In my Visual C++ application, I want to allocate a lot of objects, which will use up all available memory in the system. To solve this problem, I decide to store the objects in database. I just have 3 candidates: MySQL, PostgreSQL, and SQLite. But don’t know which one is more appropriate.
What I need is:
Store objects in the database instead of memory.
Fast to find the objects via a key.
Light-weight so the RDBMS will not require a lot of system resources, including both the memory and disk spaces.
No server required.
Easy to deploy.
Which one should be best for my needs? Of course, if you have any other better alternatives, then just tell me.
SQLite provides a detailed doc how when it should be used. But MySQL and PostgreSQL does not so it is a little difficult to choose as I am not familiar with these two. Thanks.
I'd use SQLite. It doesn't require a service and is cross platform. It is easy to deploy and is light-weight. It supports transaction. It's in the public domain.
Your questions:
Store objects in the database instead of memory.
Any database can do this, that's the definition of a database.
Fast to find the objects via a key.
Also standard functionality, if you can't find your data, what's the point of using a database.
Light-weight so the RDBMS will not require a lot of system
resources, including both the memory and disk spaces.
That's mostly in your hands, bad queries generate a lot of overhead. No matter what brand of database (or software language) you use.
No server required.
Do you mean "hardware" or "client-server model" ? Both MySQL and PostgreSQL are services in a client-server model. SQLite works best for a single client.
Easy to deploy.
All 3 databases are easy to deploy, but SQLite is the easiest one. It's not a server like the others.
It looks like SQLite is the best fit, but also check your other requirements, the ones you didn't mention: performance, reliability, backup, failover, etc. etc. And do you needs an RDBMS for this kind of work? A C++ object in memory is very different from a bunch of records in a couple of databases that can be accessed by using SQL.
Related
Amazon said
NoSQL design requires a different mindset than RDBMS design. For an RDBMS, you can create a normalized data model without thinking about access patterns. You can then extend it later when new questions and query requirements arise. For DynamoDB, by contrast, you shouldn't start designing your schema until you know the questions it needs to answer. Understanding the business problems and the application use cases up front is absolutely essential.
It seems that I should design the tables after designing the product for efficient query cost.
But a product can be pivoted or be appended new features. In early stage, nobody knows where the product goes.
Is dynamodb suitable for growing or pivotable product?
In my opinion, the main benefit of Dynamo DB over other NoSQL solutions is that it is a managed database service. You pay for reads and writes and you never worry about scaling to handle larger data, more users. If you are doing a prototype or don't have technical know-how to setup a database server and host in the cloud it could be useful and cost effective. It has its limitations however so if you do have technical resources consider another open source NoSQL option.
I think that statement by Amazon is confusing and is probably more marketing than anything else. Use NoSQL in cases where your data is only accessed in distinct elements that do no have to be combined in a complex manner. It's also helpful if you don't have an exact schema defined because NoSQL doesn't require a hard set schema you can store any fields in a table and you can always add new fields. This is helpful when things are changing rapidly and you don't want to migrate everything as strictly as an RDBMS would require. If however you're going to have to run complex logic or calculations combining data from across tables you should use an RDBMS. You could use NoSQL for some data and and RDBMS for other data in a hybrid fashion but in that case you probably wouldn't want to use Dynamo DB because you'd want full ownership to set it up properly. Hope this helps I'm sure others have more to say and I welcome comments to help me refine my answer.
We want to shard our PostgreSQL DB, due to high disk load. Firstly, we looked at django-sharding library, but:
Very much rewriting in our backend
Migrating all tables to 64-bit primary keys is hard work on 300-400gb tables
Generating ids with Postgres Specific algorithm makes it impossible to move data from shard to shard. More than that, we have a large database with old ids. Updating all of them is a big problem too.
Generating ids with special tables makes us do a special SELECT query to main database every time we insert data. We have high write load, so it's not good.
Considring all these, we decided too look on Postgres database sharding solutions. We found 2 opportunities - Citus and PostgresXL. Citus makes us change data format too much and rewrite a big bunch of backend at the same time, so we are about to try PostgresXL as more transparent solution. But reading the docs, I can't understand some things and will be greatfull for recomendations:
Are there any other sharding workarounds except for Citus and PostgresXL? It would be good not to change much in our database on migrating.
Some questions about PostgresXL:
Do I understand correctly, that it's not Postgres extension, it's a standalone fork? So I should build all its parts from sources and than move data in some way?
How are Postgres and PostgresXL versions compatible? We have PostgreSQL 9.4. I don't see such a version in PostgresXL (9.2 or 9.5 no middle?). So can I use, for example, streaming replication for migration?
If yes/no, what is the best solution to migrate data? If I have 2Tb database with heavy write, can I migrate it somehow without stopping for a long period of time?
Thanks.
First off to save your self a LOT of headache have you looked at options Like Amazon's Auora, Dynomo, Red Shift, etc services? They are VERY cost effective at scale, as well as optimized and managed for you.
Actually Amazon's straight Postgress databases can handle MASSIVE amounts of reads or writes. We can go into 2,000- 6,000 IOPS on reads and another 2,000 to 6,000 IOPS in writes without issue. I would really look into this as the option. Azure, Oracle, and Google also have competing services.
Also be aware that Postgres-XL beyond all reason has no HA support. If you lose a single node you lose everything. The nodes can not fail over.
it's a standalone fork?
Yes, They are very different apps and developed separate from each other.
How are Postgres and PostgresXL versions compatible?
They arn't compatible. You can not just migration Postgres to Postgresl-XL. They work VERY differently.
Generating ids with Postgres Specific algorithm makes it impossible to >move data from shard to shard
Not following this, but with sharing you are not supposed to move data from one shard to another. The key being used generally needs to be something specific and unique to split/segregate your data on. Like a date, or a "type" field, or some other (hopefully ordered) field(s)/column(s). This breaks things up but has obvious pain in the a$$ limitations.
Are there any other sharding workarounds except for Citus and
PostgresXL? It would be good not to change much in our database on >>migrating.
Tons of options, but right off the bat going from a standard RDS, to a NoSql, or MPP database is going to be a major migration, a lot of effort, and have a LOT of limitations no matter what you do.
Next Postress-XL and Citus are MPP (massive parallel processing) clustering apps, not sharing specifically. That is part of what they can do, but it is not their focus.
Other options for MPP
pgPool -- (not great for heavy writes )
haProxy -- ( have not done it but read about it. Lost of work to setup and maintain. )
MySql Cluster -- (Huge pain to use the OSS version and major $$$ for the commercial version)
Green Plumb
Teradata
Vertica
what is the best solution to migrate data?
Very unlikely to find a simple migration for this kind of switch. You can expect to likely need to export the data your self from the existing RDS and import it to the new DB and will likely have to write something your self to get it the way you want it.
So if for example I am trying to implement something that looks like Facebook's Graph API that needs to be very quick and support millions of users, what is the disadvantage of just using Redis instead of a RDBMS?
Thanks!
Jonathan
There are plenty of potential benefits and potential drawbacks of using Redis instead of a classical RDBMS. They are very different beasts indeed.
Focusing only on the potential drawbacks:
Redis is an in-memory store: all your data must fit in memory. RDBMS usually stores the data on disks, and cache part of the data in memory. With a RDBMS, you can manage more data than you have memory. With Redis, you cannot.
Redis is a data structure server. There is no query language (only commands) and no support for a relational algebra. You cannot submit ad-hoc queries (like you can using SQL on a RDBMS). All data accesses should be anticipated by the developer, and proper data access paths must be designed. A lot of flexibility is lost.
Redis offers 2 options for persistency: regular snapshotting and append-only files. None of them is as secure as a real transactional server providing redo/undo logging, block checksuming, point-in-time recovery, flashback capabilities, etc ...
Redis only offers basic security (in term of access rights) at the instance level. RDBMS all provide fine grained per-object access control lists (or role management).
A unique Redis instance is not scalable. It only runs on one CPU core in single-threaded mode. To get scalability, several Redis instances must be deployed and started. Distribution and sharding are done on client-side (i.e. the developer has to take care of them). If you compare them to a unique Redis instance, most RDBMS provide more scalability (typically providing parallelism at the connection level). They are multi-processed (Oracle, PostgreSQL, ...) or multi-threaded (MySQL, Microsoft SQL Server, ... ), taking benefits of multi-cores machines.
Here, I have only described the main drawbacks, but keep in mind there are also plenty of benefits in using Redis (very fast, good concurrency support, low latency, protocol pipelining, good to easily implement optimistic concurrent patterns, good usability/complexity ratio, excellent support from Salvatore and Pieter, pragmatic no-nonsense approach, ...)
For your specific problem (graph), I would suggest to have a look at neo4J or OrientDB which are specifically designed to store graph-oriented data.
I have some additions:
There is a value length limitations in redis. When using redis, you always think about your redis K,V size, especially in redis cluster
Sorry for this question, I dont know if i've understood the concept, but SQLite is Serverless, this means the database in in a local machine, and it's stored in one file, this file is only accessible on one mode: if one client reads it, it's made only for reading mode for other clients, and if a client writes, then all clients have the write mode, so only in one mode at once!
so imagine that i've made a django application, a blog for example; then how is this made using sqlite? since if a client enters to the blog he gots the reading mode to see the page and the blog entries, and if a registred client tries to add a comment then the file will be made as write mode, so how can sqlite handle this?
so, does SQLite is here just like the BaseHTTPServer (the server shipped with django), for testing and learning purpose?
Different databases manage concurrency in different ways, but in sqlite, the method used is a global database-level lock. Only one thread or process can make changes to a sqlite database at a time; all other, concurrent processes will be forced to wait until the currently running process has finished.
As your number of users grows; sqlite's simple locking strategy will lead to increasingly great lock contention, and you will need to migrate your data to another database, such as MySQL (Which can do row level locking, at least with InnoDB engine) or PostgreSQL (Which uses Multiversion Concurrency Control). If you anticipate that you will get a substantial number of users (on the level of say, more than 1 request per second for a good part of the day), you should migrate off of sqlite; and the sooner you do so, the easier it will be.
SQLite is not like BaseHTTPServer or anything basic like that. It's a fully featured embedded database. Quite fast too. Its SQL language might not have the most bells and whistles, but it's flexible enough. I haven't run into cases where I needed something it cannot do for the projects I was involved in (which aren't your typical web apps, truth be told).
Anyone that claims SQLite is good or bad for production without discussing the actual design is not telling you much. SQLite is pretty fast. In some cases, literally orders of magnitude faster than, say, Postgres, which comes up as a go-to alternative among Djangonauts. As someone pointed out, it also supports lots of concurrency. It's a matter of whether your app falls under the 'some cases' or not.
Now, there is one significant factor that has to be taken into account. SQLite is an in-process database. This is really important. If you are using something like gevent, you may run into edge cases where your app breaks. E.g., trying to do a transaction where you have a context switch in middle of it can possibly break the transaction in horrible ways. In other words, 'concurrency' really depends on your app, because SQLite is part of your app.
What you can't do with SQLite, though, in terms of scaling, is you can't make clusters of SQLite servers like you can with some of the other database engines, because it's in-process. Your app may or may not need to go to such lengths in terms of scaling, but my guess is that vast majority of apps out there don't anyway (wild guess).
On the other hand, being in-process means adding custom functions and aggregates to it is pretty trivial. I'm not sure if Django's ORM makes that any more difficult than it has to be, but you can come up with pretty good designs taking advantage of those features.
This issue in database theory is called concurrency and SQLite does support it in Windows versions > Win98 and elsewhere according to the FAQ:
http://www.sqlite.org/faq.html#q5
We are aware of no other embedded SQL database engine that supports as
much concurrency as SQLite. SQLite allows multiple processes to have
the database file open at once, and for multiple processes to read the
database at once. When any process wants to write, it must lock the
entire database file for the duration of its update. But that normally
only takes a few milliseconds. Other processes just wait on the writer
to finish then continue about their business. Other embedded SQL
database engines typically only allow a single process to connect to
the database at once.
Basically, do not worry about concurrency, any database worth its salt takes care of just fine. More information on as how SQLite3 manages this can be found here. You, as a developer, not a database designer, needn't care about it unless you are interested in the inner-workings.
SQLite will only work effectively in production from some specific situations. It's quite easy to get MySQL or PostgreSQL up and running, even on Windows, and have a database that works in most situations.
The real problem is that SQLite3 isn't threaded in Django so only one PAGE view can happen at a time on your server, see this bug https://code.djangoproject.com/ticket/12118 Fixed
I don't use SQLite3 even in development.
EDIT: I keep getting downvoted here but the Django documentation itself recommended not using SQLite3 in Production at the time I wrote this answer. The documentation still contains the following caveat:
SQLite provides an excellent development alternative for applications that are predominantly read-only or require a smaller installation footprint.
If you do not have a small foot print/read-only Django instance, do NOT use SQLite3. Feel free to continue to downvote this answer.
It is not impossible to use Django with Sqlite as database in production, primarily depending on your website/webapp traffic and how hard you hit your db (alongside what kind of operations you perform on it i.e. reads/writes/etc). In fact, approaching end of 2019, I have used it in several low volume applications with less than 5k daily interactions (these are more common than you might think).
Simply put for the current state of tech , at the moment Sqlite-3 supports unlimited concurrent reads (or as far as your machine / workers can handle), BUT only a single process can write to it at any point in time. Bear in mind, a well designed query/ops to the db will last only miliseconds!
Coming from experience in using sqlite as the only db for simple non-routine (by non-routine i mean that a typical user would not be using this app on a daily basis year-round) production web app for overseas job matching that deal with ~5000 registered students (stats show consistently less than 2k requests per day that involves hitting the database during peak season - 40% write 60% read), I've had no problems whatsoever with timeouts/performance issues.
It really boils down to being pragmatic about the development and the URS (client spec). If it becomes the next unicorn , one can always migrate the SQLITE to another RDBMS. For instance, see David d C e Freitas's take on migration in Quick easy way to migrate SQLite3 to MySQL?
Additionally the SQLITE website uses sqlite db at its backend .. see below...
The SQLite website (https://www.sqlite.org/) uses SQLite itself, of course, and as of this writing (2015) it handles about 400K to 500K HTTP requests per day, about 15-20% of which are dynamic pages touching the database. Dynamic content uses about 200 SQL statements per webpage. This setup runs on a single VM that shares a physical server with 23 others and yet still keeps the load average below 0.1 most of the time.
Bear in mind that the above quote is of course mainly referring to read operations, so the values may not be a applicable for write-heavy sites.
The example I gave above on the job matching application I built using sqlite as db is quite write heavy if you've noticed the numbers ... on average, 40% are short lived write operations (i.e. form submissions, etc etc) but bear in mind my volume hitting the db is only 2k per day during peak season.
Then again, if you realize that your sqlite.db is causing alot of timeout and bad user experience (408 !!! on form submission...), especially with Django throwing the OperationalError: database is locked error. (and then they have to key in the whole thing again)...You can always increase the timeout in your settings.py as per django docs as a temporary solution while you prepare for migrating the db.
'OPTIONS': {
# ...
'timeout': 20,
# ...
}
Again, it all boils down to pragmatic development and facing reality that the site may not attract as much activity as hoped , and is prone to over-engineering from the get-go.
There are many times that going for a simple solution enables faster time to market , essentially, to quickly test waters , and of course, be prepared If the piranhas do come in swarms and then its time to upgrade to another RDBMS.
With Django's ORM, for most cases you dont need to touch your models.py during migration to other supported sql db. Be VERY mindfull though that Sqlite does not support some more advanced functions or even fields that its bigger cousins MYSQL and POSTGRES do.
Late to the party, but the question is still relavant as of mid 2018.
"Client" of a blog site is a different term that a "database client". SQLite documentation refers to a client as a process opening a database file. Such process, say a django app, may handle many web app clients ("users") simultaneously and it still is going to be just one client from the standpoint of SQLiite.
The important consideration for choosing SQLite over proper RDBMS is whether your architecture is comprised of more than one software component connecting to a database. In such case, using SQLite may be a major performance bottleneck due to the fact that each app needs to access the same DB file, possibly over a network.
If multiple apps(database clients) is not the case, SQLite is a great production choice in 99% of cases. The remaining 1% is apps using specific DB features, apps under enormous load, etc.
Know your architecture.
The anwer to this question depends on the application that you want to deploy in production:
According to the how to use from the SQLite website, SQLite works great in production as the database engine for most website having low to medium traffic (which is to say, most websites).
They argue that the amount of web traffic that SQLite can handle depends on how heavily you use the database of your website. It is known that any site that gets fewer than 100K hits/day should work fine with SQLite. However, this 100K hits/day figure is a conservative estimate, not a hard upper bound.
In summary, SQLite might be a great choice for applications with fewer users and databases uses. Thus, use SQLite for website with fewer or medium interactions with the database and MySQL or PostgreSQL for website with higher interactions with the database.
Reference: sqlite.org
I have my first app, not that big, but it is the first step. (next big one on the way)
Now if I want to put it on my own Linode VPS, I have to configure mod_python or mod_wsgi, as well as memcache, Ngix, mySQL or Postgresql, etc. to make it work. If I put it GAE, All I have to do is convert the models to use GAE's API.
What I like about GAE is scaling. (if they can really do it)
Then I'd only worry about developing my apps and doing SEO work on them instead of worrying about load share/balance, cache, db / IO redundancy, etc.
I don't want to do any porting later on. (I have to decide now and stick with it)
So, if you have any experience on this, what do you recommend:
1- Use VPS(s) for everthing
2- Use VPS(s) plus Amazon S3
3- Use VPS(s) plus Amazon S3 & SimpleDB
4- Use GAE
Also: Would I be able to get away with not having JOIN rights when using the BigTable?
Note: I don't have any spatial need now, but for a location table I might need that later on.
I'd like to know what do you think!
There's business risk and technical risk.
Business risk is that you might have to move hosts later for some external reason. VPS's, EC2, etc require more upfront investment, but keep you independent. Tools like Chef can help with the configuration effort.
Technical risk is that your application may not be easily implemented on the platform. Since most VPS options allow you to install arbitrary software, they minimize this, again at the cost of more configuration effort on your part. AFAIK, the largest constraint GAE enforces on you is it's difficult to do long running background tasks. (Working without JOINs and other aspects of de-normalized data requires a different way of thinking, but this approach is fairly common in web applications no matter where they run once the SQL database is larger than a single host can support.)
If you can live with both these risks, GAE would appear to save you a substantial amount of effort. If you cannot live with these risks, you should tailor your own environment.
As an aside, I find S3 to be worth it no matter your environment. It's far simpler than ensuring your local server static file storage is reliably backed up, and you never have to worry about capacity. It's best if you use it for data that is uploaded but rarely overwritten or deleted (think facebook photo albums).
I don't want to do any porting later on. (I have to decide now and stick with it)
If that's the case, wouldn't you prefer to control deployment from the outset? It could be a great pain to port back from GAE later down the line if you hit its limits (whether they be technological limits or simply business decisions by Google that run counter to your plans for the future of your app).
Also configuring mod_wsgi, installing postgres etc. isn't particularly difficult, and you don't have to worry about things like load balancing and db redundancy for a while yet.
If it were me, I'd prefer the long-term certainty of a traditional server over the quick win of GAE. It all depends on your vision for the app, however.
I may be biased, but if you can live with GAE's limitations it really saves you a lot of work and worry about system administration issues (and to some extent scaling) -- plus, it's free as long as your resource consumption is low (basically meaning your traffic is low).
Can you do without joins? I don't know, as I don't know your app -- I'm a SQL fanatic, myself, yet for simple enough needs I haven't found it too hard to adapt. As I see it, the main limitation of non-relational DBs is that they're nowhere as nice as relational ones for "ad hoc" queries... you typically have to write a lot of procedural code instead of a nice SELECT or two:-(. But, that's more of a "data mining later" issue than one connected with serving your web app -- probably best solved by regularly bulk-downloading data from the web app's online storage to a "data warehouse" kind of setup, anyway, even if such storage was relational in the first place;-).
Before deciding, it might be worth a quick prototype adaptation of your app to GAE. You might run into stoppers that force the decision. Possible stopper issues include
Your schema doesn't make the transition to BigTable
You're depending on some C-based library that GAE doesn't support
You have a few long-running requests that exceed the thresholds that GAE imposes
The answer depends on the complexity and nature of your model layer, really. If it's complex or tightly bound to the rest of your code, porting is likely to be a significant effort. If it's fairly straightforward, or easy to tear out and replace, I would say go for it.
These days, I mostly write new code for GAE, but the fact that I can simply deploy with a single command has really lowered the barrier I feel towards writing cool new apps. Not having to worry about deployment and hosting is quite liberating.
All I have to do is convert the models to use GAE's API.
I am sorry, you are totally mistaken.
You also need to rewrite all the views code that uses the ORM. There are no joins. So you have to deal with and write a lot of procedural code instead of the nifty SQL that provides U whatever you want.
Querying is slow. You need to override save method of each model to store additional information of that model which may take a lot of time to compute when need. You also need to work on memcache to make the queries fast enough.
And then, Guido has said Django 1.1 is going to be included in a future version of Appengine. I am hoping they will have an out of the box generic ORM to BigTable mapper.
That said, if your app is simple without many joins needed, you could use the appengine patch project to use the current version of django on Appengine. Here is how.