Making C++ program to play quarto, having one issue with array elements - c++

These functions in particular are what I'm having issues with, Piece is a struct implemented elsewhere in the file and only contains a 4 character string called "name". I'm trying to get my code so that it can compare 4 pieces in a row (in any direction), by comparing each of their 4 characters one at a time. The error that appears when I compile says that it cannot convert the string I am inputting into what it needs to operate further.
string comparePieces(string a, string b, string c, string d)
{
string sharedTrait;
if(a[0] == b[0] && a[0] == c[0] && a[0] == d[0])
sharedTrait = "true";
else if(a[1] == b[1] && a[1] == c[1] && a[1] == d[1])
sharedTrait = "true";
else if(a[2] == b[2] && a[2] == c[2] && a[2] == d[2])
sharedTrait = "true";
else if(a[3] == b[3] && a[3] == c[3] && a[3] == d[3])
sharedTrait = "true";
else
sharedTrait = "false";
return sharedTrait;
}
string getSpace(string space)
{
int r;
int c;
space == board[r][c].name;
return space;
}
string checkWinner()
{
string win = "false";
for(int i = 0; i<= 4; i++)
{
int r = i;
if( comparePieces( (getSpace(board[r][0].name)) , (getSpace(board[r][1].name)) , (getSpace(board[r][2].name)) , (getSpace(board[r][3].name)) ) == "true")
win = "true";
if( comparePieces( (getSpace(board[0][r].name)) , (getSpace(board[1][r].name)) , (getSpace(board[2][r].name)) , (getSpace(board[3][r].name)) ) == "true")
win = "true";
if( comparePieces( (getSpace(board[0][0].name)) , (getSpace(board[1][1].name)) , (getSpace(board[2][2].name)) , (getSpace(board[3][3].name)) ) == "true")
win = "true";
if( comparePieces( (getSpace(board[0][3].name)) , (getSpace(board[1][2].name)) , (getSpace(board[2][1].name)) , (getSpace(board[3][0].name)) ) == "true")
win = "true";
}
return win;
}

Related

C++ boolean arrays conditional long statement

So, I can't search what the meaning of this let say for example I have
string TICTACTOE[3][3] = {
{"1","2","3"},
{"4","5","6"},
{"7","8","9"}
};
How can I make boolean passing the condition statement in something like this
bool trial = TICTACTOE[0][0] == TICTACTOE[0][1] == TICTACTOE[0][2]
if (trial) {
cout << "THIS PLAYER WINS: " <<playerWinner << endl;
}
Its working though if its only
bool trial = TICTACTOE[0][0] == TICTACTOE[0][1]
but when its three bool its not working..anyone can explain me this?
I'm just used to do with it "==" since I used to use javascript a lot.
You can do this
int check()
{
if (a[1] == a[2] && a[2] == a[3]) return 1; //GAME IS OVER WITH RESULT
else if (a[4] == a[5] && a[5] == a[6]) return 1;
else if (a[7] == a[8] && a[8] == a[9]) return 1;
else if (a[1] == a[4] && a[4] == a[7]) return 1;
else if (a[2] == a[5] && a[5] == a[8]) return 1;
else if (a[3] == a[6] && a[6] == a[9]) return 1;
else if (a[1] == a[5] && a[5] == a[9]) return 1;
else if (a[3] == a[5] && a[5] == a[7]) return 1;
if ( a[1] != '1' && a[2] != '2' && a[3] != '3' && a[4] != '4' &&
a[5] != '5' && a[6] != '6' && a[7] != '7' && a[8] != '8' && a[9] != '9')
return 0; //GAME IS OVER AND NO RESULT
else
return -1; //GAME IS IN PROGRESS
}

prefix notation c++, segmentation fault (stack and queue)

I am trying to figure out why I get segmentation fault, and my guess is that it is in my recursive function, which simplifies a prefix notation operation.
For example:
"m + 4 4" Returns: "+ m 8"
During testing I get a segmentation fault signal:
Exited with signal 11 (SIGSEGV)
I believe though that the problem lies in my recusive function "Operate"
string Operate(stack<string> &S, queue<string> &Q)
{
S.push(Q.front());
Q.pop();
std::string::size_type sz;
string result = "";
if (IsOperator(S.top()) == true)
{
S.push(Operate(S, Q));
}
if (Q.empty() == false)
{
S.push(Q.front());
Q.pop();
if (IsOperator(S.top()) == true)
{
S.push(Operate(S, Q));
}
if (S.size() < 3)
return "wrong input";
string arg1 = S.top();
S.pop();
string arg2 = S.top();
S.pop();
string oper = S.top();
S.pop();
if (StringIsDigit(arg1) && StringIsDigit(arg2))
{
int a = stoi(arg1, &sz);
int b = stoi(arg2, &sz);
char o = oper.at(0);
int c = 0;
if (o == '+')
c = b + a;
else if (o == '-')
c = b - a;
else if (o == '*')
c = b * a;
else
return "e";
result = to_string(c);
}
else
result = oper + " " + arg2 + " " + arg1;
}
else
{
result = S.top();
S.pop();
}
return result;
}
or in the function StringIsDigit:
bool StringIsDigit(string arg)
{
bool result = true;
for (int i = 0; i < arg.size() && result == true; i++)
{
if ((arg.size() != 1) && (arg.at(0) == '-') && (arg.at(i + 1) != ' '))
i++;
else
result = isdigit(arg.at(i));
}
return result;
}
Link to the whole program code:
https://pastebin.com/04pfE55N
The answer was quite simple, my error: SEGFAULT was as many pointed out for me error in reading from memory, segmentation fault, wiki.
When did the segfault occur?
It was when my function StringIsDigit() tried to figure out if negative values over 2 characters was an integer. In the "if statement, when checking if the string was indeed an integer, say -100", I continued to read the string until I reached the end of the arg string, but with arg.at(i + 1). Leading to the code trying to access memory outside the string array.Thanks Struthersneil for finding this flaw!
Please look at my old StringIsDigit() to find out the of by one value error I made:
bool StringIsDigit(string arg)
{
bool result = true;
for (int i = 0; i < arg.size() && result == true; i++)
{
if ((arg.size() != 1) && (arg.at(0) == '-') && (arg.at(i + 1) != ' '))
i++;
else
result = isdigit(arg.at(i));
}
return result;
}
The solution
The solution I want to make sure that the string was an integer since my algorithm supports expressions, such as x+3. This means that I need to iterate through the string is call isdigit() on every character in the string array. Though '-' is not an integer, '-' is needed obviously to express a negative integer, so I made a flawed check as you can see in my old StringIsDigit(). Instead of using that conditional if statement, I checked if the first character '-' and the second is not a whitespace ' ', and then I just let the isdigit() function do the rest of the work.
bool StringIsDigit(string arg)
{
bool result = true;
//I only need to check if the first is a '-' char and
//the next char is not ' '.
for (int i = 0; i < arg.size() && result == true; i++)
{
if ((arg.size() != 1) && (arg.at(0) == '-') && (arg.at(1) != ' '))
i++;
else
result = isdigit(arg.at(i));
}
return result;
}

Having trouble casting a stack object number to int (Java)

I'm writing a program that converts an expression from infix to postfix. I have the conversion part down but when it comes to evaluating the postfix expression, I run into problems with converting from char to int using the stack.
I keep getting the error: "Exception in thread "main" java.lang.ClassCastException: java.lang.Character cannot be cast to java.lang.Integer"
It might be in this part of the code below where the problem is but I'm not sure:
Integer x1 = (Integer)stack2.pop();
Integer x2 = (Integer)stack2.pop();
Thank you!
public class Calc {
/**
* #param args the command line arguments
*/
public static void main(String[] args) {
System.out.println("Please enter your infix expression: ");
Scanner scanner = new Scanner(System.in);
String input = scanner.nextLine();
String postfix = "";
Stack<Character> stack = new Stack<Character>();
for(int i = 0; i < input.length(); i++){
char subject = input.charAt(i);
if (subject == '*'||subject == '+'||subject == '-'||subject == '/'){
while ((stack.empty() == false) && (order(stack.peek()) >= order(subject)))
postfix += stack.pop() + " ";
stack.push(subject);
}
else if(subject == '(')
{
stack.push(subject);
}
else if(subject == ')')
{
while(stack.peek().equals('(') == false){
postfix += stack.pop() + " ";
}
stack.pop();
}
else{
if((Character.isDigit(subject) == true) && ((i + 1) < input.length()) && (Character.isDigit(input.charAt(i+1)) == true))
{
postfix += subject;
}
else if(Character.isDigit(subject))
{
postfix += subject + " ";
}
else
{
postfix += subject;
}
}
}
postfix += stack.pop();
System.out.println("Your post-fix expression is: " + postfix);
char subject2;
int yeah;
Stack stack2 = new Stack();
for (int j = 0; j < postfix.length(); j++){
subject2 = postfix.charAt(j);
if(Character.isDigit(subject2) == true){
stack2.push(subject2);
}
if(subject2 == ' '){
continue;
}
else{
Integer x1 = (Integer)stack2.pop();
Integer x2 = (Integer)stack2.pop();
if (subject2 == '+'){
yeah = x1 + x2;
}
if (subject2 == '-'){
yeah = x1 - x2;
}
if (subject2 == '*'){
yeah = x1 * x2;
}
if (subject2 == '/'){
yeah = x1 / x2;
}
else {
yeah = 0;
}
}
}
yeah = (int) stack2.pop();
System.out.println("The result is:" + yeah);
}
static int order(char operator)
{
if(operator == '+' || operator =='-')
return 1;
else if(operator == '*' || operator == '/')
return 2;
else
return 0;
}
}
You can solve this by casting to int. Note that int and Integer are not the same:
Integer x1 = (int) stack2.pop();
Integer x2 = (int) stack2.pop();
no casting is necessary by using type-information
Stack<Integer> stack2 = new Stack<Integer>();
…
if(Character.isDigit(subject2) == true){
stack2.push( Character.getNumericValue( subject2 ) );
}
…
to prevent an empty stack exception I'd prefer poll over pop
so it is easier to check an error condition
eg. if( x1 == null ) System.err.println( "Your error message" );
Deque<Integer> stack2 = new ArrayDeque<Integer>();
…
Integer x1 = stack2.poll();
Integer x2 = stack2.poll();
…
btw: the program is syntactically wrong, because it puts only one value on the stack

Algorithm to calculate sum of LUCKY FACTOR in given range

Problem Statement :-
A number is given, N, which is given in binary notation, and it
contains atmost 1000000 bits. You have to calculate the sum of LUCKY
FACTOR in range from 1 to N (decimal notation).
Here, LUCKY FACTOR means, (after converting into binary representation) if
rightmost or leftmost 1's neighbour is either 0 or nothing(for
boundary bit).
EDITED :-
Means if rightmost one's left neighbour is 0, means it count as a
LUCKY FACTOR, simlarly in the left side also
Example,
5 == 101, LUCKY FACTOR = 2.
7 == 111, LUCKY FACTOR = 0.
13 == 1101, LUCKY FACTOR = 1.
16 == 1110, LUCKY FACTOR = 0.
0 == 0, LUCKY FACTOR = 0.
Answer must be in binary form
I am totally stuck, give me a hint.
My code
#include<stdio.h>
#include<string>
#include<string.h>
#include<vector>
//#include<iostream>
using namespace std;
vector<string> pp(10000001);
string add(string a, string b) {
if(b == "") return a;
string answer = "";
int c = 0;
int szeA = a.size() - 1;
int szeB = b.size() - 1;
while(szeA >= 0 || szeB >= 0) {
answer = (char)( ( ( ( (szeA >= 0) ? (a[szeA] - 48) : 0 ) ^ ( (szeB >= 0) ? (b[szeB] - 48) : 0 ) ) ^ (c) ) + 48 ) + answer;
c = ( ( ( (szeA >= 0) ? (a[szeA] - 48) : 0 ) & ( (szeB >= 0) ? (b[szeB] - 48) : 0 ) ) | ( ( (szeA >= 0) ? (a[szeA] - 48) : 0 ) & (c) ) | ( ( (szeB >= 0) ? (b[szeB] - 48) : 0 ) & (c) ) );
szeA--;
szeB--;
}
if(c) answer = '1' + answer;
return answer;
}
string subtract(string a, string b) {
int sze = a.size() - b.size();
while(sze--) b = '0' + b;
sze = a.size();
for(int i = 0; i < sze; i++) {
if(b[i] == '1') b[i] = '0';
else b[i] = '1';
}
if(b[sze-1] == '0') {
b[sze-1] = '1';
}
else {
int i = sze-1;
while(i >= 0 && b[i] == '1') {
b[i] = '0';
i--;
}
if(i >= 0) b[i] = '1';
else b = '1' + b;
}
b = add(a, b);
b.erase(b.begin() + 0);
//b[0] = '0';
while(b[0] == '0') b.erase(b.begin() + 0);
return b;
}
string power(int index) {
if(index < 0) return "";
string answer = "";
while(index--) {
answer = '0' + answer;
}
answer = '1' + answer;
return answer;
}
string convert(long long int val) {
int divisionStore=0;
int modStore=0;
string mainVector = "";
do {
modStore=val%2;
val=val/2;
mainVector = (char)(modStore+48) + mainVector;
}while(val!=0);
return mainVector;
}
string increment(string s) {
int sze = s.size()-1;
if(s[sze] == '0') {
s[sze] = '1';
return s;
}
while(sze >= 0 && s[sze] == '1') {
s[sze] = '0';
sze--;
}
if(sze >= 0) s[sze] = '1';
else s = '1' + s;
return s;
}
main() {
int T;
char s[1000001];
string answer;
scanf("%d", &T);
for(int t = 1; t <= T; t++) {
int num;
answer = "1";
int bitComeEver = 0;
int lastBit = 0;
scanf("%s", s);
int sze = strlen(s);
// I used below block because to avoid TLE.
if(sze > 3300) {
printf( "Case #%d\n", t);
for(int i = 0; i < sze; i++) printf("%c", '1');
printf("\n");
//continue;
}
else {
if(pp[sze-1] != "") answer = pp[sze-1];
else {
pp[sze-1] = power(sze-1);
answer = pp[sze-1];
}
answer = subtract(answer, convert(sze-1));
////////////////////////////
//cout << answer << endl;
for(int i = 1; i < sze; i++) {
if(s[i] == '1') {
if(s[1] == '0') {
num = sze-i-1;
if(num > 0) {
if( pp[num-1] == "") {
pp[num-1] = power(num-1);
}
if(pp[num+1] == "") {
pp[num+1] = power(num+1);
}
answer = add(answer, subtract(pp[num+1], pp[num-1]));
if(lastBit) answer = add(answer, "1");
//else answer = increment(answer);
//cout << "\t\t" << answer << endl;
}
else{
int inc;
if(lastBit) inc = 2; //answer = add(answer, "10");
else inc = 1; //answer = increment(answer);
if(s[i-1] == '0') lastBit = 1;
else lastBit = 0;
if(lastBit) inc += 2;
else inc += 1;
if(inc == 2) answer = add(answer, "10");
else if(inc == 3) answer = add(answer, "11");
else answer = add(answer, "100");
}
}
else {
if(num > 0) {
if(pp[num-1] != "") pp[num-1] = power(num-1);
answer = add(answer, pp[num-1]);
}
else {
int inc = 0;
if(lastBit) inc = 1; //answer = increment(answer);
if(s[i-1] == '0') lastBit = 1;
else lastBit = 0;
if(lastBit) inc += 1;
answer = add(answer, convert(inc));
}
}
if(s[i-1] == '0') lastBit = 1;
else lastBit = 0;
}
}
if(s[sze-1] == '0') {
if(lastBit) {
if(s[1] == '0') {
answer = add(answer, "10");
}
else answer = increment(answer);
}
else if(s[1] == '0'){
answer = increment(answer);
}
}
printf( "Case #%d\n", t);
for(int i = 0; i < sze; i++) printf("%c", answer[i]);
printf("\n");
}
}
return 0;
}
If a number has k bits, then calculate the number of such numbers having a LUCKY FACTOR of 2:
10.............01
Hence in this the 1st two and last two digits are fixed, the remaining k-4 digits can have any value. The number of such numbers = 2^(k-4).
So you can easily calculate the sum of lucky factors of such numbers = lucky_factor x 2^(k-4)
(ofcourse this is assuming k >= 4)
What's more, you do not need to calculate this number since it will be of the form 10000000.
If the number n is 11010010. Then 8 bit numbers less than n shall be of form:
10........ or 1100...... or 1101000_. If you see a pattern, then we have divided the calculation in terms of the number of 1s in the number n
.
I leave the rest for you.

Sudoku Solving Function Explanation

I have been searching for a Sudoku Solving Algorithm for a while and I found this code. But I have some difficulties. I can't understand it. If there are conflicts with all numbers between 1 and 9 in a single cell, the program should stop, right? But it continues. Can somebody explain me how the code works, please? Here it is:
bool Sudoku::Help_Solve(int i, int j)
{
int nextrow, nextcol;
while(change[i][j] == 1) //We find the first cell in which we can change the number
{
j++;
if(j > 9)
{
j = 1;
i++;
}
if(i > 9) return true;
}
for(int p = 1; p <= 9; p++)
{
if(Game.Check_Conflicts(p, i, j)) //We are checking for conflicts
{
board[i][j] = p;
nextrow = i;
nextcol = j+1;
if(nextcol > 9)
{
nextcol = 1;
nextrow++;
}
if(nextcol == 1 && nextrow == 10) return true;
if(Game.Help_Solve(nextrow, nextcol)) return true;
}
}
board[i][j] = 0;
return false;
}
Not enough code to explain properly, what happens in Game.Check_Conflicts(p, i, j), is this function getting called recursively?
Here is the whole code if you want to see it:
#include <iostream>
#include <iomanip>
#include <time.h>
#include <cstdlib>
#include <windows.h>
using namespace std;
class Sudoku
{
private:
int board[9][9];
int change[9][9];
public:
Sudoku();
void Print_Board();
void Add_First_Cord();
bool Help_Solve(int i, int j);
bool Check_Conflicts(int p, int i, int j);
};
Sudoku Game;
void setcolor(unsigned short color) //The function that you'll use to
{ //set the colour
HANDLE hcon = GetStdHandle(STD_OUTPUT_HANDLE);
SetConsoleTextAttribute(hcon,color);
}
Sudoku::Sudoku()
{
for(int i = 0; i <= 9; i++)
for(int j = 0; j <= 9; j++)
board[i][j] = 0;
}
void Sudoku::Print_Board()
{
for(int i = 1; i <= 9; i++)
{
for(int j = 1; j <= 9; j++)
{
if(change[i][j] == 1)
{
setcolor(12);
cout << board[i][j] << " ";
setcolor(7);
}
else cout << board[i][j] << " ";
if(j%3 == 0) cout << "| ";
}
cout << endl;
if(i%3 == 0) cout << "------+-------+--------" << endl;
}
}
void Sudoku::Add_First_Cord()
{
board[1][1] = 5; change[1][1] = 1;
board[1][2] = 3; change[1][2] = 1;
board[1][5] = 7; change[1][5] = 1;
board[2][1] = 6; change[2][1] = 1;
board[2][4] = 1; change[2][4] = 1;
board[2][5] = 9; change[2][5] = 1;
board[2][6] = 5; change[2][6] = 1;
board[3][2] = 9; change[3][2] = 1;
board[3][3] = 8; change[3][3] = 1;
board[3][8] = 6; change[3][8] = 1;
board[4][1] = 8; change[4][1] = 1;
board[4][5] = 6; change[4][5] = 1;
board[4][9] = 3; change[4][9] = 1;
board[5][1] = 4; change[5][1] = 1;
board[5][4] = 8; change[5][4] = 1;
board[5][6] = 3; change[5][6] = 1;
board[5][9] = 1; change[5][9] = 1;
board[6][1] = 7; change[6][1] = 1;
board[6][5] = 2; change[6][5] = 1;
board[6][9] = 6; change[6][9] = 1;
board[7][2] = 6; change[7][2] = 1;
board[7][7] = 2; change[7][7] = 1;
board[7][8] = 8; change[7][8] = 1;
board[8][4] = 4; change[8][4] = 1;
board[8][5] = 1; change[8][5] = 1;
board[8][6] = 9; change[8][6] = 1;
board[8][9] = 5; change[8][9] = 1;
board[9][5] = 8; change[9][5] = 1;
board[9][8] = 7; change[9][8] = 1;
board[9][9] = 9; change[9][9] = 1;
}
bool Sudoku::Check_Conflicts(int p, int i, int j)
{
for(int k = 1; k <= 9; k++)
if(board[i][k] == p) return false;
for(int q = 1; q <= 9; q++)
if(board[q][j] == p) return false;
/*
*00
000
000
*/
if((j == 1 || j == 4 || j == 7) && (i == 1 || i == 4 || i == 7))
{
if(board[i][j+1] == p || board[i][j+2] == p || board[i+1][j] == p ||
board[i+2][j] == p || board[i+1][j+1] == p || board[i+1][j+2] == p ||
board[i+2][j+1] == p || board[i+2][j+2] == p)return false;
}
/*
000
000
*00
*/
if((j == 1 || j == 4 || j == 7) && (i == 3 || i == 6 || i == 9))
{
if(board[i-1][j] == p || board[i-2][j] == p || board[i][j+1] == p ||
board[i][j+2] == p || board[i-1][j+1] == p || board[i-1][j+2] == p ||
board[i-2][j+1] == p || board[i-2][j+2] == p)return false;
}
/*
000
*00
000
*/
if((j == 1 || j == 4 || j == 7) && (i == 2 || i == 5 || i == 8))
{
if(board[i-1][j] == p || board[i-1][j+1] == p || board[i-1][j+2] == p ||
board[i][j+1] == p || board[i][j+2] == p || board[i+1][j] == p ||
board[i+1][j+1] == p || board[i+1][j+2] == p)return false;
}
/*
0*0
000
000
*/
if((j == 2 || j == 5 || j == 8) && (i == 1 || i == 4 || i == 7))
{
if(board[i][j-1] == p || board[i][j+1] == p || board[i+1][j+1] == p ||
board[i+1][j-1] == p || board[i+1][j] == p || board[i+2][j-1] == p ||
board[i+2][j] == p || board[i+2][j+1] == p)return false;
}
/*
000
0*0
000
*/
if((j == 2 || j == 5 || j == 8) && (i == 2 || i == 5 || i == 8))
{
if(board[i-1][j] == p || board[i-1][j-1] == p || board[i-1][j+1] == p ||
board[i][j+1] == p || board[i][j-1] == p || board[i+1][j+1] == p ||
board[i+1][j] == p || board[i+1][j-1] == p)return false;
}
/*
000
000
0*0
*/
if((j == 2 || j == 5 || j == 8) && (i == 3 || i == 6 || i == 9))
{
if(board[i][j-1] == p || board[i][j+1] == p || board[i-1][j] == p ||
board[i-1][j+1] == p || board[i-1][j-1] == p || board[i-2][j] == p ||
board[i-2][j+1] == p || board[i-2][j-1] == p) return false;
}
/*
00*
000
000
*/
if((j == 3 || j == 6 || j == 9) && (i == 1 || i == 4 || i == 7))
{
if(board[i][j-1] == p || board[i][j-2] == p || board[i+1][j] == p ||
board[i+1][j-1] == p || board[i+1][j-2] == p || board[i+2][j] == p ||
board[i+2][j-1] == p || board[i+2][j-2] == p) return false;
}
/*
000
00*
000
*/
if((j == 3 || j == 6 || j == 9) && (i == 2 || i == 5 || i == 8))
{
if(board[i-1][j] == p || board[i-1][j-1] == p || board[i-1][j-2] == p ||
board[i][j-1] == p || board[i][j-2] == p || board[i+1][j] == p ||
board[i+1][j-1] == p || board[i+1][j-2] == p) return false;
}
/*
000
000
00*
*/
if((j == 3 || j == 6 || j == 9) && (i == 3 || i == 6 || i == 9))
{
if(board[i][j-1] == p || board[i][j-2] == p || board[i-1][j] == p ||
board[i-1][j-1] == p || board[i-1][j-2] == p || board[i-2][j] == p ||
board[i-2][j-1] == p || board[i-2][j-2] == p) return false;
}
return true;
}
bool Sudoku::Help_Solve(int i, int j)
{
int nextrow, nextcol;
while(change[i][j] == 1)
{
j++;
if(j > 9)
{
j = 1;
i++;
}
if(i > 9) return true;
}
for(int p = 1; p <= 9; p++)
{
if(Game.Check_Conflicts(p, i, j))
{
board[i][j] = p;
nextrow = i;
nextcol = j+1;
if(nextcol > 9)
{
nextcol = 1;
nextrow++;
}
if(nextcol == 1 && nextrow == 10) return true;
if(Game.Help_Solve(nextrow, nextcol)) return true;
}
}
board[i][j] = 0;
return false;
}
int main()
{
Game.Add_First_Cord();
Game.Help_Solve(1, 1);
Game.Print_Board();
system("pause");
return 0;
}
It looks like Sudoku::Check_Conflicts returns true if the number CAN be placed there, or false if it CAN'T be placed there due to a simple conflict. A different function name could maybe better self-document the code.
The thing is rhat I can't understand why it continues if in the end it
returns false :/
It doesn't ALWAYS return at the bottom of the function tho':
bool Sudoku::Help_Solve(int i, int j)
{
int nextrow, nextcol;
while(change[i][j] == 1) //We find the first cell in which we can change the number
{
j++;
if(j > 9)
{
j = 1;
i++;
}
if(i > 9) return true;
-------------------------^^^^
returns true if we have filled all squares.
}
for(int p = 1; p <= 9; p++)
{
if(Game.Check_Conflicts(p, i, j)) //We are checking for conflicts
{
board[i][j] = p;
nextrow = i;
nextcol = j+1;
if(nextcol > 9)
{
nextcol = 1;
nextrow++;
}
if(nextcol == 1 && nextrow == 10) return true;
-----------------------------------------------------^^^^
returns when we have filled everything!
if(Game.Help_Solve(nextrow, nextcol)) return true;
---------------------------------------------------------^^^^
returns if we filled at the next level of solution.
}
}
board[i][j] = 0;
return false;
-----------^^^^^ returns if we failed to fill the whole thing.
}
As someone else mentioned in a comment, there are some trivial things that can be done to improve on the algorithm - such as looking for the "most suitable place to fill first" [which doesn't improve the worst case, but it does improve the typical case].
I have written a Sudoku solver that uses a similar algorithm, but it tries to find the cell with the lowest number of candidates (possible numbers to go in the that cell) and only tries recursively if there are multiple choices.