Queue: Dequeue function crashes program - c++

I am attempting to make a queue in c++ using a double linked list. I Have not fully tested everything since i am stuck at the step where you dequeue. I attempted to create a temp node, and move around stuff so when I call delete on the head node in the queue (called queue), and then set the head to a temp node which is the next element, (you can see in the code) but when I call delete, is where it crashes, according to MS Visual studios 2013. Also to add how weird this is, following the stack called, after delete is called, setPrev is called and set the prev node and crashes there. Now I never call this function during any of my destructors deletes so any help will do. I will try my best to understand any answers but I am still new to c++ terminology. Below is my code. Oh one last thing, in main, all I did was call enqueue once, then dequeue once, then delete
Node Class
...
#ifndef TSDNODE_H
#define TSDNODE_H
template <class T>
class DNode
{
private:
DNode<T>* next;
DNode<T>* prev;
T data;
public:
DNode(T);
void setNext(DNode<T>* next);
void setPrev(DNode<T>* prev);
DNode<T>* getNext() const;
DNode<T>* getPrev() const;
T getData() const;
void setData(T data);
~DNode();
};
template <class T>
DNode<T>::DNode(T data)
{
this->next = nullptr;
this->data = data;
this->prev = nullptr;
}
template <class T>
void DNode<T>::setNext(DNode<T>* next)
{
this->next = next;
}
template <class T>
void DNode<T>::setPrev(DNode<T>* prev)
{
this->prev = prev;
}
template <class T>
DNode<T>* DNode<T>::getNext() const
{
return this->next;
}
template <class T>
DNode<T>* DNode<T>::getPrev() const
{
return this->prev;
}
template <class T>
T DNode<T>::getData() const
{
return this->data;
}
template <class T>
void DNode<T>::setData(T data)
{
this->data = data;
}
template <class T>
DNode<T>::~DNode()
{
delete this->next;
delete this->prev;
this->next = nullptr;
this->prev = nullptr;
}
#endif /* TSDNODE_H */
....
Queue Class
....
#ifndef TSQUEUE_H
#define TSQUEUE_H
#include "TSDNode.h"
#include <string>
template <class T>
class Queue
{
private:
DNode<T>* queue;
DNode<T>* tail;
int size;
public:
Queue();
void enqueue(T data);
T dequeue();
~Queue();
};
template <class T>
Queue<T>::Queue()
{
this->queue = nullptr;
this->tail = this->queue;
size = 0;
}
template <class T>
void Queue<T>::enqueue(T data)
{
if (this->tail != NULL)
{
this->tail->setNext(new DNode<T>(data));
this->tail->getNext()->setPrev(this->tail);
this->tail = this->tail->getNext();
}
else
{
this->queue = new DNode<T>(data);
this->tail = this->queue;
}
size++;
}
template <class T>
T Queue<T>::dequeue()
{
T data;
if (this->queue == nullptr)
{
delete this->tail;
delete this->queue;
this->tail = nullptr;
std::string ex = "Exception: Empty Queue\n";
throw ex;
}
else if (this->queue != nullptr)
{
data = this->queue->getData();
DNode<T>* node = this->queue->getNext();
this->queue->setNext(nullptr);
this->queue->setPrev(nullptr);
node->setPrev(nullptr);
//--------------------------------------------------- crashes here
delete this->queue;
this->queue = node;
}
size--;
return data;
}
template <class T>
Queue<T>::~Queue()
{
delete this->queue;
this->queue = nullptr;
this->tail = nullptr;
}
#endif /* TSQUEUE_H */

In your DNode destructor, you don't want to delete the next and prev nodes. You only want to delete this node, not everything it links to.
Remove these lines
delete this->next;
delete this->prev;
Edit: Actually this isn't your problem, because you are clearing out the next and prev values before you delete the node. I still think it is better to not automatically delete the whole chain, but as long as you are consistent with how you handle node deletion it should still work.
You actually problem is that when you dequeue the last node, you still try to set the next pointer of the next node in this line:
node->setPrev(nullptr);
//--------------------------------------------------- crashes here
At this point node is nullptr, so trying to access node->next causes a crash. A simple if test is all you need
if (node != nullptr)
node->setPrev(nullptr);
//--------------------------------------------------- no longer crashes here
Edit 2:
Also note that in the case where the next node in the queue is nullptr, you also want to set the tail to nullptr.

Related

Fixing memory leaks in a doubly linked list implementation

I read some of the other posts on this topic because there were quite a few, but they didn't really help my situation.
I am getting memory leaks in my implementation of a doubly linked list. I have to make my own so using list is not an option.
here are the two push functions I am using...
template <class T>
void dllist<T>::push_front(T val) {
node* new_node = new node;
new_node->value = val;
new_node->forward = head;
new_node->backward = nullptr;
if (head != nullptr)
head->backward = new_node;
head = new_node;
}
and...
template <class T>
void dllist<T>::push_back(T val) {
node* new_node = new node;
new_node->value = val;
new_node->forward = nullptr;
if (!head)
head = new_node;
else {
node* traveller = head;
while (traveller->forward != nullptr)
traveller = traveller->forward;
traveller->forward = new_node;
new_node->backward = traveller;
}
}
finally, here is my destructor
template <class T>
dllist<T>::~dllist() {
node* current = head;
while (current != nullptr) {
node* forward = current->forward;
delete current;
current = forward;
}
}
In main, I declare an object of type dllist called mylist and I make a few calls to push_front with some integer values and then push_back.
I am using the CRT library to check for leaks and there is a leak at each call to push_back or push_front.
I am confused because I thought I made my destructor correctly. Is there something else Im not seeing?
If anyone could point me in the right direction I'd appreciate it!
Thanks.
MRE
template<class T>
class dllist {
struct node {
T value;
node* forward;
node* backward;
};
node* head;
public:
dllist(); // default constructor
~dllist(); // default destructor
void push_front(T); // push element to the front of the list
void push_back(T); // push element to the back of the list
};
int main() {
{
dllist<int> mylist;
mylist.push_front(10);
mylist.push_front(12);
mylist.push_front(14);
mylist.push_front(16);
mylist.push_front(18);
mylist.push_front(19);
mylist.push_back(11);
mylist.push_back(21);
mylist.push_back(31);
mylist.push_back(41);
mylist.push_back(31);
mylist.push_back(41);
mylist.push_back(222);
}
_CrtDumpMemoryLeaks();
return 0;
}
template <class T>
dllist<T>::dllist() {
head = nullptr;
}

Adding function templates to classes

So far, I have implemented a basic LinkedList. This works, but only for integers, and I would like it to work for any type.
I'm trying to get it to work for first any same type (i.e a LinkedList of just strings, or then just ints). After, I would like it to find a way of making it a LinkedList of anything (containing strings, then ints, then longs, all in one list).
#include <iostream>
struct Node{
Node(int value);
Node *next;
int data;
};
Node::Node(int value){
this->data = value;
this->next = nullptr;
}
struct LinkedList{
Node *head;
LinkedList();
void push_back(int value);
void print();
};
LinkedList::LinkedList(){
this->head = nullptr;
}
void LinkedList::push_back(int value){
Node *n = new Node(value);
if(this->head == nullptr){
this->head = n;
} else {
Node *cursor = this->head;
while (cursor->next != nullptr){
cursor = cursor->next;
}
cursor->next = n;
}
}
void LinkedList::print(){
Node *cursor = this->head;
while(cursor != nullptr){
std::cout << cursor->data << '\n';
cursor = cursor->next;
}
}
int main(){
LinkedList l = LinkedList();
l.push_back(1);
l.push_back(2);
l.print();
}
The above works, however, only for ints.
I'm knew, but I think the way is to use templates, however, doing so, I seem to be doing overkill? and it doesn't compile? Is there a cleaner was to do this?
#include <iostream>
template <typename T>
struct Node {
Node(T value);
int data;
Node<T> *next;
};
template <typename T>
Node<T>::Node(T value){
this->next = nullptr;
this->data = value;
}
template <typename T>
class LinkedList{
public:
LinkedList();
Node<T> *head;
void push_back(T data);
void print();
};
template <typename T>
LinkedList<T>::LinkedList(){
this->head = nullptr;
}
template <typename T>
void LinkedList<T>::push_back(T data){
Node *n = new Node(data);
if(this->head == nullptr){
this->head = n;
} else {
Node *cursor = this->head;
while(cursor->next != nullptr){
cursor = cursor->next;
}
cursor->next = n;
}
}
template <typename T>
void LinkedList<T>::print(){
Node *cursor = this->head;
while(cursor != nullptr){
std::cout << cursor->data << '\n';
cursor = cursor->next;
}
}
int main(){
LinkedList<T> *list = new LinkedList<T>();
list->push_back(1);
list->push_back(2);
list->push_back(3);
}
When declaring template classes, you use the "T" as a 'type placeholder' in the declaration and implementation (as you have done). However, when you want to actually use an object of the templated class, you replace the "T" with the actual type you want.
So, in your main (assuming you want an int type), you would have code like this:
int main(){
LinkedList<int> *list = new LinkedList<int>(); // THIS object uses "int" wherever "T" occurs in the declaration/implementation
list->push_back(1);
list->push_back(2);
list->push_back(3);
}
I also noticed a 'possible/probable error' in your struct declaration, where you specified that the data member is of (fixed) type int; maybe (almost certainly, actually, as you later assign a "T"-type value to it) you want this to vary according to the actual type requested? If so, make the following change:
template <typename T>
struct Node {
Node(T value);
// int data;
T data; // Data will be whatever "T" is when an object is created.
Node<T> *next;
};
Feel free to ask for further clarification and/or explanation.

SinglyLinkedList implementation with rule of 3

I'm new to C++ and have been trying to implement a Singly Linked List, that provides an implementation the destructor, copy constructor and assignment operator. I'm running into compilation issues when trying to implement the copy constructor and the assignment operator.
Here's node.hpp
#ifndef LINKED_LIST_NODE_HPP
#define LINKED_LIST_NODE_HPP
template <typename T>
class Node{
public:
T data;
Node* next;
Node();
Node(T);
Node(const Node&);
~Node();
};
template <typename T>
Node<T>::Node(){}
template <typename T>
Node<T>:: Node(const T data): data(data), next(nullptr){}
template <typename T>
Node<T>::Node(const Node<T>& source) : data(source.data),
next(new Node)
{
(*next) = *(source.next) ;
}
template <typename T>
Node<T>::~Node(){}
#endif //LINKED_LIST_NODE_HPP
This is singly_linked_list.hpp
#ifndef LINKED_LIST_SINGLYLINKEDLIST_HPP
#define LINKED_LIST_SINGLYLINKEDLIST_HPP
#include <iostream>
#include "node.hpp"
template <typename T>
class SinglyLinkedList {
private:
Node<T>* head;
std::size_t count;
public:
SinglyLinkedList();
SinglyLinkedList(const SinglyLinkedList& source);
SinglyLinkedList& operator=(const SinglyLinkedList& source);
~SinglyLinkedList();
void insert(T);
void remove(T);
bool isEmpty();
int length();
void print();
};
template <typename T>
SinglyLinkedList<T>::SinglyLinkedList() : head(nullptr), count(0){}
template <typename T>
template <typename T>
SinglyLinkedList<T>::SinglyLinkedList(const SinglyLinkedList& source){
Node<T>* curr = source.head;
while(curr != nullptr){
Node<T>* p = new Node<T>;
p->data = curr->data;
curr = curr->next;
}
}
//template <typename T>
//SinglyLinkedList<T>::SinglyLinkedList& operator=(const SinglyLinkedList<T>& source){
// //not sure how to implment this.
//}
template <typename T>
SinglyLinkedList<T>::~SinglyLinkedList() {
if(!isEmpty()){
Node<T>* temp = head;
Node<T>* prev = nullptr;
while(temp->next != nullptr){
prev = temp;
temp = temp->next;
delete prev;
}
delete temp;
}
}
template <typename T>
bool SinglyLinkedList<T>::isEmpty() {
return head == nullptr;
}
template <typename T>
void SinglyLinkedList<T>::insert(T item) {
Node<T>* p = new Node<T>(item);
p->next = head;
head = p;
count += 1;
}
template <typename T>
void SinglyLinkedList<T>::remove(T item) {
bool present = false;
if (head->data == item){
Node<T>* temp = head;
head = head->next;
delete(temp);
count -= 1;
return;
}
Node<T>* temp = head;
while (temp->next != nullptr){
if (temp->next->data == item){
Node<T>* removable = temp->next;
temp->next = temp->next->next;
delete(removable);
present = true;
count -= 1;
break;
} else{
temp = temp->next;
}
}
if(!present){
throw std::invalid_argument("item not present in list");
}
}
template <typename T>
int SinglyLinkedList<T>::length() {
return count;
}
template <typename T>
void SinglyLinkedList<T>::print() {
if(isEmpty()){
throw std::invalid_argument("Can't print an empty list!");
}
Node<T>* temp = head;
while(temp != nullptr){
if(temp->next != nullptr){
std::cout<<temp->data;
std::cout<<"->";
}else{
std::cout<<temp->data;
}
temp = temp->next;
}
std::cout<<std::endl;
}
#endif //LINKED_LIST_SINGLYLINKEDLIST_HPP
I've commented out the copy constructor code to make this compile. What is the correct way of doing this? I'm just learning C++.
One issue that introduces complexity is that it is not well defined what the copy constructor of a node should do? Should the next field of the copy point to the next of the original, or it should create a copy of the next and point to that? The former is inadequate and error-prone, the latter would recursively create a copy of the whole list, one node at a time. This will work for lists of small size but will cause stack overflow for lists with many elements due to the depth of the recursive calls.
So to keep things simple, I wouldn't bother with copy constructor of a node.
template <typename T>
class Node {
public:
T data;
Node* next = nullptr;
Node() = default;
Node(const Node&) = delete; // since copying is not well defined, make it impossible to copy a node.
};
Copying a list is a well defined operation, so implementing the copy constructor makes sense. A mistake with your current implementation is that you allocate a new node, only to leak it later (nothing keeps track of the newly allocated node p). What you need looks more like this:
template <typename T>
SinglyLinkedList<T>::SinglyLinkedList(const SinglyLinkedList<T>& source)
: head(nullptr)
, count(0)
{
// deal with the trivial case of empty list
if (source.head == nullptr)
return;
// deal with the case where count >= 1
head = new Node<T>;
head->data = source.head->data;
head->next = nullptr;
count = 1;
Node<T>* lastCopied = source.head; // last node to be copied
Node<T>* lastAdded = head; // last node to be added to the current list
while (lastCopied->next != nullptr)
{
// create new node
Node<T>* p = new Node<T>;
p->data = lastCopied->next->data;
p->next = nullptr;
// link the newly created node to the last of the current list
lastAdded->next = p;
lastAdded = p;
// advance lastCopied
lastCopied = lastCopied->next;
count++;
}
}
Now regarding the assignment operator, luckily you can use the 'copy and swap' idiom that greatly simplifies things.
template <typename T>
SinglyLinkedList<T>& SinglyLinkedList<T>::operator =(SinglyLinkedList<T> source) // note that you pass by value.
{
std::swap(head, source.head);
std::swap(count, source.count);
return *this;
}
My answer would become too long if I tried to explain the copy and swap technique. It is a clever trick to write exception safe code and avoid duplication (implements assignment by using the copy ctor) at the same time. It is worth reading about it here.
Btw, the declaration of your class should look like this
template <typename T>
class SinglyLinkedList
{
private:
Node<T>* head = nullptr;
std::size_t count = 0;
public:
SinglyLinkedList(const SinglyLinkedList& source);
SinglyLinkedList& operator=(SinglyLinkedList source);
// other members here...
};
PS. My code assumes you are using c++11 or a later standard.
I don't like the direction this is headed. I'm going to explain how to do this approach right because it is an excellent lesson on recursion, but because it's recursion it can run the program out of Automatic storage (march off the end of the stack, most likely) with a sufficiently large list. Not cool.
The logic:
Copying a node copies the next node if there is one. This looks something like
template <typename T>
Node<T>::Node(const Node<T>& source) : data(source.data)
{
if (source.next) // if there is a next, clone it
{
next = new Node<T>(*source.next);
}
else
{
next = nullptr;
}
}
This reduces the linked list copy constructor to
template <typename T>
SinglyLinkedList<T>::SinglyLinkedList(const SinglyLinkedList& source){
head = new Node<T>(*source.head); //clone the head. Cloning the head will clone everything after
count = source.count;
}
A helper function may, uh... help here to make the Node copy constructor a bit more idiomatic
template <typename T>
Node<T> * initnext(const Node<T> & source)
{
if (source.next)
{
return new Node<T>(*source.next);
}
else
{
return nullptr;
}
}
template <typename T>
Node<T>::Node(const Node<T>& source) : data(source.data),
next(initnext(source))
{
}
but I don't think you gain much.
So... I don't like the above. What would I do instead? Something a lot like opetroch's solution above, but different enough that I'll write this up.
The node stays brutally stupid. As far as I'm concerned all a Node should ever know is how to store the payload and find other Nodes. This means the linked list should do all of the heavy lifting.
Concept 1: head is nothing but a next pointer. Once you abstract away its differences, unimportant here, you can use it exactly the same way you would next.
Concept 2: If you only know where next points, you have to do a bunch of extra book-keeping to track the previous node to update it's next. But if you take advantage of the previous's next pointing to the current node, you can throw out even more code. By tracking the previous node's next you have all of the information you need.
Concept 3: If you keep a pointer to the previous node's next, you can update that previous node's next any time you want by dereferencing it.
template <typename T>
SinglyLinkedList<T>::SinglyLinkedList(const SinglyLinkedList& obj)
{
Node<T>* tocopy = obj.head;
Node<T>** nextpp = &head; // head is a next. We are now pointing to a pointer to next
while (tocopy) // keep looping until there is no next node to copy
{
*nextpp = new Node<T>(tocopy->data); // copy source and update destination's next
nextpp = &(*nextpp)->next; // advance to point at the next of the node we just added
tocopy= tocopy->next; // get next node to copy
}
count = obj.count;
}
Because this iterates rather than recurses it doesn't eat up Automatic storage (probably the stack) and can keep going until the cows come home.
This logic can also be applied to remove
template <typename T>
void SinglyLinkedList<T>::remove(T item) {
Node<T>** temp = &head; //head is nothing but a next pointer.
// by pointing to where the next is, we don't
// need to track a previous or have special handling
// for the head node
while (*temp){ // because we now have a pointer to a pointer, we need an
// extra dereference
if ((*temp)->data == item){
Node<T>* removable = *temp;
*temp = (*temp)->next;
delete(removable);
count -= 1;
return; // no need for any special magic. Just get out.
} else{
temp = &(*temp)->next; // update the pointer to the next
}
}
// if we got here the node was not found.
throw std::invalid_argument("item not present in list");
}
And following through on head is just a next, we can also gut the destructor:
template <typename T>
SinglyLinkedList<T>::~SinglyLinkedList() {
while(head){ // if head null, list empty
Node<T>* temp = head; // cache so we can delete
head = head->next; // move head
delete temp; //delete removed node
}
}

Abstract template class and template childs

I have a problem with creating base class for DoubleLinkedList.
Right now it's giving me this error
/tmp/cc3lORia.o:(.rodata._ZTV24AbstractDoubleLinkedListIiE[_ZTV24AbstractDoubleLinkedListIiE]+0x10):
undefined reference to
`AbstractDoubleLinkedList::createNewNode(int)' collect2: error:
ld returned 1 exit status
I've tried this and that as you can see by commented lines in code, but none of it works.
So how to define abstract template class with abstract method (factory method by the way) and then redefine it in children classes?
/*
* AbstractDoubleLinkedList.hpp
*
* Created on: Mar 2, 2015
* Author: michael
*/
#ifndef ABSTRACTDOUBLELINKEDLIST_H_
#define ABSTRACTDOUBLELINKEDLIST_H_
#include <vector>
using namespace std;
template <class T> class ListNode {
private:
void init();
public:
ListNode();
ListNode(T value);
ListNode *previous;
ListNode *next;
T value;
};
template <class T> void ListNode<T>::init() {
previous = nullptr;
next = nullptr;
}
template <class T> ListNode<T>::ListNode() {
init();
}
template <class T> ListNode<T>::ListNode(T value) {
init();
this->value = value;
}
template <class T> class AbstractDoubleLinkedList {
private:
void pullOutNode(ListNode<T> *node);
protected:
virtual ListNode<T>* createNewNode(T element);
public:
AbstractDoubleLinkedList();
void push_back(T element);
T front();
T back();
void insertBefore(ListNode<T> *node, ListNode<T> *beforeNode);
void insertAfter(ListNode<T> *node, ListNode<T> *afterNode);
void moveNodeAfter(ListNode<T> *node, ListNode<T> *afterNode);
vector<T> toVector();
ListNode<T> *frontNode;
ListNode<T> *backNode;
};
template <class T> void AbstractDoubleLinkedList<T>::push_back(T element) {
ListNode<T>* node = createNewNode(element);
node->previous = backNode;
if (backNode != nullptr) {
backNode->next = node;
node->previous = backNode;
}
else {
frontNode = node;
}
backNode = node;
}
template <class T> void AbstractDoubleLinkedList<T>::pullOutNode(ListNode<T> *node) {
if (node != frontNode) {
node->previous->next = node->next;
}
else {
frontNode = node->next;
}
if (node != backNode) {
node->next->previous = node->previous;
}
else {
backNode = node->previous;
}
}
template <class T> T AbstractDoubleLinkedList<T>::front() {
return frontNode->value;
}
template <class T> T AbstractDoubleLinkedList<T>::back() {
return backNode->value;
}
template <class T> void AbstractDoubleLinkedList<T>::insertAfter(ListNode<T> *node, ListNode<T> *afterNode) {
node->previous = afterNode;
node->next = afterNode->next;
afterNode->next = node;
if (afterNode == backNode) {
backNode = node;
}
}
template <class T> void AbstractDoubleLinkedList<T>::insertBefore(ListNode<T> *node, ListNode<T> *beforeNode) {
node->next = beforeNode;
beforeNode->previous->next = node;
beforeNode->previous = node;
if (beforeNode == frontNode) {
frontNode = node;
}
}
template <class T> void AbstractDoubleLinkedList<T>::moveNodeAfter(ListNode<T> *node, ListNode<T> *afterNode) {
pullOutNode(node);
node->previous = afterNode;
node->next = afterNode->next;
if (node->next == nullptr) {
backNode = node;
}
afterNode->next = node;
}
template <class T> vector<T> AbstractDoubleLinkedList<T>::toVector() {
ListNode<T>* node = frontNode;
vector<int> listAsVector;
bool shouldHaveAnother = (frontNode != nullptr);
while(shouldHaveAnother) {
listAsVector.push_back(node->value);
if (node->next != nullptr)
node = node->next;
else {
shouldHaveAnother = false;
}
}
return listAsVector;
}
template <class T> AbstractDoubleLinkedList<T>::AbstractDoubleLinkedList() {
frontNode = nullptr;
backNode = nullptr;
}
#endif /* ABSTRACTDOUBLELINKEDLIST_HPP_ */
/*
* DoubleLinkedList.hpp
*
* Created on: Feb 26, 2015
* Author: michael
*/
#ifndef DOUBLELINKEDLIST_HPP_
#define DOUBLELINKEDLIST_HPP_
#include "AbstractDoubleLinkedList.hpp"
template <class T> class DoubleLinkedList : public AbstractDoubleLinkedList<T> {
protected:
ListNode<T>* createNewNode(T element) {
return new ListNode<T>(element);
}
public:
~DoubleLinkedList() {
ListNode<T>* node = this->backNode;
bool shouldHaveAnother = (node != nullptr);
while(shouldHaveAnother) {
ListNode<T>* ptr = node->previous;
delete node;
if (ptr != nullptr)
node = ptr;
else {
shouldHaveAnother = false;
}
}
};
};
//template <class T> ListNode<T> DoubleLinkedList<T>::createNewNode(T element) {
// return new ListNode<T>(element);
//}
//template <class T> DoubleLinkedList<T>::~DoubleLinkedList() {
//
// ListNode<T>* node = this->backNode;
// bool shouldHaveAnother = (node != nullptr);
// while(shouldHaveAnother) {
// ListNode<T>* ptr = node->previous;
// delete node;
// if (ptr != nullptr)
// node = ptr;
// else {
// shouldHaveAnother = false;
// }
// }
//}
#endif /* DOUBLELINKEDLIST_HPP_ */
EDIT1:
So, there is a question "Why do I need my own container class and why not use list or vector?"
I need a data structure with constant time random access and constant time deletion and insertion. BUT I've already tried std::unordered_set and It's not good enough (while technically it meets the requirements) because of allocations and deallocations of memory (when deleting and inserting)
So I figured another way. I want to use a linked list with one "guard" element and the end. When I need to "delete" element from it I would move it after guard. And to check if list is "empty" I would check if the first element is the guard element. But I need a constant-time random access. This can be achieved by map of pointers to every element.
But to achieve maximum performance I need to also minimize cache misses. And I thinks that std::list would be scattered across the memory, because it is the normal behaviour for it. So I figured that the only way to do so - is to allocate vector> and then use this preallocated nodes to new elements.
So am I wrong somewhere? Can I achieve maximum performance more easier?

C++ does not name a type

creating some old data structures in C++. Currently I am having an issue with a doubly-linked list class:
List.h:
template <class T>
class List{
private:
int size;
struct listNode{
T data;
listNode* next;
listNode* prev;
listNode(T newData);
};
listNode * head;
listNode * tail;
listNode * curr;
listNode * find(listNode * place, int k);
void removeCurrent(listNode * temp);
public:
List();
int getSize() const;
void insert(int loc, T data);
void remove(int loc);
T const & getItem(int loc) const;
void print();
};
List.cpp:
#include "List.h"
#include <iostream>
using namespace std;
template<class T>
List<T>::List(){
size = 0;
head->next = tail;
head->prev = NULL;
tail->prev = head;
tail->next = NULL;
}
// getSize: public method that returns the size of the list
template<class T>
int List<T>::getSize() const {
return size;
}
// insert: public method that inserts data into the list
template<class T>
void List<T>::insert(int loc, T data){
if(loc <1){
cout<<"Invalid Location"<<endl;
return;
}
curr = find(head,loc-1);
listNode * newNode = new listNode(data);
newNode->next = curr->next;
newNode->prev = curr;
newNode->next->prev = newNode;
curr->next = newNode;
size++;
}
// remove: public method that inserts data into the list
template<class T>
void List<T>::remove(int loc){
if(loc <1){
cout<<"Invalid Location"<<endl;
return;
}
curr = find(head,loc); // Find the node infront of the target
removeCurrent(curr); // Remove that node
}
// removeCurrent: helper function that removes the current node
template<class T>
void List<T>::removeCurrent(listNode* temp){
listNode* t = temp->next;
temp->data = t->data; // HACK: take data from next node
temp->next = t->next;
t->next->prev = temp;
delete t;
t=NULL;
size--;
}
// find: private helper function that returns a pointer to the k-1 node
template<class T>
listNode * List<T>::find(listNode * place, int k){
if((k==0) || (place==NULL))
return place;
else return find(place->next,k-1);
}
// getItem: returns data at location loc
template<class T>
T const& List<T>::getItem(int loc) const{
curr = find(head,loc);
return curr->data;
}
// print: prints the sequence of variables in the list
template<class T>
void List<T>::print()
{
curr = head;
while(curr->next != tail){
curr = curr->next;
cout<<curr->data<<endl;
}
}
//listNode constructor
template<class T>
List<T>::listNode::listNode(T newdata):data(newdata),next(NULL),prev(NULL)
{}
The error I'm getting is the following:
error: 'listNode' does not name a type.
I have tried different suggestions offered in similar troubleshooting posts, but I'm still getting this error. I have a main.cpp that includes List.cpp, but it's practically empty.
You're going to have to specify which listNode you're talking about at the find method's return type because you defined it as a member of the List class and you're also going to have to use typename (because List<T> is a dependent scope).
template <class T>
typename List<T>::listNode* List<T>::find(listNode* place, int k)
{
if ((k == 0) || (place == NULL))
return place;
else
return find(place->next, k-1);
}
Assuming you're using c++11, you may also want to use nullptr instead of NULL since its safer and use the initializer list at the List constructor.