OpenGL ES - texturing sphere - c++

I have a sphere. I can map texture on it. But now my texture is outside sphere. And I need inside. My user sit like inside sphere, so he can view inside it (rotate and zoom). So simply like a sky dome, but sphere. Maybe I need fix uv texture coordinates or enable something?
Here code for generating sphere:
class Sphere : public ParametricSurface {
public:
Sphere(float radius) : m_radius(radius)
{
ParametricInterval interval = { ivec2(20, 20), vec2(Pi, TwoPi), vec2(8, 14) };
SetInterval(interval);
}
vec3 Evaluate(const vec2& domain) const
{
float u = domain.x, v = domain.y;
float x = m_radius * sin(u) * cos(v);
float y = m_radius * cos(u);
float z = m_radius * -sin(u) * sin(v);
return vec3(x, y, z);
}
private:
float m_radius;
};
vec2 ParametricSurface::ComputeDomain(float x, float y) const
{
return vec2(x * m_upperBound.x / m_slices.x, y * m_upperBound.y / m_slices.y);
}
void ParametricSurface::GenerateVertices(float * vertices) const
{
float* attribute = vertices;
for (int j = 0; j < m_divisions.y; j++) {
for (int i = 0; i < m_divisions.x; i++) {
// Compute Position
vec2 domain = ComputeDomain(i, j);
vec3 range = Evaluate(domain);
attribute = range.Write(attribute);
// Compute Normal
if (m_vertexFlags & VertexFlagsNormals) {
float s = i, t = j;
// Nudge the point if the normal is indeterminate.
if (i == 0) s += 0.01f;
if (i == m_divisions.x - 1) s -= 0.01f;
if (j == 0) t += 0.01f;
if (j == m_divisions.y - 1) t -= 0.01f;
// Compute the tangents and their cross product.
vec3 p = Evaluate(ComputeDomain(s, t));
vec3 u = Evaluate(ComputeDomain(s + 0.01f, t)) - p;
vec3 v = Evaluate(ComputeDomain(s, t + 0.01f)) - p;
vec3 normal = u.Cross(v).Normalized();
if (InvertNormal(domain))
normal = -normal;
attribute = normal.Write(attribute);
}
// Compute Texture Coordinates
if (m_vertexFlags & VertexFlagsTexCoords) {
float s = m_textureCount.x * i / m_slices.x;
float t = m_textureCount.y * j / m_slices.y;
attribute = vec2(s, t).Write(attribute);
}
}
}
}
void ParametricSurface::GenerateLineIndices(unsigned short * indices) const
{
unsigned short * index = indices;
for (int j = 0, vertex = 0; j < m_slices.y; j++) {
for (int i = 0; i < m_slices.x; i++) {
int next = (i + 1) % m_divisions.x;
*index++ = vertex + i;
*index++ = vertex + next;
*index++ = vertex + i;
*index++ = vertex + i + m_divisions.x;
}
vertex += m_divisions.x;
}
}
void ParametricSurface::GenerateTriangleIndices(unsigned short * indices) const
{
unsigned short * index = indices;
for (int j = 0, vertex = 0; j < m_slices.y; j++) {
for (int i = 0; i < m_slices.x; i++) {
int next = (i + 1) % m_divisions.x;
*index++ = vertex + i;
*index++ = vertex + next;
*index++ = vertex + i + m_divisions.x;
*index++ = vertex + next;
*index++ = vertex + next + m_divisions.x;
*index++ = vertex + i + m_divisions.x;
}
vertex += m_divisions.x;
}
}
And here is VBO creation:
+ (DrawableVBO *)createVBO:(SurfaceType)surfaceType
{
ISurface * surface = [self createSurface:surfaceType]; // just Sphere type
surface->SetVertexFlags(VertexFlagsNormals | VertexFlagsTexCoords); // which vertexes I need
// Get vertice from surface.
//
int vertexSize = surface->GetVertexSize();
int vBufSize = surface->GetVertexCount() * vertexSize;
GLfloat * vbuf = new GLfloat[vBufSize];
surface->GenerateVertices(vbuf);
// Get triangle indice from surface
//
int triangleIndexCount = surface->GetTriangleIndexCount();
unsigned short * triangleBuf = new unsigned short[triangleIndexCount];
surface->GenerateTriangleIndices(triangleBuf);
// Create the VBO for the vertice.
//
GLuint vertexBuffer;
glGenBuffers(1, &vertexBuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
glBufferData(GL_ARRAY_BUFFER, vBufSize * sizeof(GLfloat), vbuf, GL_STATIC_DRAW);
// Create the VBO for the triangle indice
//
GLuint triangleIndexBuffer;
glGenBuffers(1, &triangleIndexBuffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, triangleIndexBuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, triangleIndexCount * sizeof(GLushort), triangleBuf, GL_STATIC_DRAW);
delete [] vbuf;
delete [] triangleBuf;
delete surface;
DrawableVBO * vbo = [[DrawableVBO alloc] init];
vbo.vertexBuffer = vertexBuffer;
vbo.triangleIndexBuffer = triangleIndexBuffer;
vbo.vertexSize = vertexSize;
vbo.triangleIndexCount = triangleIndexCount;
return vbo;
}
Here is my light setup:
- (void)setupLights
{
// Set up some default material parameters.
//
glUniform3f(_ambientSlot, 0.04f, 0.04f, 0.04f);
glUniform3f(_specularSlot, 0.5, 0.5, 0.5);
glUniform1f(_shininessSlot, 50);
// Initialize various state.
//
glEnableVertexAttribArray(_positionSlot);
glEnableVertexAttribArray(_normalSlot);
glUniform3f(_lightPositionSlot, 1.0, 1.0, 5.0);
glVertexAttrib3f(_diffuseSlot, 0.8, 0.8, 0.8);
}
And finally shaders:
fragment:
precision mediump float;
varying vec4 vDestinationColor;
varying vec2 vTextureCoordOut;
uniform sampler2D Sampler;
void main()
{
gl_FragColor = texture2D(Sampler, vTextureCoordOut) * vDestinationColor;
}
vertex:
uniform mat4 projection;
uniform mat4 modelView;
attribute vec4 vPosition;
attribute vec2 vTextureCoord;
uniform mat3 normalMatrix;
uniform vec3 vLightPosition;
uniform vec3 vAmbientMaterial;
uniform vec3 vSpecularMaterial;
uniform float shininess;
attribute vec3 vNormal;
attribute vec3 vDiffuseMaterial;
varying vec4 vDestinationColor;
varying vec2 vTextureCoordOut;
void main(void)
{
gl_Position = projection * modelView * vPosition;
vec3 N = normalMatrix * vNormal;
vec3 L = normalize(vLightPosition);
vec3 E = vec3(0, 0, 1);
vec3 H = normalize(L + E);
float df = max(0.0, dot(N, L));
float sf = max(0.0, dot(N, H));
sf = pow(sf, shininess);
vec3 color = vAmbientMaterial + df * vDiffuseMaterial + sf * vSpecularMaterial;
vDestinationColor = vec4(color, 1);
vTextureCoordOut = vTextureCoord;
}

Some monkey code but I fix his. Firstly we enable culling and disable front side rendering:
glEnable(GL_CULL_FACE);
glCullFace(GL_FRONT);
Then I change position of the light source:
glUniform3f(_lightPositionSlot, 1.0, 1.0, -2.5);
(I even don't need the light, so next step - I must disable it at all). But finally I have a sphere, user is inside it, can rotate it, zoom in and out and see the texture!

Related

Compute Normals After Vertex Deformation?

I am coding a vertex and a fragment shader trying to distort the surface of some water and then computing blinn-phong lighting on the surface. I am able to successfully compute the deformed matrices with a simple noise function, but how can I find the distorted normals? Since it isn't a linear transformation I am stuck, could anyone help?
Here are the relevant files:
vertex shader:
#version 150
uniform mat4 u_Model;
uniform mat4 u_ModelInvTr;
uniform mat4 u_ViewProj;
uniform vec4 u_Color;
uniform int u_Time;
in vec4 vs_Pos; // The array of vertex positions passed to the shader
in vec4 vs_Nor; // The array of vertex normals passed to the shader
in vec4 vs_Col; // The array of vertex colors passed to the shader.
in vec2 vs_UV; // UV coords for texture to pass thru to fragment shader
in float vs_Anim; // 0.f or 1.f To pass thru to fragment shader
in float vs_T2O;
out vec4 fs_Pos;
out vec4 fs_Nor;
out vec4 fs_LightVec;
out vec4 fs_Col;
out vec2 fs_UVs;
out float fs_Anim;
out float fs_dimVal;
out float fs_T2O;
uniform vec4 u_CamPos;
out vec4 fs_CamPos;
const vec4 lightDir = normalize(vec4(0.0, 1.f, 0.0, 0));
mat4 rotationMatrix(vec3 axis, float angle) {
axis = normalize(axis);
float s = sin(angle);
float c = cos(angle);
float oc = 1.0 - c;
return mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0,oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);
}
vec4 rotateLightVec(float deg, vec4 LV) {
mat4 R = rotationMatrix(vec3(0,0,1), deg);
return R * LV;
}
float random1(vec3 p) {
return fract(sin(dot(p, vec3(127.1, 311.7, 191.999)))*43758.5453);
}
vec3 random2( vec3 p ) {
return fract( sin( vec3(dot(p, vec3(127.1, 311.7, 58.24)), dot(p, vec3(269.5, 183.3, 657.3)), dot(p, vec3(420.69, 69.420, 469.20))) ) * 43758.5453);
}
void main()
{
fs_Col = vs_Col;
fs_UVs = vs_UV;
fs_Anim = vs_Anim;
fs_T2O = vs_T2O;
mat3 invTranspose = mat3(u_ModelInvTr);
fs_Nor = vec4(invTranspose * vec3(vs_Nor), 0);
vec4 modelposition = u_Model * vs_Pos;
if (vs_Anim != 0) { // if we want to animate this surface
// check region in texture to decide which animatable type is drawn
bool lava = fs_UVs.x >= 13.f/16.f && fs_UVs.y < 2.f/16.f;
bool water = !lava && fs_UVs.x >= 13.f/16.f && fs_UVs.y <= 4.f/16.f;
if (water) {
// define an oscillating time so that model can transition back and forth
float t = (cos(u_Time * 0.05) + 1)/2; // u_Time increments by 1 every frame. Domain [0,1]
vec3 temp = random2(vec3(modelposition.x, modelposition.y, modelposition.z)); // range [0, 1]
temp = (temp - 0.5)/25; // [0, 1/scalar]
modelposition.x = mix(modelposition.x - temp.x, modelposition.x + temp.x, t);
modelposition.y = mix(modelposition.y - temp.y, modelposition.y + 3*temp.y, t);
modelposition.z = mix(modelposition.z - temp.z, modelposition.z + temp.z, t);
} else if (lava) {
// define an oscillating time so that model can transition back and forth
float t = (cos(u_Time * 0.01) + 1)/2; // u_Time increments by 1 every frame. Domain [0,1]
vec3 temp = random2(vec3(modelposition.x, modelposition.y, modelposition.z)); // range [0, 1]
temp = (temp - 0.5)/25; // [0, 1/scalar]
modelposition.x = mix(modelposition.x - temp.x, modelposition.x + temp.x, t);
modelposition.y = mix(modelposition.y - temp.y, modelposition.y + 3*temp.y, t);
modelposition.z = mix(modelposition.z - temp.z, modelposition.z + temp.z, t);
}
}
fs_dimVal = random1(modelposition.xyz/100.f);
fs_LightVec = rotateLightVec(0.001 * u_Time, lightDir); // Compute the direction in which the light source lies
fs_CamPos = u_CamPos; // uniform handle for the camera position instead of the inverse
fs_Pos = modelposition;
gl_Position = u_ViewProj * modelposition;// gl_Position is a built-in variable of OpenGL which is
// used to render the final positions of the geometry's vertices
}
fragment shader:
#version 330
uniform vec4 u_Color; // The color with which to render this instance of geometry.
uniform sampler2D textureSampler;
uniform int u_Time;
uniform mat4 u_ViewProj;
uniform mat4 u_Model;
in vec4 fs_Pos;
in vec4 fs_Nor;
in vec4 fs_LightVec;
in vec4 fs_Col;
in vec2 fs_UVs;
in float fs_Anim;
in float fs_T2O;
in float fs_dimVal;
out vec4 out_Col;
in vec4 fs_CamPos;
float random1(vec3 p) {
return fract(sin(dot(p,vec3(127.1, 311.7, 191.999)))
*43758.5453);
}
float random1b(vec3 p) {
return fract(sin(dot(p,vec3(169.1, 355.7, 195.999)))
*95751.5453);
}
float mySmoothStep(float a, float b, float t) {
t = smoothstep(0, 1, t);
return mix(a, b, t);
}
float cubicTriMix(vec3 p) {
vec3 pFract = fract(p);
float llb = random1(floor(p) + vec3(0,0,0));
float lrb = random1(floor(p) + vec3(1,0,0));
float ulb = random1(floor(p) + vec3(0,1,0));
float urb = random1(floor(p) + vec3(1,1,0));
float llf = random1(floor(p) + vec3(0,0,1));
float lrf = random1(floor(p) + vec3(1,0,1));
float ulf = random1(floor(p) + vec3(0,1,1));
float urf = random1(floor(p) + vec3(1,1,1));
float mixLoBack = mySmoothStep(llb, lrb, pFract.x);
float mixHiBack = mySmoothStep(ulb, urb, pFract.x);
float mixLoFront = mySmoothStep(llf, lrf, pFract.x);
float mixHiFront = mySmoothStep(ulf, urf, pFract.x);
float mixLo = mySmoothStep(mixLoBack, mixLoFront, pFract.z);
float mixHi = mySmoothStep(mixHiBack, mixHiFront, pFract.z);
return mySmoothStep(mixLo, mixHi, pFract.y);
}
float fbm(vec3 p) {
float amp = 0.5;
float freq = 4.0;
float sum = 0.0;
for(int i = 0; i < 8; i++) {
sum += cubicTriMix(p * freq) * amp;
amp *= 0.5;
freq *= 2.0;
}
return sum;
}
void main()
{
vec4 diffuseColor = texture(textureSampler, fs_UVs);
bool apply_lambert = true;
float specularIntensity = 0;
if (fs_Anim != 0) {
// check region in texture to decide which animatable type is drawn
bool lava = fs_UVs.x >= 13.f/16.f && fs_UVs.y < 2.f/16.f;
bool water = !lava && fs_UVs.x >= 13.f/16.f && fs_UVs.y < 4.f/16.f;
if (lava) {
// slowly gyrate texture and lighten and darken with random dimVal from vert shader
vec2 movingUVs = vec2(fs_UVs.x + fs_Anim * 0.065/16 * sin(0.01*u_Time),
fs_UVs.y - fs_Anim * 0.065/16 * sin(0.01*u_Time + 3.14159/2));
diffuseColor = texture(textureSampler, movingUVs);
vec4 warmerColor = diffuseColor + vec4(0.3, 0.3, 0, 0);
vec4 coolerColor = diffuseColor - vec4(0.1, 0.1, 0, 0);
diffuseColor = mix(warmerColor, coolerColor, 0.5 + fs_dimVal * 0.65*sin(0.02*u_Time));
apply_lambert = false;
} else if (water) {
// blend between 3 different points in texture to create a wavy subtle change over time
vec2 offsetUVs = vec2(fs_UVs.x - 0.5f/16.f, fs_UVs.y - 0.5f/16.f);
diffuseColor = texture(textureSampler, fs_UVs);
vec4 altColor = texture(textureSampler, offsetUVs);
altColor.x += fs_dimVal * pow(altColor.x+.15, 5);
altColor.y += fs_dimVal * pow(altColor.y+.15, 5);
altColor.z += 0.5 * fs_dimVal * pow(altColor.z+.15, 5);
diffuseColor = mix(diffuseColor, altColor, 0.5 + 0.35*sin(0.05*u_Time));
offsetUVs -= 0.25f/16.f;
vec4 newColor = texture(textureSampler, offsetUVs);
diffuseColor = mix(diffuseColor, newColor, 0.5 + 0.5*sin(0.025*u_Time)) + fs_dimVal * vec4(0.025);
diffuseColor.a = 0.7;
// ----------------------------------------------------
// Blinn-Phong Shading
// ----------------------------------------------------
vec4 lightDir = normalize(fs_LightVec - fs_Pos);
vec4 viewDir = normalize(fs_CamPos - fs_Pos);
vec4 halfVec = normalize(lightDir + viewDir);
float shininess = 400.f;
float specularIntensity = max(pow(dot(halfVec, normalize(fs_Nor)), shininess), 0);
}
}
// Calculate the diffuse term for Lambert shading
float diffuseTerm = dot(normalize(fs_Nor), normalize(fs_LightVec));
// Avoid negative lighting values
diffuseTerm = clamp(diffuseTerm, 0, 1);
float ambientTerm = 0.3;
float lightIntensity = diffuseTerm + ambientTerm; //Add a small float value to the color multiplier
//to simulate ambient lighting. This ensures that faces that are not
//lit by our point light are not completely black.
vec3 col = diffuseColor.rgb;
// Compute final shaded color
if (apply_lambert) {
col = col * lightIntensity + col * specularIntensity;
}
// & Check the rare, special case where we draw face between two diff transparent blocks as opaque
if (fs_T2O != 0) {
out_Col = vec4(col, 1.f);
} else {
out_Col = vec4(col, diffuseColor.a);
}
// distance fog!
vec4 fogColor = vec4(0.6, 0.75, 0.9, 1.0);
float FC = gl_FragCoord.z / gl_FragCoord.w / 124.f;
float falloff = clamp(1.05 - exp(-1.05f * (FC - 0.9f)), 0.f, 1.f);
out_Col = mix(out_Col, fogColor, falloff);
}
I tried implementing blinn-phong in the fragment shader, but I think it is wrong simple from the wrong normals. I think this can be done with some sort of tangent and cross product solution, but how can I know the tangent of the surface given we only know the vertex position?
I am not using unity, just bare c++ and most of the answers I am finding online are for java or unity which I do not understand.`

Object not moving according to mouse position when using shaders in raylib

I'm creating a few glowing particles in raylib using shaders and the particles are supposed to move along with the mouse but when compiling it gets stuck to the bottom left corner and the particles dont move.
How it Looks
The c++ code
#include <raylib.h>
#include <vector>
const int W = 400;
const int H = 400;
std::vector<Vector2> particle;
float remap(float value, float low1, float high1, float low2, float high2) {
return low2 + (value - low1) * (high2 - low2) / (high1 - low1);
}
int main() {
SetConfigFlags( FLAG_WINDOW_RESIZABLE );
InitWindow(W, H, "FireWorks");
Shader shader = LoadShader("../assets/vert.glsl", "../assets/frag.glsl");
Texture2D texture = LoadTextureFromImage(GenImageColor(W, H, BLUE));
int resolLoc = GetShaderLocation(shader, "resolution");
int particleLoc = GetShaderLocation(shader, "particle");
int particleCountLoc = GetShaderLocation(shader, "particleCount");
float res[2] = {(float)W, (float)H};
SetShaderValue(shader, resolLoc, res, SHADER_UNIFORM_VEC2);
SetTargetFPS(60);
while (!WindowShouldClose()) {
BeginDrawing();
ClearBackground(BLACK);
particle.push_back(Vector2{(float)GetMouseX(), (float)GetMouseY()});
int removeCount = 1;
for (int i = 0; i < removeCount; i++) {
if (particle.size() == 0) break;
if (particle.size() > 30) {
particle.erase(particle.begin() + i);
}
}
BeginShaderMode(shader);
float particles[30][2];
for ( int i = 0; i < particle.size(); i++) {
particles[i][0] = remap(particle[i].x, 0, W, 0.0, 1.0);
particles[i][1] = remap(particle[i].y, 0, H, 1.0, 0.0);
}
int pSize = particle.size();
SetShaderValue(shader, particleCountLoc, &pSize, SHADER_UNIFORM_INT);
SetShaderValue(shader, particleLoc, particles, SHADER_UNIFORM_VEC2);
DrawTextureRec(texture, (Rectangle) { 0, 0, (float)texture.width, (float) -texture.height }, (Vector2) { 0, 0}, RAYWHITE);
DrawRectangle(0, 0, W, H, BLACK);
EndShaderMode();
EndDrawing();
}
UnloadTexture(texture);
UnloadShader(shader);
CloseWindow();
return 0;
}
The Vertex Shader
#version 330
// Input vertex attributes
in vec3 vertexPosition;
in vec2 vertexTexCoord;
in vec3 vertexNormal;
in vec4 vertexColor;
// Input uniform values
uniform mat4 mvp;
// Output vertex attributes (to fragment shader)
out vec2 fragTexCoord;
out vec4 fragColor;
// NOTE: Add here your custom variables
void main()
{
// Send vertex attributes to fragment shader
fragTexCoord = vertexTexCoord;
fragColor = vertexColor;
// Calculate final vertex position
gl_Position = mvp * vec4(vertexPosition, 1.0);
}
The Fragment Shader
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
uniform vec2 resolution;
uniform int particleCount;
uniform vec2 particle[30];
void main() {
// Texel color fetching from texture sampler
vec4 texelColor = texture(texture0, fragTexCoord);
vec2 st = gl_FragCoord.xy / resolution.xy;
float r = 0.0;
float g = 0.0;
float b = 0.0;
for (int i = 0; i < 30; i++) {
if (i < particleCount) {
vec2 particlePos = particle[i];
float value = float(i) / distance(st, particlePos.xy) * 0.00015;
g += value * 0.5;
b += value;
}
}
finalColor = vec4(r, g, b, 1.0) * texelColor * colDiffuse;
}
The JS version of the code (which works) is here.
If you could point me in the right direction it'd be great.
The uniform particle is of type vec2[30]. An uniform array can needs to be set with SetShaderValueV instead of SetShaderValue:
SetShaderValue(shader, particleLoc, particles, SHADER_UNIFORM_VEC2);
SetShaderValueV(shader, particleLoc, particles[0], SHADER_UNIFORM_VEC2, 30);

How to compute vertex normals for a triangle mesh in OpenGl?

To give background, I'm currently generating a surface of revolution with it's center of mass centered at (0,0,0) in the WCS. The surface of a revolution is y=x^2 where 0 <= x <= 1.
I have converted this surface of revolution into a virtual buffer object, and can render it successfully on the screen. However, I cannot seem to get Blinn-Phong shading to work on the object. I'm fairly sure that the problem lies in my normal calculation.
This is the stub that creates the object and calculates normals:
GLfloat vp[49 * 49 * 18]; // array of vertex points
int _i = 50;
int _j = 50;
float vertices[50][50][3];
for (int i = 0; i < _i; i++) {
float fT = (float) i / (_i - 1);
float fY = fT;
float fZ = sqrt(fT);
for (int j = 0; j < _j; j++) {
float fS = 2 * M_PI * (float) j / (_j - 1);
vertices[i][j][0] = fZ * cos(fS);
vertices[i][j][1] = fY - 0.5; // offset by 0.5 to make center of mass the center
vertices[i][j][2] = fZ * sin(fS);
}
}
int curr = 0;
for (int i = 0; i < _i - 1; i++) {
for (int j = 0; j < _j - 1; j++) {
vp[curr++] = vertices[i][j][0];
vp[curr++] = vertices[i][j][1];
vp[curr++] = vertices[i][j][2];
vp[curr++] = vertices[i+1][j][0];
vp[curr++] = vertices[i+1][j][1];
vp[curr++] = vertices[i+1][j][2];
vp[curr++] = vertices[i][j+1][0];
vp[curr++] = vertices[i][j+1][1];
vp[curr++] = vertices[i][j+1][2];
vp[curr++] = vertices[i+1][j][0];
vp[curr++] = vertices[i+1][j][1];
vp[curr++] = vertices[i+1][j][2];
vp[curr++] = vertices[i+1][j+1][0];
vp[curr++] = vertices[i+1][j+1][1];
vp[curr++] = vertices[i+1][j+1][2];
vp[curr++] = vertices[i][j+1][0];
vp[curr++] = vertices[i][j+1][1];
vp[curr++] = vertices[i][j+1][2];
}
}
GLuint vao;
glGenVertexArrays (1, &vao); // generating and binding is common pattern in OpenGL
glBindVertexArray (vao); // basically setting up memory and associating it
GLuint points_vbo;
glGenBuffers(1, &points_vbo);
glBindBuffer(GL_ARRAY_BUFFER, points_vbo);
glBufferData(GL_ARRAY_BUFFER, 49 * 49 * 18 * sizeof (GLfloat), vp, GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glEnableVertexAttribArray(0);
GLfloat normals[49 * 49 * 18 / 3];
curr = 0;
for (int i = 0; i < 49 * 49 * 18; i += 9){
int Ux = vp[i+3] - vp[i];
int Uy = vp[i+4] - vp[i+1];
int Uz = vp[i+5] - vp[i+2];
int Vx = vp[i+6] - vp[i];
int Vy = vp[i+7] - vp[i+1];
int Vz = vp[i+8] - vp[i+2];
normals[curr++] = Uy * Vz - Uz * Vy;
normals[curr++] = Uz * Vx - Ux * Vz;
normals[curr++] = Ux * Vy - Uy * Vx;
}
GLuint normals_vbo;
glGenBuffers(1, &normals_vbo);
glBindBuffer(GL_ARRAY_BUFFER, normals_vbo);
glBufferData(GL_ARRAY_BUFFER, 49 * 49 * 18 / 3 * sizeof(GLfloat), normals, GL_STATIC_DRAW);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glEnableVertexAttribArray(1);
This is my vertex shader:
#version 410
layout (location = 0) in vec3 vtxPosition;
layout (location = 1) in vec3 normal;
uniform mat4 proj_mat, view_mat, model_mat;
out vec3 Normal;
out vec3 fpos;
void main () {
gl_Position = proj_mat * view_mat * model_mat * vec4(vtxPosition, 1.0);
fpos = vec3(model_mat * vec4(vtxPosition, 1.0));
Normal = normal;
}
And lastly my fragment shader:
#version 410
// Define INPUTS from fragment shader
//uniform mat4 view_mat;
in vec3 Normal;
in vec3 fpos;
// These come from the VAO for texture coordinates.
in vec2 texture_coords;
// And from the uniform outputs for the textures setup in main.cpp.
uniform sampler2D texture00;
uniform sampler2D texture01;
out vec4 fragment_color; //RGBA color
const vec3 lightPos = vec3(0.0,0.0,5.0);
const vec3 diffColor = vec3(1.0,0.5,0.0);
const vec3 specColor = vec3(1.0,1.0,1.0);
void main () {
vec3 normal = normalize(Normal);
vec3 lightDir = normalize(lightPos - fpos);
float lamb = max(dot(lightDir, normal), 0.0);
float spec = 0.0;
if (lamb > 0.0) {
vec3 refDir = reflect(-lightDir, normal);
vec3 viewDir = normalize(-fpos);
float specAngle = max(dot(refDir, viewDir), 0.0);
spec = pow(specAngle, 4.0);
}
fragment_color = vec4(lamb * diffColor + spec * specColor, 1.0);
}
This is the current rendering of the object:
You have to specify 1 normal attribute for each vertex coordinate. A vertex coordinate and its attributes form a tuple.
Furthermore you have to use the data type float rather than int, for computing the normal vectors:
GLfloat normals[49 * 49 * 18];
curr = 0;
for (int i = 0; i < 49 * 49 * 18; i += 9){
float Ux = vp[i+3] - vp[i];
float Uy = vp[i+4] - vp[i+1];
float Uz = vp[i+5] - vp[i+2];
float Vx = vp[i+6] - vp[i];
float Vy = vp[i+7] - vp[i+1];
float Vz = vp[i+8] - vp[i+2];
float nx = Uy * Vz - Uz * Vy;
float ny = Uz * Vx - Ux * Vz;
float nz = Ux * Vy - Uy * Vx;
for (int j = 0; j < 3; ++j) {
normals[curr++] = nx;
normals[curr++] = ny;
normals[curr++] = nz;
}
}
glBufferData(GL_ARRAY_BUFFER, 49 * 49 * 18 * sizeof(GLfloat), normals, GL_STATIC_DRAW);
I recommend to invert the normal vector of the back faces for a double sided light model:
vec3 normal = normalize(Normal);
vec3 viewDir = normalize(-fpos);
if (dot(normal, viewDir) < 0.0)
normal *= -1.0;
Fragment shader:
#version 410
// Define INPUTS from fragment shader
//uniform mat4 view_mat;
in vec3 Normal;
in vec3 fpos;
// These come from the VAO for texture coordinates.
in vec2 texture_coords;
// And from the uniform outputs for the textures setup in main.cpp.
uniform sampler2D texture00;
uniform sampler2D texture01;
out vec4 fragment_color; //RGBA color
const vec3 lightPos = vec3(0.0,0.0,5.0);
const vec3 diffColor = vec3(1.0,0.5,0.0);
const vec3 specColor = vec3(1.0,1.0,1.0);
void main () {
vec3 normal = normalize(Normal);
vec3 viewDir = normalize(-fpos);
if (dot(normal, viewDir) < 0.0)
normal *= -1.0;
vec3 lightDir = normalize(lightPos - fpos);
float lamb = max(dot(lightDir, normal), 0.0);
float spec = 0.0;
if (lamb > 0.0) {
vec3 refDir = reflect(-lightDir, normal);
float specAngle = max(dot(refDir, viewDir), 0.0);
spec = pow(specAngle, 4.0);
}
fragment_color = vec4(lamb * diffColor + spec * specColor, 1.0);
}

Shader Flipping Faces

I'm trying to construct a render engine using OpenGL and C++. but can't seem to get past this problem. The same model is being rendered 5 different times using different shaders, in 4 out of the 5 shaders the backface culling is working properly. In the tessellation shader, however, it is not. Any outwards faces are invisible, so you can see directly to the rear ones. Does anyone know why this shader flips the faces?
Vertex Shader
void main()
{
worldVertexPosition_cs = (transformationMatrix * vec4(position_vs, 1.0)).xyz;
worldTextureCoords_cs = textureCoords_vs;
worldNormal_cs = mat3(transpose(inverse(transformationMatrix))) * normal_vs;
}
Control Shader
float getTessLevel(float distance0, float distance1)
{
float avgDistance = (distance0 + distance1) / 2.0;
avgDistance = (100 - avgDistance) / 20;
if (avgDistance < 1) {
avgDistance = 1;
}
return avgDistance;
}
void main()
{
worldTextureCoords_es[gl_InvocationID] = worldTextureCoords_cs[gl_InvocationID];
worldNormal_es[gl_InvocationID] = worldNormal_cs[gl_InvocationID];
worldVertexPosition_es[gl_InvocationID] = worldVertexPosition_cs[gl_InvocationID];
float eyeToVertexDistance0 = distance(eyePos, worldVertexPosition_es[0]);
float eyeToVertexDistance1 = distance(eyePos, worldVertexPosition_es[1]);
float eyeToVertexDistance2 = distance(eyePos, worldVertexPosition_es[2]);
gl_TessLevelOuter[0] = getTessLevel(eyeToVertexDistance1, eyeToVertexDistance2);
gl_TessLevelOuter[1] = getTessLevel(eyeToVertexDistance2, eyeToVertexDistance0);
gl_TessLevelOuter[2] = getTessLevel(eyeToVertexDistance0, eyeToVertexDistance1);
gl_TessLevelInner[0] = gl_TessLevelOuter[2];
}
Evaluation Shader
vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2)
{
return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2;
}
vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2)
{
return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2;
}
void main()
{
worldTextureCoords_fs = interpolate2D(worldTextureCoords_es[0], worldTextureCoords_es[1], worldTextureCoords_es[2]);
worldNormal_fs = interpolate3D(worldNormal_es[0], worldNormal_es[1], worldNormal_es[2]);
worldNormal_fs = normalize(worldNormal_fs);
worldVertexPosition_fs = interpolate3D(worldVertexPosition_es[0], worldVertexPosition_es[1], worldVertexPosition_es[2]);
float displacement = texture(texture_displacement0, worldTextureCoords_fs.xy).x;
worldVertexPosition_fs += worldNormal_fs * (displacement / 1.0f);
gl_Position = projectionMatrix * viewMatrix * vec4(worldVertexPosition_fs.xyz, 1.0);
}
Fragment Shader
void main()
{
vec3 unitNormal = normalize(worldNormal_fs);
vec3 unitLightVector = normalize(lightPosition - worldVertexPosition_fs);
float dotResult = dot(unitNormal, unitLightVector);
float brightness = max(dotResult, blackPoint);
vec3 diffuse = brightness * lightColor;
FragColor = vec4(diffuse, 1.0) * texture(texture_diffuse0, worldTextureCoords_fs);
FragColor.rgb = pow(FragColor.rgb, vec3(1.0/gamma));
}
In the Tessellation Evaluation Shader you've to define the winding order of the generated triangles.
This is done via the cw and ccw parameters. Default is ccw.
Either generate clockwise primitives:
layout(triangles, cw) in;
Or generate counterclockwise primitives:
layout(triangles, ccw) in;

How to access all vertexes within the same patch in Tessellation Control Shader

I want to do LOD in Tessenllation Control Shader. And my method is to calculate the area each patch occupyed on screen coordinate, and set different tessellation level for them.
So I need to access all vertices within a patch and I do so like:
for(int i = 0; i < 4; i++)
{
position_screen[i] = ProjectionMatrix * ModelViewMatrix * gl_in[i].gl_Position;
}
where i defined my patch in TCS like:
#version 400
layout( vertices=4 ) out;
and here is related codes in OpenGL:
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, rect_index_buffer);
glPatchParameteri(GL_PATCH_VERTICES, 4);
glDrawElements(GL_PATCHES, RECT_INDEX_SIZE, GL_UNSIGNED_INT, 0);
However the result is strange.The tessellation level is related to the area on the scrren, but all patches have the same tessellation level.
So what's the problem?
I guess it's the way I try getting access to vertices within a patch went wrong. Then how can I do that?
The following is codes in my Tessellation Control Shader, I hope it helps:
#version 400
layout( vertices=4 ) out;
uniform mat4 ProjectionMatrix;
uniform mat4 ModelViewMatrix;
uniform float window_height;
uniform float window_width;
float PI = 3.14159;
float calcTriangleArea(float l[3]) //Heron's formula
{
float p = (l[0] + l[1] + l[2]) / 2.0;
return sqrt(p * (p - l[0]) * (p - l[1]) * (p - l[2]));
}
float calcSqureArea(vec4 position[4])
{
vec2 position_screen[4];
for(int i=0;i<4;i++)
{
position_screen[i] = position[i].xy;
}
float l[4];
for(int i = 0;i < 4;i++)
{
l[i] = length(position_screen[(i + 1) % 4] - position_screen[i % 4]);
}
float diagonal = length(position_screen[2] - position_screen[0]);
float l1[3];
float l2[3];
l1[0] = l[0];
l1[1] = l[1];
l1[2] = diagonal;
l2[0] = l[2];
l2[1] = l[3];
l2[2] = diagonal;
float area = calcTriangleArea(l1) + calcTriangleArea(l2);
return area;
}
float checkInsideView(vec4 position[4]) //check if the patch is visible
{
int flag = 4;
for(int i=0;i<4;i++)
{
if((position[i].x >= -window_width / 2.0) && (position[i].x <= window_width / 2.0) &&
(position[i].y >= -window_height / 2.0) && (position[i].y <= window_height / 2.0))
{
flag --;
}
}
if(flag == 0) //all 4 vertices are visible
{
return 0.0;
}
else if(flag == 4) //not all visible
{
return 2.0;
}
else //all vertices are not visible
{
return 1.0;
}
}
float calcLODLevel()
{
vec4 position_screen[4];
for(int i = 0; i < 4; i++)
{
position_screen[i] = ProjectionMatrix * ModelViewMatrix * gl_in[i].gl_Position;
}
float in_view_level = checkInsideView(position_screen);
//tess number is decided by the area that this patch covers on
//the screen
float area = calcSqureArea(position_screen);
float level = sqrt(area);
if(in_view_level == 1.0)
{
level /= sqrt(2);
}
//dont do tessellation
//if this patch is not visible
else if(in_view_level == 2.0)
{
level = 1.0;
}
return level;
}
void main()
{
gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
float lod_level = calcLODLevel();
gl_TessLevelOuter[0] = lod_level;
gl_TessLevelOuter[1] = lod_level;
gl_TessLevelOuter[2] = lod_level;
gl_TessLevelOuter[3] = lod_level;
gl_TessLevelInner[0] = lod_level;
gl_TessLevelInner[1] = lod_level;
}
I think the problem is with your calculation of the screen coordinates, resulting in the tessellation levels to be too small. The key part is this:
position_screen[i] = ProjectionMatrix * ModelViewMatrix * gl_in[i].gl_Position;
What you're calculating here are clip coordinates, not screen coordinates. To get screen coordinates from clip coordinates, you need to:
Perform the perspective division. This gives you NDC (Normalized Device Coordinates) in the range [-1.0, 1.0].
Calculate screen coordinates from the NDC.
In code, the calculation could look like this:
vec4 posClip = ProjectionMatrix * ModelViewMatrix * gl_in[i].gl_Position;
vec2 posNdc = posClip.xy * (1.0 / posClip.w);
vec2 posScreen = 0.5 * (posNdc + 1.0) * vec2(window_width, window_height);