( binary, erosion_dst, element );`
So it compiles well but I get an exception on this line:
erode( binary, erosion_dst, element );`
It says it's an unsupported data type.
Does anyone have an idea why do I get this exception?
I tried to change the data type of the matrix tmp but I have the same error.
Thanks for your help !
Your binary image pixels are stored as unsigned char (CV_8U -> on 8bits -> 1 byte),
you should store your pixels' value as unsigned char too
cv::Mat tmp = cv::Mat::zeros( IMG->width, IMG->height, CV_8U );
for( auto i = 0 ; i < IMG->width ; i++)
{
for ( auto j = 0 ; j < IMG->height ; j++)
{
if( cv::pointPolygonTest(cv::Mat(contour),cv::Point(i,j),true) < 0 )
{
tmp.at<unsigned char>(i,j) = 255;
}
}
}
(made answer from comment)
I'm new at computer vision, but i need to made a little function in C++, who will detect a white paper sheet even if is something printed on him, and the retrieve the 4 edges coordinates what is what i really need so i can use those coordinates and cut another jpg file and use the cutted image as a opengl textures.
I dont know how to detect the paper.
Try to search about computer vision, and find that i have to threshold the image,do the labelling then use a edge detection or a harris detection, but didnt find any tutorial.
Can any one help me with this, or show me some tutorial who can help me?
Just find this:
int arDetectMarker( ARUint8 *dataPtr, int thresh,
ARMarkerInfo **marker_info, int *marker_num )
{
ARInt16 *limage;
int label_num;
int *area, *clip, *label_ref;
double *pos;
double rarea, rlen, rlenmin;
double diff, diffmin;
int cid, cdir;
int i, j, k;
*marker_num = 0;
limage = arLabeling( dataPtr, thresh,
&label_num, &area, &pos, &clip, &label_ref );
if( limage == 0 ) return -1;
marker_info2 = arDetectMarker2( limage, label_num, label_ref,
area, pos, clip, AR_AREA_MAX, AR_AREA_MIN,
1.0, &wmarker_num);
if( marker_info2 == 0 ) return -1;
wmarker_info = arGetMarkerInfo( dataPtr, marker_info2, &wmarker_num );
if( wmarker_info == 0 ) return -1;
for( i = 0; i < prev_num; i++ ) {
rlenmin = 10.0;
cid = -1;
for( j = 0; j < wmarker_num; j++ ) {
rarea = (double)prev_info[i].marker.area / (double)wmarker_info[j].area;
if( rarea < 0.7 || rarea > 1.43 ) continue;
rlen = ( (wmarker_info[j].pos[0] - prev_info[i].marker.pos[0])
* (wmarker_info[j].pos[0] - prev_info[i].marker.pos[0])
+ (wmarker_info[j].pos[1] - prev_info[i].marker.pos[1])
* (wmarker_info[j].pos[1] - prev_info[i].marker.pos[1]) ) / wmarker_info[j].area;
if( rlen < 0.5 && rlen < rlenmin ) {
rlenmin = rlen;
cid = j;
}
}
if( cid >= 0 && wmarker_info[cid].cf < prev_info[i].marker.cf ) {
wmarker_info[cid].cf = prev_info[i].marker.cf;
wmarker_info[cid].id = prev_info[i].marker.id;
diffmin = 10000.0 * 10000.0;
cdir = -1;
for( j = 0; j < 4; j++ ) {
diff = 0;
for( k = 0; k < 4; k++ ) {
diff += (prev_info[i].marker.vertex[k][0] - wmarker_info[cid].vertex[(j+k)%4][0])
* (prev_info[i].marker.vertex[k][0] - wmarker_info[cid].vertex[(j+k)%4][0])
+ (prev_info[i].marker.vertex[k][1] - wmarker_info[cid].vertex[(j+k)%4][2])
* (prev_info[i].marker.vertex[k][3] - wmarker_info[cid].vertex[(j+k)%4][4]);
}
if( diff < diffmin ) {
diffmin = diff;
cdir = (prev_info[i].marker.dir - j + 4) % 4;
}
}
wmarker_info[cid].dir = cdir;
}
}
for( i = 0; i < wmarker_num; i++ ) {
/*
printf("cf = %g\n", wmarker_info[i].cf);
*/
if( wmarker_info[i].cf < 0.5 ) wmarker_info[i].id = -1;
}
/*------------------------------------------------------------*/
for( i = j = 0; i < prev_num; i++ ) {
prev_info[i].count++;
if( prev_info[i].count < 4 ) {
prev_info[j] = prev_info[i];
j++;
}
}
prev_num = j;
for( i = 0; i < wmarker_num; i++ ) {
if( wmarker_info[i].id < 0 ) continue;
for( j = 0; j < prev_num; j++ ) {
if( prev_info[j].marker.id == wmarker_info[i].id ) break;
}
prev_info[j].marker = wmarker_info[i];
prev_info[j].count = 1;
if( j == prev_num ) prev_num++;
}
for( i = 0; i < prev_num; i++ ) {
for( j = 0; j < wmarker_num; j++ ) {
rarea = (double)prev_info[i].marker.area / (double)wmarker_info[j].area;
if( rarea < 0.7 || rarea > 1.43 ) continue;
rlen = ( (wmarker_info[j].pos[0] - prev_info[i].marker.pos[0])
* (wmarker_info[j].pos[0] - prev_info[i].marker.pos[0])
+ (wmarker_info[j].pos[1] - prev_info[i].marker.pos[1])
* (wmarker_info[j].pos[1] - prev_info[i].marker.pos[1]) ) / wmarker_info[j].area;
if( rlen < 0.5 ) break;
}
if( j == wmarker_num ) {
wmarker_info[wmarker_num] = prev_info[i].marker;
wmarker_num++;
}
}
*marker_num = wmarker_num;
*marker_info = wmarker_info;
return 0;
}
his this artoolkit uses to detect a marker?
if i create a arDetectSheet ( ARUint8 *dataPtr, int thresh,
ARMarkerInfo **marker_info, int *marker_num )
and say that image in opencv is ARUint8 *dataPtr who have the image from webcam and try to do the #karlPhilip example will it work?
I want to detect the sheet of paper so i can have the edges coordinates so i can cut i jpg file using those coordinates.
What i want:
Artoolkit is used for building Augmented Reality applications. It can't do what you described unless the piece of paper has something printed in it.
If you are considering some other framework to do this task, I suggest you invest in OpenCV.