I have encountered a problem of rendering artifacts of 3D texture as below:
I have searched on net as to find solution of this problem, and most answer pointed towards the problem in regards of depth buffer bit.
While i have tried to change the depth buffer bit to 24 bit from GL_DEPTH to GL_STENCIL in GLUT, the result remains the same as the texture(or geometry-not really sure) get hidden when viewed from certain angle..
So, can i know what is exactly the problem that results in this kind of artifacts??
Below is the fragment shader code snippet(OpenGL Development Cookbook)
void main()
{
//get the 3D texture coordinates for lookup into the volume dataset
vec3 dataPos = vUV;
vec3 geomDir = normalize((vec3(0.556,0.614,0.201)*vUV-vec3(0.278,0.307,0.1005)) - camPos);
vec3 dirStep = geomDir * step_size;
//flag to indicate if the raymarch loop should terminate
bool stop = false;
//for all samples along the ray
for (int i = 0; i < MAX_SAMPLES; i++) {
// advance ray by dirstep
dataPos = dataPos + dirStep;
stop = dot(sign(dataPos-texMin),sign(texMax-dataPos)) < 3.0f;
//if the stopping condition is true we brek out of the ray marching loop
if (stop)
break;
// data fetching from the red channel of volume texture
float sample = texture(volume, dataPos).r;
float prev_alpha = sample - (sample * vFragColor.a);
vFragColor.rgb = (prev_alpha) * vec3(sample) + vFragColor.rgb;
vFragColor.a += prev_alpha;
if( vFragColor.a>0.99)
break;
}
FYI, below is the vertex shader snippet:
#version 330 core
layout(location = 0) in vec3 vVertex; //object space vertex position
//uniform
uniform mat4 MVP; //combined modelview projection matrix
smooth out vec3 vUV; //3D texture coordinates for texture lookup in the fragment shader
void main()
{
//get the clipspace position
gl_Position = MVP*vec4(vVertex.xyz,1);
//get the 3D texture coordinates by adding (0.5,0.5,0.5) to the object space
//vertex position. Since the unit cube is at origin (min: (-0.5,-0.5,-0.5) and max: (0.5,0.5,0.5))
//adding (0.5,0.5,0.5) to the unit cube object space position gives us values from (0,0,0) to
//(1,1,1)
//vUV = (vVertex + vec3(0.278,0.307,0.1005))/vec3(0.556,0.614,0.201);
vUV = vVertex/vec3(0.556,0.614,0.201);//after moving the cube to coordinates range of 0-1
}
EDITED: The artifacts present especially when viewing is done relatively at the edge.
FYI, glm::perspective(45.0f,(float)w/h, 1.0f,10.0f);
Related
I have been working on projecting decals on to anything that the decals bounding box encapsulates. After reading and trying numerous code snippets (usually in HLSL) I have a some what working method in GLSL for projecting the decals.
Let me start with trying to explain what I'm doing and how this works (so far).
The code below is now fixed and works!
This all is while in the perspective view mode.
I send 2 uniforms to the fragment shader "tr" and "bl". These are the 2 corners of the bounding box. I can and will replace these with hard coded sizes because they are the size of the decals original bounding box. tr = vec3(.5, .5, .5) and br = vec3(-.5, -.5, -.5). I'd prefer to find a way to do the position tests in the decals transformed state. (more about this at the end).
Adding this for clarity. The vertex emitted from the vertex program is the bounding box multiplied by the decals matrix and than by the model view projection matrix.. I use this for the next step:
With that vertex, I get the depth value from the depth texture and with it, calculate the position in world space using the inverse of the projection matrix.
Next, I translate this position using the Inverse of the Decals matrix. (The matrix that scales, rotates and translates the 1,1,1 cube to its world location. I thought that by using the inverse of the decals transform matrix, the correct size and rotation of the screen point would be handled correctly but it is not.
Vertex Program:
//Decals color pass.
#version 330 compatibility
out mat4 matPrjInv;
out vec4 positionSS;
out vec4 positionWS;
out mat4 invd_mat;
uniform mat4 decal_matrix;
void main(void)
{
gl_Position = decal_matrix * gl_Vertex;
gl_Position = gl_ModelViewProjectionMatrix * gl_Position;
positionWS = (decal_matrix * gl_Vertex);;
positionSS = gl_Position;
matPrjInv = inverse(gl_ModelViewProjectionMatrix);
invd_mat = inverse(decal_matrix);
}
Fragment Program:
#version 330 compatibility
layout (location = 0) out vec4 gPosition;
layout (location = 1) out vec4 gNormal;
layout (location = 2) out vec4 gColor;
uniform sampler2D depthMap;
uniform sampler2D colorMap;
uniform sampler2D normalMap;
uniform mat4 matrix;
uniform vec3 tr;
uniform vec3 bl;
in vec2 TexCoords;
in vec4 positionSS; // screen space
in vec4 positionWS; // world space
in mat4 invd_mat; // inverse decal matrix
in mat4 matPrjInv; // inverse projection matrix
void clip(vec3 v){
if (v.x > tr.x || v.x < bl.x ) { discard; }
if (v.y > tr.y || v.y < bl.y ) { discard; }
if (v.z > tr.z || v.z < bl.z ) { discard; }
}
vec2 postProjToScreen(vec4 position)
{
vec2 screenPos = position.xy / position.w;
return 0.5 * (vec2(screenPos.x, screenPos.y) + 1);
}
void main(){
// Calculate UVs
vec2 UV = postProjToScreen(positionSS);
// sample the Depth from the Depthsampler
float Depth = texture2D(depthMap, UV).x * 2.0 - 1.0;
// Calculate Worldposition by recreating it out of the coordinates and depth-sample
vec4 ScreenPosition;
ScreenPosition.xy = UV * 2.0 - 1.0;
ScreenPosition.z = (Depth);
ScreenPosition.w = 1.0f;
// Transform position from screen space to world space
vec4 WorldPosition = matPrjInv * ScreenPosition ;
WorldPosition.xyz /= WorldPosition.w;
WorldPosition.w = 1.0f;
// transform to decal original position and size.
// 1 x 1 x 1
WorldPosition = invd_mat * WorldPosition;
clip (WorldPosition.xyz);
// Get UV for textures;
WorldPosition.xy += 0.5;
WorldPosition.y *= -1.0;
vec4 bump = texture2D(normalMap, WorldPosition.xy);
gColor = texture2D(colorMap, WorldPosition.xy);
//Going to have to do decals in 2 passes..
//Blend doesn't work with GBUFFER.
//Lots more to sort out.
gNormal.xyz = bump;
gPosition = positionWS;
}
And here are a couple of Images showing whats wrong.
What I get for the projection:
And this is the actual size of the decals.. Much larger than what my shader is creating!
I have tried creating a new matrix using the decals and the projection matrix to construct a sort of "lookat" matrix and translate the screen position in to the decals post transformed state.. I have not been able to get this working. Some where I am missing something but where? I thought that translating using the inverse of the decals matrix would deal with the transform and put the screen position in the proper transformed state. Ideas?
Updated the code for the texture UVs.. You may have to fiddle with the y and x depending on if your texture is flipped on x or y. I also fixed the clip sub so it works correctly. As it is, this code now works. I will update this more if needed so others don't have to go through the pain I did to get it working.
Some issues to resolve are decals laying over each other. The one on top over writes the one below. I think I will have to accumulated the colors and normals in to the default FBO and then blend(Add) them to the GBUFFER textures before or during the lighting pass. Adding more screen size textures is not a great idea so I will need to be creative and recycle any textures I can.
I found the solution to decals overlaying each other.
Turn OFF depth masking while drawing the decals and turn int back on afterwards:
glDepthMask(GL_FALSE)
OK.. I'm so excited. I found the issue.
I updated the code above again.
I had a mistake in what I was sending the shader for tr and bl:
Here is the change to clip:
void clip(vec3 v){
if (v.x > tr.x || v.x < bl.x ) { discard; }
if (v.y > tr.y || v.y < bl.y ) { discard; }
if (v.z > tr.z || v.z < bl.z ) { discard; }
}
I'm implementing SSAO in OpenGL, following this tutorial: Jhon Chapman SSAO
Basically the technique described uses an Hemispheric kernel which is oriented along the fragment's normal. The view space z position of the sample is then compared to its screen space depth buffer value.
If the value in the depth buffer is higher, it means the sample ended up in a geometry so this fragment should be occluded.
The goal of this technique is to get rid of the classic implementation artifact where objects flat faces are greyed out.
I've have the same implementation with 2 small differencies
I'm not using a Noise texture to rotate my kernel, so I have banding artifacts, that's fine for now
I don't have access to a buffer with Per-pixel normals, so I have to compute my normal and TBN matrix only using the depth buffer.
The algorithm seems to be working fine, I can see the fragments being occluded, BUT I still have my faces greyed out...
IMO it's coming from the way I'm calculating my TBN matrix. The normals look OK but something must be wrong as my kernel doesn't seem to be properly aligned causing samples to end up in the faces.
Screenshots are with a Kernel of 8 samples and a radius of .1. the first is only the result of SSAO pass and the second one is the debug render of the generated normals.
Here is the code for the function that computes the Normal and TBN Matrix
mat3 computeTBNMatrixFromDepth(in sampler2D depthTex, in vec2 uv)
{
// Compute the normal and TBN matrix
float ld = -getLinearDepth(depthTex, uv);
vec3 x = vec3(uv.x, 0., ld);
vec3 y = vec3(0., uv.y, ld);
x = dFdx(x);
y = dFdy(y);
x = normalize(x);
y = normalize(y);
vec3 normal = normalize(cross(x, y));
return mat3(x, y, normal);
}
And the SSAO shader
#include "helper.glsl"
in vec2 vertTexcoord;
uniform sampler2D depthTex;
const int MAX_KERNEL_SIZE = 8;
uniform vec4 gKernel[MAX_KERNEL_SIZE];
// Kernel Radius in view space (meters)
const float KERNEL_RADIUS = .1;
uniform mat4 cameraProjectionMatrix;
uniform mat4 cameraProjectionMatrixInverse;
out vec4 FragColor;
void main()
{
// Get the current depth of the current pixel from the depth buffer (stored in the red channel)
float originDepth = texture(depthTex, vertTexcoord).r;
// Debug linear depth. Depth buffer is in the range [1.0];
float oLinearDepth = getLinearDepth(depthTex, vertTexcoord);
// Compute the view space position of this point from its depth value
vec4 viewport = vec4(0,0,1,1);
vec3 originPosition = getViewSpaceFromWindow(cameraProjectionMatrix, cameraProjectionMatrixInverse, viewport, vertTexcoord, originDepth);
mat3 lookAt = computeTBNMatrixFromDepth(depthTex, vertTexcoord);
vec3 normal = lookAt[2];
float occlusion = 0.;
for (int i=0; i<MAX_KERNEL_SIZE; i++)
{
// We align the Kernel Hemisphere on the fragment normal by multiplying all samples by the TBN
vec3 samplePosition = lookAt * gKernel[i].xyz;
// We want the sample position in View Space and we scale it with the kernel radius
samplePosition = originPosition + samplePosition * KERNEL_RADIUS;
// Now we need to get sample position in screen space
vec4 sampleOffset = vec4(samplePosition.xyz, 1.0);
sampleOffset = cameraProjectionMatrix * sampleOffset;
sampleOffset.xyz /= sampleOffset.w;
// Now to get the depth buffer value at the projected sample position
sampleOffset.xyz = sampleOffset.xyz * 0.5 + 0.5;
// Now can get the linear depth of the sample
float sampleOffsetLinearDepth = -getLinearDepth(depthTex, sampleOffset.xy);
// Now we need to do a range check to make sure that object
// outside of the kernel radius are not taken into account
float rangeCheck = abs(originPosition.z - sampleOffsetLinearDepth) < KERNEL_RADIUS ? 1.0 : 0.0;
// If the fragment depth is in front so it's occluding
occlusion += (sampleOffsetLinearDepth >= samplePosition.z ? 1.0 : 0.0) * rangeCheck;
}
occlusion = 1.0 - (occlusion / MAX_KERNEL_SIZE);
FragColor = vec4(vec3(occlusion), 1.0);
}
Update 1
This variation of the TBN calculation function gives the same results
mat3 computeTBNMatrixFromDepth(in sampler2D depthTex, in vec2 uv)
{
// Compute the normal and TBN matrix
float ld = -getLinearDepth(depthTex, uv);
vec3 a = vec3(uv, ld);
vec3 x = vec3(uv.x + dFdx(uv.x), uv.y, ld + dFdx(ld));
vec3 y = vec3(uv.x, uv.y + dFdy(uv.y), ld + dFdy(ld));
//x = dFdx(x);
//y = dFdy(y);
//x = normalize(x);
//y = normalize(y);
vec3 normal = normalize(cross(x - a, y - a));
vec3 first_axis = cross(normal, vec3(1.0f, 0.0f, 0.0f));
vec3 second_axis = cross(first_axis, normal);
return mat3(normalize(first_axis), normalize(second_axis), normal);
}
I think the problem is probably that you are mixing coordinate systems. You are using texture coordinates in combination with the linear depth. You can imagine two vertical surfaces facing slightly to the left of the screen. Both have the same angle from the vertical plane and should thus have the same normal right?
But let's then imagine that one of these surfaces are much further from the camera. Since fFdx/fFdy functions basically tell you the difference from the neighbor pixel, the surface far away from the camera will have greater linear depth difference over one pixel, than the surface close to the camera. But the uv.x / uv.y derivative will have the same value. That means that you will get different normals depending on the distance from the camera.
The solution is to calculate the view coordinate and use the derivative of that to calculate the normal.
vec3 viewFromDepth(in sampler2D depthTex, in vec2 uv, in vec3 view)
{
float ld = -getLinearDepth(depthTex, uv);
/// I assume ld is negative for fragments in front of the camera
/// not sure how getLinearDepth is implemented
vec3 z_scaled_view = (view / view.z) * ld;
return z_scaled_view;
}
mat3 computeTBNMatrixFromDepth(in sampler2D depthTex, in vec2 uv, in vec3 view)
{
vec3 view = viewFromDepth(depthTex, uv);
vec3 view_normal = normalize(cross(dFdx(view), dFdy(view)));
vec3 first_axis = cross(view_normal, vec3(1.0f, 0.0f, 0.0f));
vec3 second_axis = cross(first_axis, view_normal);
return mat3(view_normal, normalize(first_axis), normalize(second_axis));
}
My aim is to pass an array of points to the shader, calculate their distance to the fragment and paint them with a circle colored with a gradient depending of that computation.
For example:
(From a working example I set up on shader toy)
Unfortunately it isn't clear to me how I should calculate and convert the coordinates passed for processing inside the shader.
What I'm currently trying is to pass two array of floats - one for x positions and one for y positions of each point - to the shader though a uniform. Then inside the shader iterate through each point like so:
#ifdef GL_ES
precision mediump float;
precision mediump int;
#endif
uniform float sourceX[100];
uniform float sourceY[100];
uniform vec2 resolution;
in vec4 gl_FragCoord;
varying vec4 vertColor;
varying vec2 center;
varying vec2 pos;
void main()
{
float intensity = 0.0;
for(int i=0; i<100; i++)
{
vec2 source = vec2(sourceX[i],sourceY[i]);
vec2 position = ( gl_FragCoord.xy / resolution.xy );
float d = distance(position, source);
intensity += exp(-0.5*d*d);
}
intensity=3.0*pow(intensity,0.02);
if (intensity<=1.0)
gl_FragColor=vec4(0.0,intensity*0.5,0.0,1.0);
else if (intensity<=2.0)
gl_FragColor=vec4(intensity-1.0, 0.5+(intensity-1.0)*0.5,0.0,1.0);
else
gl_FragColor=vec4(1.0,3.0-intensity,0.0,1.0);
}
But that doesn't work - and I believe it may be because I'm trying to work with the pixel coordinates without properly translating them. Could anyone explain to me how to make this work?
Update:
The current result is:
The sketch's code is:
PShader pointShader;
float[] sourceX;
float[] sourceY;
void setup()
{
size(1024, 1024, P3D);
background(255);
sourceX = new float[100];
sourceY = new float[100];
for (int i = 0; i<100; i++)
{
sourceX[i] = random(0, 1023);
sourceY[i] = random(0, 1023);
}
pointShader = loadShader("pointfrag.glsl", "pointvert.glsl");
shader(pointShader, POINTS);
pointShader.set("sourceX", sourceX);
pointShader.set("sourceY", sourceY);
pointShader.set("resolution", float(width), float(height));
}
void draw()
{
for (int i = 0; i<100; i++) {
strokeWeight(60);
point(sourceX[i], sourceY[i]);
}
}
while the vertex shader is:
#define PROCESSING_POINT_SHADER
uniform mat4 projection;
uniform mat4 transform;
attribute vec4 vertex;
attribute vec4 color;
attribute vec2 offset;
varying vec4 vertColor;
varying vec2 center;
varying vec2 pos;
void main() {
vec4 clip = transform * vertex;
gl_Position = clip + projection * vec4(offset, 0, 0);
vertColor = color;
center = clip.xy;
pos = offset;
}
Update:
Based on the comments it seems you have confused two different approaches:
Draw a single full screen polygon, pass in the points and calculate the final value once per fragment using a loop in the shader.
Draw bounding geometry for each point, calculate the density for just one point in the fragment shader and use additive blending to sum the densities of all points.
The other issue is your points are given in pixels but the code expects a 0 to 1 range, so d is large and the points are black. Fixing this issue as #RetoKoradi describes should address the points being black, but I suspect you'll find ramp clipping issues when many are in close proximity. Passing points into the shader limits scalability and is inefficient unless the points cover the whole viewport.
As below, I think sticking with approach 2 is better. To restructure your code for it, remove the loop, don't pass in the array of points and use center as the point coordinate instead:
//calc center in pixel coordinates
vec2 centerPixels = (center * 0.5 + 0.5) * resolution.xy;
//find the distance in pixels (avoiding aspect ratio issues)
float dPixels = distance(gl_FragCoord.xy, centerPixels);
//scale down to the 0 to 1 range
float d = dPixels / resolution.y;
//write out the intensity
gl_FragColor = vec4(exp(-0.5*d*d));
Draw this to a texture (from comments: opengl-tutorial.org code and this question) with additive blending:
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
Now that texture will contain intensity as it was after your original loop. In another fragment shader during a full screen pass (draw a single triangle that covers the whole viewport), continue with:
uniform sampler2D intensityTex;
...
float intensity = texture2D(intensityTex, gl_FragCoord.xy/resolution.xy).r;
intensity = 3.0*pow(intensity, 0.02);
...
The code you have shown is fine, assuming you're drawing a full screen polygon so the fragment shader runs once for each pixel. Potential issues are:
resolution isn't set correctly
The point coordinates aren't in the range 0 to 1 on the screen.
Although minor, d will be stretched by the aspect ratio, so you might be better scaling the points up to pixel coordinates and diving distance by resolution.y.
This looks pretty similar to creating a density field for 2D metaballs. For performance you're best off limiting the density function for each point so it doesn't go on forever, then spatting discs into a texture using additive blending. This saves processing those pixels a point doesn't affect (just like in deferred shading). The result is the density field, or in your case per-pixel intensity.
These are a little related:
2D OpenGL ES Metaballs on android (no answers yet)
calculate light volume radius from intensity
gl_PointSize Corresponding to World Space Size
It looks like the point center and fragment position are in different coordinate spaces when you subtract them:
vec2 source = vec2(sourceX[i],sourceY[i]);
vec2 position = ( gl_FragCoord.xy / resolution.xy );
float d = distance(position, source);
Based on your explanation and code, source and source are in window coordinates, meaning that they are in units of pixels. gl_FragCoord is in the same coordinate space. And even though you don't show that directly, I assume that resolution is the size of the window in pixels.
This means that:
vec2 position = ( gl_FragCoord.xy / resolution.xy );
calculates the normalized position of the fragment within the window, in the range [0.0, 1.0] for both x and y. But then on the next line:
float d = distance(position, source);
you subtrace source, which is still in window coordinates, from this position in normalized coordinates.
Since it looks like you wanted the distance in normalized coordinates, which makes sense, you'll also need to normalize source:
vec2 source = vec2(sourceX[i],sourceY[i]) / resolution.xy;
I'm following the tutorial by John Chapman (http://john-chapman-graphics.blogspot.nl/2013/01/ssao-tutorial.html) to implement SSAO in a deferred renderer. The input buffers to the SSAO shaders are:
World-space positions with linearized depth as w-component.
World-space normal vectors
Noise 4x4 texture
I'll first list the complete shader and then briefly walk through the steps:
#version 330 core
in VS_OUT {
vec2 TexCoords;
} fs_in;
uniform sampler2D texPosDepth;
uniform sampler2D texNormalSpec;
uniform sampler2D texNoise;
uniform vec3 samples[64];
uniform mat4 projection;
uniform mat4 view;
uniform mat3 viewNormal; // transpose(inverse(mat3(view)))
const vec2 noiseScale = vec2(800.0f/4.0f, 600.0f/4.0f);
const float radius = 5.0;
void main( void )
{
float linearDepth = texture(texPosDepth, fs_in.TexCoords).w;
// Fragment's view space position and normal
vec3 fragPos_World = texture(texPosDepth, fs_in.TexCoords).xyz;
vec3 origin = vec3(view * vec4(fragPos_World, 1.0));
vec3 normal = texture(texNormalSpec, fs_in.TexCoords).xyz;
normal = normalize(normal * 2.0 - 1.0);
normal = normalize(viewNormal * normal); // Normal from world to view-space
// Use change-of-basis matrix to reorient sample kernel around origin's normal
vec3 rvec = texture(texNoise, fs_in.TexCoords * noiseScale).xyz;
vec3 tangent = normalize(rvec - normal * dot(rvec, normal));
vec3 bitangent = cross(normal, tangent);
mat3 tbn = mat3(tangent, bitangent, normal);
// Loop through the sample kernel
float occlusion = 0.0;
for(int i = 0; i < 64; ++i)
{
// get sample position
vec3 sample = tbn * samples[i]; // From tangent to view-space
sample = sample * radius + origin;
// project sample position (to sample texture) (to get position on screen/texture)
vec4 offset = vec4(sample, 1.0);
offset = projection * offset;
offset.xy /= offset.w;
offset.xy = offset.xy * 0.5 + 0.5;
// get sample depth
float sampleDepth = texture(texPosDepth, offset.xy).w;
// range check & accumulate
// float rangeCheck = abs(origin.z - sampleDepth) < radius ? 1.0 : 0.0;
occlusion += (sampleDepth <= sample.z ? 1.0 : 0.0);
}
occlusion = 1.0 - (occlusion / 64.0f);
gl_FragColor = vec4(vec3(occlusion), 1.0);
}
The result is however not pleasing. The occlusion buffer is mostly all white and doesn't show any occlusion. However, if I move really close to an object I can see some weird noise-like results as you can see below:
This is obviously not correct. I've done a fair share of debugging and believe all the relevant variables are correctly passed around (they all visualize as colors). I do the calculations in view-space.
I'll briefly walk through the steps (and choices) I've taken in case any of you figure something goes wrong in one of the steps.
view-space positions/normals
John Chapman retrieves the view-space position using a view ray and a linearized depth value. Since I use a deferred renderer that already has the world-space positions per fragment I simply take those and multiply them with the view matrix to get them to view-space.
I take a similar approach for the normal vectors. I take the world-space normal vectors from a buffer texture, transform them to [-1,1] range and multiply them with transpose(inverse(mat3(..))) of view matrix.
The view-space position and normals are visualized as below:
This looks correct to me.
Orient hemisphere around normal
The steps to create the tbn matrix are the same as described in John Chapman's tutorial. I create the noise texture as follows:
std::vector<glm::vec3> ssaoNoise;
for (GLuint i = 0; i < noise_size; i++)
{
glm::vec3 noise(randomFloats(generator) * 2.0 - 1.0, randomFloats(generator) * 2.0 - 1.0, 0.0f);
noise = glm::normalize(noise);
ssaoNoise.push_back(noise);
}
...
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, 4, 4, 0, GL_RGB, GL_FLOAT, &ssaoNoise[0]);
I can visualize the noise in the fragment shader so that seems to work.
sample depths
I transform all samples from tangent to view-space (samples are random between [-1,1] on xy axis and [0,1] on z-axis and translate them to fragment's current view-space position (origin).
I then sample from linearized depth buffer (which I visualize below when looking close to an object):
and finally compare sampled depth values to current fragment's depth value and add occlusion values. Note that I do not perform a range-check since I don't believe that is the cause of this behavior and I'd rather keep it as minimal as possible for now.
I don't know what is causing this behavior. I believe it is somewhere in sampling the depth values. As far as I can tell I am working in the right coordinate system, linearized depth values are in view-space as well and all variables are set somewhat properly.
I'm trying to create geometry to represent the Earth in OpenGL. I have what's more or less a sphere (closer to the elliptical geoid that Earth is though). I map a texture of the Earth's surface (that's probably a mercator projection or something similar). The texture's UV coordinates correspond to the geometry's latitude and longitude. I have two issues that I'm unable to solve. I am using OpenSceneGraph but I think this is a general OpenGL / 3D programming question.
There's a texture seam that's very apparent. I'm sure this occurs because I don't know how to map the UV coordinates to XYZ where the seam occurs. I only map UV coords up to the last vertex before wrapping around... You'd need to map two different UV coordinates to the same XYZ vertex to eliminate the seam. Is there a commonly used trick to get around this, or am I just doing it wrong?
There's crazy swirly distortion going on at the poles. I'm guessing this because I map a single UV point at the poles (for Earth, I use [0.5,1] for the North Pole, and [0.5,0] for the South Pole). What else would you do though? I can sort of live with this... but its extremely noticeable at lower resolution meshes.
I've attached an image to show what I'm talking about.
The general way this is handled is by using a cube map, not a 2D texture.
However, if you insist on using a 2D texture, you have to create a break in your mesh's topology. The reason you get that longitudinal line is because you have one vertex with a texture coordinate of something like 0.9 or so, and its neighboring vertex has a texture coordinate of 0.0. What you really want is that the 0.9 one neighbors a 1.0 texture coordinate.
Doing this means replicating the position down one line of the sphere. So you have the same position used twice in your data. One is attached to a texture coordinate of 1.0 and neighbors a texture coordinate of 0.9. The other has a texture coordinate of 0.0, and neighbors a vertex with 0.1.
Topologically, you need to take a longitudinal slice down your sphere.
Your link really helped me out, furqan, thanks.
Why couldn't you figure it out? A point where I stumbled was, that I didn't know you can exceed the [0,1] interval when calculating the texture coordinates. That makes it a lot easier to jump from one side of the texture to the other with OpenGL doing all the interpolation and without having to calculate the exact position where the texture actually ends.
You can also go a dirty way: interpolate X,Y positions in between vertex shader and fragment shader and recalculate correct texture coordinate in fragment shader. This may be somewhat slower, but it doesn't involve duplicate vertexes and it's simplier, I think.
For example:
vertex shader:
#version 150 core
uniform mat4 projM;
uniform mat4 viewM;
uniform mat4 modelM;
in vec4 in_Position;
in vec2 in_TextureCoord;
out vec2 pass_TextureCoord;
out vec2 pass_xy_position;
void main(void) {
gl_Position = projM * viewM * modelM * in_Position;
pass_xy_position = in_Position.xy; // 2d spinning interpolates good!
pass_TextureCoord = in_TextureCoord;
}
fragment shader:
#version 150 core
uniform sampler2D texture1;
in vec2 pass_xy_position;
in vec2 pass_TextureCoord;
out vec4 out_Color;
#define PI 3.141592653589793238462643383279
void main(void) {
vec2 tc = pass_TextureCoord;
tc.x = (PI + atan(pass_xy_position.y, pass_xy_position.x)) / (2 * PI); // calculate angle and map it to 0..1
out_Color = texture(texture1, tc);
}
It took a long time to figure this extremely annoying issue out. I'm programming with C# in Unity and I didn't want to duplicate any vertices. (Would cause future issues with my concept) So I went with the shader idea and it works out pretty well. Although I'm sure the code could use some heavy duty optimization, I had to figure out how to port it over to CG from this but it works. This is in case someone else runs across this post, as I did, looking for a solution to the same problem.
Shader "Custom/isoshader" {
Properties {
decal ("Base (RGB)", 2D) = "white" {}
}
SubShader {
Pass {
Fog { Mode Off }
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#define PI 3.141592653589793238462643383279
sampler2D decal;
struct appdata {
float4 vertex : POSITION;
float4 texcoord : TEXCOORD0;
};
struct v2f {
float4 pos : SV_POSITION;
float4 tex : TEXCOORD0;
float3 pass_xy_position : TEXCOORD1;
};
v2f vert(appdata v){
v2f o;
o.pos = mul(UNITY_MATRIX_MVP, v.vertex);
o.pass_xy_position = v.vertex.xyz;
o.tex = v.texcoord;
return o;
}
float4 frag(v2f i) : COLOR {
float3 tc = i.tex;
tc.x = (PI + atan2(i.pass_xy_position.x, i.pass_xy_position.z)) / (2 * PI);
float4 color = tex2D(decal, tc);
return color;
}
ENDCG
}
}
}
As Nicol Bolas said, some triangles have UV coordinates going from ~0.9 back to 0, so the interpolation messes the texture around the seam. In my code, I've created this function to duplicate the vertices around the seam. This will create a sharp line splitting those vertices. If your texture has only water around the seam (the Pacific ocean?), you may not notice this line. Hope it helps.
/**
* After spherical projection, some triangles have vertices with
* UV coordinates that are far away (0 to 1), because the Azimuth
* at 2*pi = 0. Interpolating between 0 to 1 creates artifacts
* around that seam (the whole texture is thinly repeated at
* the triangles around the seam).
* This function duplicates vertices around the seam to avoid
* these artifacts.
*/
void PlatonicSolid::SubdivideAzimuthSeam() {
if (m_texCoord == NULL) {
ApplySphericalProjection();
}
// to take note of the trianges in the seam
int facesSeam[m_numFaces];
// check all triangles, looking for triangles with vertices
// separated ~2π. First count.
int nSeam = 0;
for (int i=0;i < m_numFaces; ++i) {
// check the 3 vertices of the triangle
int a = m_faces[3*i];
int b = m_faces[3*i+1];
int c = m_faces[3*i+2];
// just check the seam in the azimuth
float ua = m_texCoord[2*a];
float ub = m_texCoord[2*b];
float uc = m_texCoord[2*c];
if (fabsf(ua-ub)>0.5f || fabsf(ua-uc)>0.5f || fabsf(ub-uc)>0.5f) {
//test::printValue("Face: ", i, "\n");
facesSeam[nSeam] = i;
++nSeam;
}
}
if (nSeam==0) {
// no changes
return;
}
// reserve more memory
int nVertex = m_numVertices;
m_numVertices += nSeam;
m_vertices = (float*)realloc((void*)m_vertices, 3*m_numVertices*sizeof(float));
m_texCoord = (float*)realloc((void*)m_texCoord, 2*m_numVertices*sizeof(float));
// now duplicate vertices in the seam
// (the number of triangles/faces is the same)
for (int i=0; i < nSeam; ++i, ++nVertex) {
int t = facesSeam[i]; // triangle index
// check the 3 vertices of the triangle
int a = m_faces[3*t];
int b = m_faces[3*t+1];
int c = m_faces[3*t+2];
// just check the seam in the azimuth
float u_ab = fabsf(m_texCoord[2*a] - m_texCoord[2*b]);
float u_ac = fabsf(m_texCoord[2*a] - m_texCoord[2*c]);
float u_bc = fabsf(m_texCoord[2*b] - m_texCoord[2*c]);
// select the vertex further away from the other 2
int f = 2;
if (u_ab >= 0.5f && u_ac >= 0.5f) {
c = a;
f = 0;
} else if (u_ab >= 0.5f && u_bc >= 0.5f) {
c = b;
f = 1;
}
m_vertices[3*nVertex] = m_vertices[3*c]; // x
m_vertices[3*nVertex+1] = m_vertices[3*c+1]; // y
m_vertices[3*nVertex+2] = m_vertices[3*c+2]; // z
// repeat u from texcoord
m_texCoord[2*nVertex] = 1.0f - m_texCoord[2*c];
m_texCoord[2*nVertex+1] = m_texCoord[2*c+1];
// change this face so all the vertices have close UV
m_faces[3*t+f] = nVertex;
}
}
One approach is like in the accepted answer. In the code generating the array of vertex attributes you will have a code like this:
// FOR EVERY TRIANGLE
const float threshold = 0.7;
if(tcoords_1.s > threshold || tcoords_2.s > threshold || tcoords_3.s > threshold)
{
if(tcoords_1.s < 1. - threshold)
{
tcoords_1.s += 1.;
}
if(tcoords_2.s < 1. - threshold)
{
tcoords_2.s += 1.;
}
if(tcoords_3.s < 1. - threshold)
{
tcoords_3.s += 1.;
}
}
If you have triangles which are not meridian-aligned you will also want glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);. You also need to use glDrawArrays since vertices with the same position will have different texture coords.
I think the better way to go is to eliminate the root of all evil, which is texture coords interpolation in this case. Since you know basically all about your sphere/ellipsoid, you can calculate texture coords, normals, etc. in the fragment shader based on position. This means that your CPU code generating vertex attributes will be much simpler and you can use indexed drawing again. And I don't think this approach is dirty. It's clean.