Accessing private C++ methods within C++/CLI wrapper - c++

Given a class method in C++ that has to be private there, how to make C++/CLI access it. Example: C++ class has a private constructor that shouldn't be exposed to the external user, C++/CLI managed code has to have similar private constructor, but internally it must access private C++ constructor to instantiate a member pointer referring to C++ native class.

Keep in mind, first of all, the goal of making things inaccessible (i.e. private) generally contradicts the goal of making things accessible. If you're able to change the class declaration, then you have some options. I don't know the specifics of your C++/CLI requirements, but perhaps one of these options will give you what you need.
Protected and Inheritance
To an "outsider", private and protected members are equally inaccessible. But to a subclass, private is still private while protected members are accessible. You can gain access to protected members by subclassing. This can be one way to unit test "private" members of a class without fully exposing it to the world.
class A {
protected: // was private
int sum(int a, int b);
};
class TestA : public A {
public:
bool testSum(int expected, int a, int b) {
return expected == sum(a, b);
}
};
So access to protected method sum in class A becomes accessible by making it protected and subclassing. The private member will remain inaccessible to everything else except subclasses.
Static Factory Method
You mentioned a private constructor; if you are needing to manage construction, you might accomplish that with a static factory method. For instance:
class Foobar {
private:
Foobar() { } // Don't let anyone just make one.
public:
static Foobar* Create() { return new Foobar; }
};
// To create a Foobar instance:
Foobar* pfoo = Foobar::Create();
This is not the best interface (better to use a shared_ptr, for instance), but it demonstrates my meaning. Note that since the factory function Create is public, anyone can create one. However, you can change the body of Create to something more complex: include bookkeeping, initialization, etc. The factory method is a way to manage creation, not restrict it. Granted, you may not want this, but it's an option if you need to manage construction.
Friends
C++ permits giving access of the private parts of classes to other classes/functions via the friend keyword.
class A {
int x; //private
friend class B;
};
class B {
void foobar(A& a) {
a.x = 42; // permissible, because A declared class B a friend
}
};
Friendship can be granted to another class or to a function. This can easily break encapsulation and make code difficult to follow or keep safe, but it also gives you the means to expose private members to exactly just those who need it.

Related

getting error 'double Employee::taxRate' is private [duplicate]

What is the difference between private and protected members in C++ classes?
I understand from best practice conventions that variables and functions which are not called outside the class should be made private—but looking at my MFC project, MFC seems to favor protected.
What's the difference and which should I use?
Private members are only accessible within the class defining them.
Protected members are accessible in the class that defines them and in classes that inherit from that class.
Edit: Both are also accessible by friends of their class, and in the case of protected members, by friends of their derived classes.
Edit 2: Use whatever makes sense in the context of your problem. You should try to make members private whenever you can to reduce coupling and protect the implementation of the base class, but if that's not possible then use protected members. Check C++ FAQ for a better understanding of the issue. This question about protected variables might also help.
Public members of a class A are accessible for all and everyone.
Protected members of a class A are not accessible outside of A's code, but is accessible from the code of any class derived from A.
Private members of a class A are not accessible outside of A's code, or from the code of any class derived from A.
So, in the end, choosing between protected or private is answering the following questions: How much trust are you willing to put into the programmer of the derived class?
By default, assume the derived class is not to be trusted, and make your members private. If you have a very good reason to give free access of the mother class' internals to its derived classes, then you can make them protected.
Protected members can be accessed from derived classes. Private ones can't.
class Base {
private:
int MyPrivateInt;
protected:
int MyProtectedInt;
public:
int MyPublicInt;
};
class Derived : Base
{
public:
int foo1() { return MyPrivateInt;} // Won't compile!
int foo2() { return MyProtectedInt;} // OK
int foo3() { return MyPublicInt;} // OK
};‌‌
class Unrelated
{
private:
Base B;
public:
int foo1() { return B.MyPrivateInt;} // Won't compile!
int foo2() { return B.MyProtectedInt;} // Won't compile
int foo3() { return B.MyPublicInt;} // OK
};
In terms of "best practice", it depends. If there's even a faint possibility that someone might want to derive a new class from your existing one and need access to internal members, make them Protected, not Private. If they're private, your class may become difficult to inherit from easily.
The reason that MFC favors protected, is because it is a framework. You probably want to subclass the MFC classes and in that case a protected interface is needed to access methods that are not visible to general use of the class.
It all depends on what you want to do, and what you want the derived classes to be able to see.
class A
{
private:
int _privInt = 0;
int privFunc(){return 0;}
virtual int privVirtFunc(){return 0;}
protected:
int _protInt = 0;
int protFunc(){return 0;}
public:
int _publInt = 0;
int publFunc()
{
return privVirtFunc();
}
};
class B : public A
{
private:
virtual int privVirtFunc(){return 1;}
public:
void func()
{
_privInt = 1; // wont work
_protInt = 1; // will work
_publInt = 1; // will work
privFunc(); // wont work
privVirtFunc(); // will work, simply calls the derived version.
protFunc(); // will work
publFunc(); // will return 1 since it's overridden in this class
}
}
Attributes and methods marked as protected are -- unlike private ones -- still visible in subclasses.
Unless you don't want to use or provide the possibility to override the method in possible subclasses, I'd make them private.
Sure take a look at the Protected Member Variables question. It is recommended to use private as a default (just like C++ classses do) to reduce coupling. Protected member variables are most always a bad idea, protected member functions can be used for e.g. the Template Method pattern.
Protected members can only be accessed by descendants of the class, and by code in the same module. Private members can only be accessed by the class they're declared in, and by code in the same module.
Of course friend functions throw this out the window, but oh well.
private members are only accessible from within the class, protected members are accessible in the class and derived classes. It's a feature of inheritance in OO languages.
You can have private, protected and public inheritance in C++, which will determine what derived classes can access in the inheritance hierarchy. C# for example only has public inheritance.
private = accessible by the mothership (base class) only
(ie only my parent can go into my parent's bedroom)
protected = accessible by mothership (base class), and her daughters
(ie only my parent can go into my parent's bedroom, but gave son/daughter permission to walk into parent's bedroom)
public = accessible by mothership (base class), daughter, and everyone else
(ie only my parent can go into my parent's bedroom, but it's a house party - mi casa su casa)
Since no public member function is needed to fetch and update protected members in the derived class, this increases the efficiency of code and reduces the amount of code we need to write. However, programmer of the derived class is supposed to be aware of what he is doing.
private is preferred for member data. Members in C++ classes are private by default.
public is preferred for member functions, though it is a matter of opinion. At least some methods must be accessible. public is accessible to all. It is the most flexible option and least safe. Anybody can use them, and anybody can misuse them.
private is not accessible at all. Nobody can use them outside the class, and nobody can misuse them. Not even in derived classes.
protected is a compromise because it can be used in derived classes. When you derive from a class, you have a good understanding of the base class, and you are careful not to misuse these members.
MFC is a C++ wrapper for Windows API, it prefers public and protected. Classes generated by Visual Studio wizard have an ugly mix of protected, public, and private members. But there is some logic to MFC classes themselves.
Members such as SetWindowText are public because you often need to access these members.
Members such as OnLButtonDown, handle notifications received by the window. They should not be accessed, therefore they are protected. You can still access them in the derived class to override these functions.
Some members have to do threads and message loops, they should not be accessed or override, so they are declared as private
In C++ structures, members are public by default. Structures are usually used for data only, not methods, therefore public declaration is considered safe.
Private : Accessible by class member functions & friend function or friend class.
For C++ class this is default access specifier.
Protected: Accessible by class member functions, friend function or friend class & derived classes.
You can keep class member variable or function (even typedefs or inner classes) as private or protected as per your requirement.
Most of the time you keep class member as a private and add get/set functions to encapsulate. This helps in maintenance of code.
Generally private function is used when you want to keep your public functions modular or to eliminate repeated code instead of writing whole code in to single function. This helps in maintenance of code.
Refer this link for more detail.
Private: It is an access specifier. By default the instance (member) variables or the methods of a class in c++/java are private. During inheritance, the code and the data are always inherited but is not accessible outside the class. We can declare our data members as private so that no one can make direct changes to our member variables and we can provide public getters and setters in order to change our private members. And this concept is always applied in the business rule.
Protected: It is also an access specifier. In C++, the protected members are accessible within the class and to the inherited class but not outside the class. In Java, the protected members are accessible within the class, to the inherited class as well as to all the classes within the same package.
Private member can be accessed only in same class where it has declared where as protected member can be accessed in class where it is declared along with the classes which are inherited by it .
A protected nonstatic base class member can be accessed by members and friends of any classes derived from that base class by using one of the following:
A pointer to a directly or indirectly derived class
A reference to a directly or indirectly derived class
An object of a directly or indirectly derived class
The protected keyword specifies access to class members in the
member-list up to the next access specifier (public or private) or the
end of the class definition. Class members declared as protected can
be used only by the following:
Member functions of the class that originally declared these members.
Friends of the class that originally declared these members.
Classes derived with public or protected access from the class that originally declared these members.
Direct privately derived classes that also have private access to protected members.
When preceding the name of a base class, the protected keyword
specifies that the public and protected members of the base class are
protected members of its derived classes.
Protected members are not as private as private members, which are
accessible only to members of the class in which they are declared,
but they are not as public as public members, which are accessible in
any function.
Protected members that are also declared as static are accessible to
any friend or member function of a derived class. Protected members
that are not declared as static are accessible to friends and member
functions in a derived class only through a pointer to, reference to,
or object of the derived class.
protected (C++)
What is the difference between private and protected members in C++ classes?
Other answers have stated:
public - accessible by all.
protected - accessible by derived classes (and friends).
private - restricted.
What's the difference and which should I use?
The C++ core guidelines gives the advice that data should always be private. I think this is good advice as it makes for 'data spaghetti' when you have derived classes that can access protected data. It makes much more sense for functions to be protected, but it depends on the use case.
For functions you have a choice. For data, you should make it private and provide protected accessor functions if needed. This gives more control over the class data.
private and protected access modifiers are one and same only that protected members of the base class can be accessed outside the scope of the base class in the child(derived)class.
It also applies the same to inheritance .
But with the private modifier the members of the base class can only be accessed in the scope or code of the base class and its friend functions only''''

C++: Creating derived class that has access to private variables of base?

I have an abstract class base with private member variable base_var. I want to create a derived class, which also has base_var as a private member.
To me, this seems like an obvious thing you would want to do. base is abstract so it will never be instantiated. The only time I will create a base-object is if it is actually a derived object, so obviously when I give ´base´ a private member variable, what I am really trying to do is give that variable to all of its derived objects.
However, the below diagram seems to suggest that this is not doable with inheritance?
Why not? What would then even be the point of having private stuff in an abstract class? That class will never be instantiated, so all that private stuff is essentially useless?
However, the below diagram seems to suggest that this is not doable with inheritance?
Correct, private members of a class can not be accessed by derived classes. If You want a member of a class to be accessible by its derived classes but not by the outside, then You have to make it protected.
Why not? What would then even be the point of having private stuff in an abstract class? That class will never be instantiated, so all that private stuff is essentially useless?
Even an abstract class can have member functions which act on a (private) member variable. Consider (somewhat silly example, but well):
class MaxCached
{
private:
int cache = std::numeric_limits<int>::min();
public:
bool put(int value)
{
if (value > cache)
{
cache = value;
return true;
}
return false;
}
int get() const
{
return cache;
}
virtual void someInterface() const = 0;
};
Deriving from this class gives You the functionality of the base class (put and get) without the danger of breaking it (by for example writing a wrong value to cache).
Side note: Above is a purely made up example! You shouldn't add such a cache (which is independent of Your interface) into the abstract base class. As it stands the example breaks with the "Single Responsibility Principle"!
Just because a class is abstract doesn't mean there cannot be code implemented in that class that might access that variable. When you declare an item in a class to be private, the compiler assumes you had a good reason and will not change the access just because it there is a pure virtual function in the class.
If you want your derived classes to have access to a base class member declare the member as protected.
I have an abstract class base with private member variable base_var
class foo {
public:
virtual void a_pure_virtual_method() = 0;
int get_var() { base_var; }
virtual ~foo(){}
private:
int base_var;
};
Note that a class is said to be abstract when it has at least one pure virtual (aka abstract) method. There is nothing that forbids an abstract class to have non-pure virtual or even non-virtual methods.
I want to create a derived class, which also has base_var as a private member.
class derived : public foo {};
To me, this seems like an obvious thing you would want to do.
Sure, no problem so far.
The only time I will create a base-object is if it is actually a derived object, so obviously when I give ´base´ a private member variable, what I am really trying to do is give that variable to all of its derived objects.
Still fine.
Why not?
You are confusing access rights that are display in the image you included with the mere presence of the members in the derived. The derived class has no access to members that are private in the base class. Period. This is just according to the definition of what is private.
What would then even be the point of having private stuff in an abstract class? That class will never be instantiated, so all that private stuff is essentially useless?
It is not useless at all. Derived classes inherit all members, they just cannot access all of them. The private stuff is there you just cannot access it directly. Thats the whole point of encapsulation. Consider this example:
class bar : public foo {
void test() {
std::cout << base_var; // error base_var is private in foo
std::cout << get_var(); // fine
}
};

C++:Can`t access protected members with auto_ptr<myclass> [duplicate]

What is the difference between private and protected members in C++ classes?
I understand from best practice conventions that variables and functions which are not called outside the class should be made private—but looking at my MFC project, MFC seems to favor protected.
What's the difference and which should I use?
Private members are only accessible within the class defining them.
Protected members are accessible in the class that defines them and in classes that inherit from that class.
Edit: Both are also accessible by friends of their class, and in the case of protected members, by friends of their derived classes.
Edit 2: Use whatever makes sense in the context of your problem. You should try to make members private whenever you can to reduce coupling and protect the implementation of the base class, but if that's not possible then use protected members. Check C++ FAQ for a better understanding of the issue. This question about protected variables might also help.
Public members of a class A are accessible for all and everyone.
Protected members of a class A are not accessible outside of A's code, but is accessible from the code of any class derived from A.
Private members of a class A are not accessible outside of A's code, or from the code of any class derived from A.
So, in the end, choosing between protected or private is answering the following questions: How much trust are you willing to put into the programmer of the derived class?
By default, assume the derived class is not to be trusted, and make your members private. If you have a very good reason to give free access of the mother class' internals to its derived classes, then you can make them protected.
Protected members can be accessed from derived classes. Private ones can't.
class Base {
private:
int MyPrivateInt;
protected:
int MyProtectedInt;
public:
int MyPublicInt;
};
class Derived : Base
{
public:
int foo1() { return MyPrivateInt;} // Won't compile!
int foo2() { return MyProtectedInt;} // OK
int foo3() { return MyPublicInt;} // OK
};‌‌
class Unrelated
{
private:
Base B;
public:
int foo1() { return B.MyPrivateInt;} // Won't compile!
int foo2() { return B.MyProtectedInt;} // Won't compile
int foo3() { return B.MyPublicInt;} // OK
};
In terms of "best practice", it depends. If there's even a faint possibility that someone might want to derive a new class from your existing one and need access to internal members, make them Protected, not Private. If they're private, your class may become difficult to inherit from easily.
The reason that MFC favors protected, is because it is a framework. You probably want to subclass the MFC classes and in that case a protected interface is needed to access methods that are not visible to general use of the class.
It all depends on what you want to do, and what you want the derived classes to be able to see.
class A
{
private:
int _privInt = 0;
int privFunc(){return 0;}
virtual int privVirtFunc(){return 0;}
protected:
int _protInt = 0;
int protFunc(){return 0;}
public:
int _publInt = 0;
int publFunc()
{
return privVirtFunc();
}
};
class B : public A
{
private:
virtual int privVirtFunc(){return 1;}
public:
void func()
{
_privInt = 1; // wont work
_protInt = 1; // will work
_publInt = 1; // will work
privFunc(); // wont work
privVirtFunc(); // will work, simply calls the derived version.
protFunc(); // will work
publFunc(); // will return 1 since it's overridden in this class
}
}
Attributes and methods marked as protected are -- unlike private ones -- still visible in subclasses.
Unless you don't want to use or provide the possibility to override the method in possible subclasses, I'd make them private.
Sure take a look at the Protected Member Variables question. It is recommended to use private as a default (just like C++ classses do) to reduce coupling. Protected member variables are most always a bad idea, protected member functions can be used for e.g. the Template Method pattern.
Protected members can only be accessed by descendants of the class, and by code in the same module. Private members can only be accessed by the class they're declared in, and by code in the same module.
Of course friend functions throw this out the window, but oh well.
private members are only accessible from within the class, protected members are accessible in the class and derived classes. It's a feature of inheritance in OO languages.
You can have private, protected and public inheritance in C++, which will determine what derived classes can access in the inheritance hierarchy. C# for example only has public inheritance.
private = accessible by the mothership (base class) only
(ie only my parent can go into my parent's bedroom)
protected = accessible by mothership (base class), and her daughters
(ie only my parent can go into my parent's bedroom, but gave son/daughter permission to walk into parent's bedroom)
public = accessible by mothership (base class), daughter, and everyone else
(ie only my parent can go into my parent's bedroom, but it's a house party - mi casa su casa)
Since no public member function is needed to fetch and update protected members in the derived class, this increases the efficiency of code and reduces the amount of code we need to write. However, programmer of the derived class is supposed to be aware of what he is doing.
private is preferred for member data. Members in C++ classes are private by default.
public is preferred for member functions, though it is a matter of opinion. At least some methods must be accessible. public is accessible to all. It is the most flexible option and least safe. Anybody can use them, and anybody can misuse them.
private is not accessible at all. Nobody can use them outside the class, and nobody can misuse them. Not even in derived classes.
protected is a compromise because it can be used in derived classes. When you derive from a class, you have a good understanding of the base class, and you are careful not to misuse these members.
MFC is a C++ wrapper for Windows API, it prefers public and protected. Classes generated by Visual Studio wizard have an ugly mix of protected, public, and private members. But there is some logic to MFC classes themselves.
Members such as SetWindowText are public because you often need to access these members.
Members such as OnLButtonDown, handle notifications received by the window. They should not be accessed, therefore they are protected. You can still access them in the derived class to override these functions.
Some members have to do threads and message loops, they should not be accessed or override, so they are declared as private
In C++ structures, members are public by default. Structures are usually used for data only, not methods, therefore public declaration is considered safe.
Private : Accessible by class member functions & friend function or friend class.
For C++ class this is default access specifier.
Protected: Accessible by class member functions, friend function or friend class & derived classes.
You can keep class member variable or function (even typedefs or inner classes) as private or protected as per your requirement.
Most of the time you keep class member as a private and add get/set functions to encapsulate. This helps in maintenance of code.
Generally private function is used when you want to keep your public functions modular or to eliminate repeated code instead of writing whole code in to single function. This helps in maintenance of code.
Refer this link for more detail.
Private: It is an access specifier. By default the instance (member) variables or the methods of a class in c++/java are private. During inheritance, the code and the data are always inherited but is not accessible outside the class. We can declare our data members as private so that no one can make direct changes to our member variables and we can provide public getters and setters in order to change our private members. And this concept is always applied in the business rule.
Protected: It is also an access specifier. In C++, the protected members are accessible within the class and to the inherited class but not outside the class. In Java, the protected members are accessible within the class, to the inherited class as well as to all the classes within the same package.
Private member can be accessed only in same class where it has declared where as protected member can be accessed in class where it is declared along with the classes which are inherited by it .
A protected nonstatic base class member can be accessed by members and friends of any classes derived from that base class by using one of the following:
A pointer to a directly or indirectly derived class
A reference to a directly or indirectly derived class
An object of a directly or indirectly derived class
The protected keyword specifies access to class members in the
member-list up to the next access specifier (public or private) or the
end of the class definition. Class members declared as protected can
be used only by the following:
Member functions of the class that originally declared these members.
Friends of the class that originally declared these members.
Classes derived with public or protected access from the class that originally declared these members.
Direct privately derived classes that also have private access to protected members.
When preceding the name of a base class, the protected keyword
specifies that the public and protected members of the base class are
protected members of its derived classes.
Protected members are not as private as private members, which are
accessible only to members of the class in which they are declared,
but they are not as public as public members, which are accessible in
any function.
Protected members that are also declared as static are accessible to
any friend or member function of a derived class. Protected members
that are not declared as static are accessible to friends and member
functions in a derived class only through a pointer to, reference to,
or object of the derived class.
protected (C++)
What is the difference between private and protected members in C++ classes?
Other answers have stated:
public - accessible by all.
protected - accessible by derived classes (and friends).
private - restricted.
What's the difference and which should I use?
The C++ core guidelines gives the advice that data should always be private. I think this is good advice as it makes for 'data spaghetti' when you have derived classes that can access protected data. It makes much more sense for functions to be protected, but it depends on the use case.
For functions you have a choice. For data, you should make it private and provide protected accessor functions if needed. This gives more control over the class data.
private and protected access modifiers are one and same only that protected members of the base class can be accessed outside the scope of the base class in the child(derived)class.
It also applies the same to inheritance .
But with the private modifier the members of the base class can only be accessed in the scope or code of the base class and its friend functions only''''

Why does C++ not allow inherited friendship?

Why is friendship not at least optionally inheritable in C++? I understand transitivity and reflexivity being forbidden for obvious reasons (I say this only to head off simple FAQ quote answers), but the lack of something along the lines of virtual friend class Foo; puzzles me. Does anyone know the historical background behind this decision? Was friendship really just a limited hack that has since found its way into a few obscure respectable uses?
Edit for clarification: I'm talking about the following scenario, not where children of A are exposed to either B or to both B and its children. I can also imagine optionally granting access to overrides of friend functions, etc.
class A {
int x;
friend class B;
};
class B {
// OK as per friend declaration above.
void foo(A& a, int n) { a.x = n; }
};
class D : public B { /* can't get in A w/o 'friend class D' declaration. */ };
Accepted answer: as Loki states, the effect can be simulated more or less by making protected proxy functions in friended base classes, so there is no strict need for granting friendship to a class or virtual method heirarchy. I dislike the need for boilerplate proxies (which the friended base effectively becomes), but I suppose that this was deemed preferable over a language mechanism that would more likely be misused most of the time. I think it's probably time I bought and read Stroupstrup's The Design and Evolution of C++, which I've seen enough people here recommend, to get better insight to these types of questions ...
Because I may write Foo and its friend Bar (thus there is a trust relationship).
But do I trust the people who write classes that are derived from Bar?
Not really. So they should not inherit friendship.
Any change in the internal representation of a class will require a modification to anything that is dependent on that representation. Thus all members of a class and also all friends of the class will require modification.
Therefore if the internal representation of Foo is modified then Bar must also be modified (because friendship tightly binds Bar to Foo). If friendship was inherited then all class derived from Bar would also be tightly bound to Foo and thus require modification if Foo's internal representation is changed. But I have no knowledge of derived types (nor should I. They may even be developed by different companies etc). Thus I would be unable to change Foo as doing so would introduce breaking changes into the code base (as I could not modify all class derived from Bar).
Thus if friendship was inherited you are inadvertently introducing a restriction on the ability to modify a class. This is undesirable as you basically render useless the concept of a public API.
Note: A child of Bar can access Foo by using Bar, just make the method in Bar protected. Then the child of Bar can access a Foo by calling through its parent class.
Is this what you want?
class A
{
int x;
friend class B;
};
class B
{
protected:
// Now children of B can access foo
void foo(A& a, int n) { a.x = n; }
};
class D : public B
{
public:
foo(A& a, int n)
{
B::foo(a, n + 5);
}
};
A friended class may expose its friend through accessor functions, and then grant access through those.
class stingy {
int pennies;
friend class hot_girl;
};
class hot_girl {
public:
stingy *bf;
int &get_cash( stingy &x = *bf ) { return x.pennies; }
};
class moocher {
public: // moocher can access stingy's pennies despite not being a friend
int &get_cash( hot_girl &x ) { return x.get_cash(); }
};
This allows finer control than optional transitivity. For example, get_cash may be protected or may enforce a protocol of runtime-limited access.
C++ Standard, section 11.4/8
Friendship is neither inherited nor transitive.
If friendship would be inherited, then a class that wasn't meant to be a friend would suddenly have access to your class internals and that violates encapsulation.
Because it's just unnecessary.
The usage of the friend keyword is itself suspicious. In term of coupling it's the worst relationship (way ahead of inheritance and composition).
Any change to the internals of a class have a risk to impact the friends of this class... do you really want an unknown number of friends ? You would not even be able to list them if those who inherit from them could be friends also, and you would run in the risk of breaking your clients code each time, surely this is not desirable.
I freely admit that for homework/pet projects dependency is often a far away consideration. On small size projects it doesn't matter. But as soon as several persons work on the same project and this grows into the dozens of thousands of lines you need to limit the impact of changes.
This bring a very simple rule:
Changing the internals of a class should only affect the class itself
Of course, you'll probably affect its friends, but there are two cases here:
friend free function: probably more of a member function anyway (I am think std::ostream& operator<<(...) here, which is not a member purely by accident of the language rules
friend class ? you don't need friend classes on real classes.
I would recommend the use of the simple method:
class Example;
class ExampleKey { friend class Example; ExampleKey(); };
class Restricted
{
public:
void forExampleOnly(int,int,ExampleKey const&);
};
This simple Key pattern allows you to declare a friend (in a way) without actually giving it access to your internals, thus isolating it from changes. Furthermore it allows this friend to lend its key to trustees (like children) if required.
A guess: If a class declares some other class/function as a friend, it's because that second entity needs privileged access to the first. What use is there in granting the second entity privileged access to an arbitrary number of classes derived from the first?
A derived class can inherit only something, which is 'member' of the base. A friend declaration is not a member of the befriending class.
$11.4/1- "...The name of a friend is
not in the scope of the class, and the
friend is not called with the member
access operators (5.2.5) unless it is
a member of another class."
$11.4 - "Also, because the base-clause
of the friend class is not part of its
member declarations, the base-clause
of the friend class cannot access the
names of the private and protected
members from the class granting
friendship."
and further
$10.3/7- "[Note: the virtual specifier
implies membership, so a virtual
function cannot be a nonmember (7.1.2)
function. Nor can a virtual function
be a static member, since a virtual
function call relies on a specific
object for determining which function
to invoke. A virtual function declared
in one class can be declared a friend
in another class. ]"
Since the 'friend' is not a member of the base class in the first place, how can it be inherited by the derived class?
Friend function in a class assigns the extern property to the function. i.e. extern means that the function has been declared and defined somewhere out of the class.
Hence it means friend function is not a member of a class. So the inheritance only allows you to inherit the properties of a class not external things. And also if inheritance is allowed for friend functions, then a third party class inheriting.
Friend is good in inheritance like style interface for container
But for me, as the first say, C++ lack the propagatable inheritance
class Thing;
//an interface for Thing container's
struct IThing {
friend Thing;
protected:
int IThing_getData() = 0;
};
//container for thing's
struct MyContainer : public IThing {
protected: //here is reserved access to Thing
int IThing_getData() override {...}
};
struct Thing {
void setYourContainer(IThing* aContainerOfThings) {
//access to unique function in protected area
aContainerOfThings->IThing_getData(); //authorized access
}
};
struct ChildThing : public Thing {
void doTest() {
//here the lack of granularity, you cannot access to the container.
//to use the container, you must implement all
//function in the Thing class
aContainerOfThings->IThing_getData(); //forbidden access
}
};
For me the problem of C++ is the lack of very good granularity to
control all access from anywhere for anything :
friend Thing can become friend Thing.* to grant access to all child of Thing
And more, friend [named area] Thing.* to grant access for a precise
are in the Container class via special named area for the friend.
Ok stop the dream. But now, you know an interesting usage of friend.
In another order, you can also found interesting to known all class are friendly with self. In other word, a class instance can call all
members of another instance of same name without restriction:
class Object {
private:
void test() {}
protected:
void callAnotherTest(Object* anotherObject) {
//private, but yes you can call test() from
//another object instance
anotherObject)->test();
}
};
Simple logic : 'I have a friend Jane. Just because we became friends yesterday does not make all of her friends mine.'
I still need to approve those individual friendships, and the level of trust would be accordingly.

What is the difference between private and protected members of C++ classes?

What is the difference between private and protected members in C++ classes?
I understand from best practice conventions that variables and functions which are not called outside the class should be made private—but looking at my MFC project, MFC seems to favor protected.
What's the difference and which should I use?
Private members are only accessible within the class defining them.
Protected members are accessible in the class that defines them and in classes that inherit from that class.
Edit: Both are also accessible by friends of their class, and in the case of protected members, by friends of their derived classes.
Edit 2: Use whatever makes sense in the context of your problem. You should try to make members private whenever you can to reduce coupling and protect the implementation of the base class, but if that's not possible then use protected members. Check C++ FAQ for a better understanding of the issue. This question about protected variables might also help.
Public members of a class A are accessible for all and everyone.
Protected members of a class A are not accessible outside of A's code, but is accessible from the code of any class derived from A.
Private members of a class A are not accessible outside of A's code, or from the code of any class derived from A.
So, in the end, choosing between protected or private is answering the following questions: How much trust are you willing to put into the programmer of the derived class?
By default, assume the derived class is not to be trusted, and make your members private. If you have a very good reason to give free access of the mother class' internals to its derived classes, then you can make them protected.
Protected members can be accessed from derived classes. Private ones can't.
class Base {
private:
int MyPrivateInt;
protected:
int MyProtectedInt;
public:
int MyPublicInt;
};
class Derived : Base
{
public:
int foo1() { return MyPrivateInt;} // Won't compile!
int foo2() { return MyProtectedInt;} // OK
int foo3() { return MyPublicInt;} // OK
};‌‌
class Unrelated
{
private:
Base B;
public:
int foo1() { return B.MyPrivateInt;} // Won't compile!
int foo2() { return B.MyProtectedInt;} // Won't compile
int foo3() { return B.MyPublicInt;} // OK
};
In terms of "best practice", it depends. If there's even a faint possibility that someone might want to derive a new class from your existing one and need access to internal members, make them Protected, not Private. If they're private, your class may become difficult to inherit from easily.
The reason that MFC favors protected, is because it is a framework. You probably want to subclass the MFC classes and in that case a protected interface is needed to access methods that are not visible to general use of the class.
It all depends on what you want to do, and what you want the derived classes to be able to see.
class A
{
private:
int _privInt = 0;
int privFunc(){return 0;}
virtual int privVirtFunc(){return 0;}
protected:
int _protInt = 0;
int protFunc(){return 0;}
public:
int _publInt = 0;
int publFunc()
{
return privVirtFunc();
}
};
class B : public A
{
private:
virtual int privVirtFunc(){return 1;}
public:
void func()
{
_privInt = 1; // wont work
_protInt = 1; // will work
_publInt = 1; // will work
privFunc(); // wont work
privVirtFunc(); // will work, simply calls the derived version.
protFunc(); // will work
publFunc(); // will return 1 since it's overridden in this class
}
}
Attributes and methods marked as protected are -- unlike private ones -- still visible in subclasses.
Unless you don't want to use or provide the possibility to override the method in possible subclasses, I'd make them private.
Sure take a look at the Protected Member Variables question. It is recommended to use private as a default (just like C++ classses do) to reduce coupling. Protected member variables are most always a bad idea, protected member functions can be used for e.g. the Template Method pattern.
Protected members can only be accessed by descendants of the class, and by code in the same module. Private members can only be accessed by the class they're declared in, and by code in the same module.
Of course friend functions throw this out the window, but oh well.
private members are only accessible from within the class, protected members are accessible in the class and derived classes. It's a feature of inheritance in OO languages.
You can have private, protected and public inheritance in C++, which will determine what derived classes can access in the inheritance hierarchy. C# for example only has public inheritance.
private = accessible by the mothership (base class) only
(ie only my parent can go into my parent's bedroom)
protected = accessible by mothership (base class), and her daughters
(ie only my parent can go into my parent's bedroom, but gave son/daughter permission to walk into parent's bedroom)
public = accessible by mothership (base class), daughter, and everyone else
(ie only my parent can go into my parent's bedroom, but it's a house party - mi casa su casa)
Since no public member function is needed to fetch and update protected members in the derived class, this increases the efficiency of code and reduces the amount of code we need to write. However, programmer of the derived class is supposed to be aware of what he is doing.
private is preferred for member data. Members in C++ classes are private by default.
public is preferred for member functions, though it is a matter of opinion. At least some methods must be accessible. public is accessible to all. It is the most flexible option and least safe. Anybody can use them, and anybody can misuse them.
private is not accessible at all. Nobody can use them outside the class, and nobody can misuse them. Not even in derived classes.
protected is a compromise because it can be used in derived classes. When you derive from a class, you have a good understanding of the base class, and you are careful not to misuse these members.
MFC is a C++ wrapper for Windows API, it prefers public and protected. Classes generated by Visual Studio wizard have an ugly mix of protected, public, and private members. But there is some logic to MFC classes themselves.
Members such as SetWindowText are public because you often need to access these members.
Members such as OnLButtonDown, handle notifications received by the window. They should not be accessed, therefore they are protected. You can still access them in the derived class to override these functions.
Some members have to do threads and message loops, they should not be accessed or override, so they are declared as private
In C++ structures, members are public by default. Structures are usually used for data only, not methods, therefore public declaration is considered safe.
Private : Accessible by class member functions & friend function or friend class.
For C++ class this is default access specifier.
Protected: Accessible by class member functions, friend function or friend class & derived classes.
You can keep class member variable or function (even typedefs or inner classes) as private or protected as per your requirement.
Most of the time you keep class member as a private and add get/set functions to encapsulate. This helps in maintenance of code.
Generally private function is used when you want to keep your public functions modular or to eliminate repeated code instead of writing whole code in to single function. This helps in maintenance of code.
Refer this link for more detail.
Private: It is an access specifier. By default the instance (member) variables or the methods of a class in c++/java are private. During inheritance, the code and the data are always inherited but is not accessible outside the class. We can declare our data members as private so that no one can make direct changes to our member variables and we can provide public getters and setters in order to change our private members. And this concept is always applied in the business rule.
Protected: It is also an access specifier. In C++, the protected members are accessible within the class and to the inherited class but not outside the class. In Java, the protected members are accessible within the class, to the inherited class as well as to all the classes within the same package.
Private member can be accessed only in same class where it has declared where as protected member can be accessed in class where it is declared along with the classes which are inherited by it .
A protected nonstatic base class member can be accessed by members and friends of any classes derived from that base class by using one of the following:
A pointer to a directly or indirectly derived class
A reference to a directly or indirectly derived class
An object of a directly or indirectly derived class
The protected keyword specifies access to class members in the
member-list up to the next access specifier (public or private) or the
end of the class definition. Class members declared as protected can
be used only by the following:
Member functions of the class that originally declared these members.
Friends of the class that originally declared these members.
Classes derived with public or protected access from the class that originally declared these members.
Direct privately derived classes that also have private access to protected members.
When preceding the name of a base class, the protected keyword
specifies that the public and protected members of the base class are
protected members of its derived classes.
Protected members are not as private as private members, which are
accessible only to members of the class in which they are declared,
but they are not as public as public members, which are accessible in
any function.
Protected members that are also declared as static are accessible to
any friend or member function of a derived class. Protected members
that are not declared as static are accessible to friends and member
functions in a derived class only through a pointer to, reference to,
or object of the derived class.
protected (C++)
What is the difference between private and protected members in C++ classes?
Other answers have stated:
public - accessible by all.
protected - accessible by derived classes (and friends).
private - restricted.
What's the difference and which should I use?
The C++ core guidelines gives the advice that data should always be private. I think this is good advice as it makes for 'data spaghetti' when you have derived classes that can access protected data. It makes much more sense for functions to be protected, but it depends on the use case.
For functions you have a choice. For data, you should make it private and provide protected accessor functions if needed. This gives more control over the class data.
private and protected access modifiers are one and same only that protected members of the base class can be accessed outside the scope of the base class in the child(derived)class.
It also applies the same to inheritance .
But with the private modifier the members of the base class can only be accessed in the scope or code of the base class and its friend functions only''''