simple way to get Z "depth" in OpenCV - c++

I need to detect a blue object and a red object from two different cameras, the required task for now is to locate each object position in 3D space, this means for each object we have to have its x,y,z coordinates, I've seen this video and here witch does exactly what i'm trying to do but there was no sample code in case of the first video, my code looks like this for now it gets me x,y of red/blue object but no depth:
#include <iostream>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <opencv/highgui.h>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
//int func(int argc, char** argv)
{
VideoCapture cap(0); //capture the video from webcam
VideoCapture cap1(1); //capture the video from extrenal camers
if (!cap.isOpened()) // if not success, exit program
{
cout << "Cannot open the web cam" << endl;
return -1;
}
if (!cap1.isOpened()) // if not success, exit program
{
cout << "Cannot open the External camera" << endl;
return -1;
}
namedWindow("Control", CV_WINDOW_AUTOSIZE); //create a window called "Control"
int iLowH = 170;
int iHighH = 179;
int iLowS = 150;
int iHighS = 255;
int iLowV = 60;
int iHighV = 255;
//Create trackbars in "Control" window to control the range of red detection
createTrackbar("LowH", "Control", &iLowH, 179); //Hue (0 - 179)
createTrackbar("HighH", "Control", &iHighH, 179);
createTrackbar("LowS", "Control", &iLowS, 255); //Saturation (0 - 255)
createTrackbar("HighS", "Control", &iHighS, 255);
createTrackbar("LowV", "Control", &iLowV, 255);//Value (0 - 255)
createTrackbar("HighV", "Control", &iHighV, 255);
int iLastX = -1; //last known co-ordinates of red object
int iLastY = -1;
int iLastX1 = -1;
int iLastY1 = -1;
//Capture a temporary image from both cameras to obtain size
Mat imgTmp;
cap.read(imgTmp);
cap1.read(imgTmp);
//Create a black image with the size as the camera output
Mat imgLines = Mat::zeros(imgTmp.size(), CV_8UC3);;
Mat imgLines1 = Mat::zeros(imgTmp.size(), CV_8UC3);;
//loop of continuously capturing frames from video
while (true)
{
Mat imgOriginal;
Mat imgOriginal1;
bool bSuccess = cap.read(imgOriginal); // read a new frame from video webcam
bool bSuccess1 = cap1.read(imgOriginal1); // read a new frame from video external cam
if (!bSuccess || !bSuccess1) //if not success, break loop
{
cout << "Cannot read a frame from video stream" << endl;
break;
}
//WebCam code for image and tracking/detecting
Mat imgHSV;
cvtColor(imgOriginal, imgHSV, COLOR_BGR2HSV); //Convert the captured frame from BGR to HSV to control range of color to obtain and be able to detect it
Mat imgThresholded;
inRange(imgHSV, Scalar(iLowH, iLowS, iLowV), Scalar(iHighH, iHighS, iHighV), imgThresholded); //Threshold the image at the colors within specified range
//morphological opening (removes noise and similar colored objects appearing in thresholded image)
erode(imgThresholded, imgThresholded, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));
dilate(imgThresholded, imgThresholded, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));
//morphological closing (removes noise appearing inside our object in the thresholded image)
dilate(imgThresholded, imgThresholded, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));
erode(imgThresholded, imgThresholded, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));
//Calculate the moments of the thresholded image to calculate the object position
Moments oMoments = moments(imgThresholded);
double dM01 = oMoments.m01;
double dM10 = oMoments.m10;
double dArea = oMoments.m00;
// if the area <= 10000, I consider that the there are no object in the image and it's because of the noise, the area is not zero
if (dArea > 10000)
{
//calculate the position of the ball
int posX = dM10 / dArea;
int posY = dM01 / dArea;
if (iLastX >= 0 && iLastY >= 0 && posX >= 0 && posY >= 0)
{
//Draw a red line from the previous point to the current point
line(imgLines, Point(posX, posY), Point(iLastX, iLastY), Scalar(0, 0, 255), 2);
}
iLastX = posX; //current point becomes last known point and loop continues
iLastY = posY;
}
imshow("Thresholded Image", imgThresholded); //show the thresholded image
imgOriginal = imgOriginal + imgLines;
imshow("Original", imgOriginal); //show the original image with the tracking lines if exist
//External Cam code track/detect
Mat imgHSV1;
cvtColor(imgOriginal1, imgHSV1, COLOR_BGR2HSV); //Convert the captured frame from BGR to HSV
Mat imgThresholded1;
inRange(imgHSV1, Scalar(iLowH, iLowS, iLowV), Scalar(iHighH, iHighS, iHighV), imgThresholded1); //Threshold the image
//morphological opening (removes noise and similar colored objects appearing in thresholded image)
erode(imgThresholded1, imgThresholded1, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));
dilate(imgThresholded1, imgThresholded1, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));
//morphological closing (removes noise appearing inside our object in the thresholded image)
dilate(imgThresholded1, imgThresholded1, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));
erode(imgThresholded1, imgThresholded1, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));
//Calculate the moments of the thresholded image to calculate the object position
Moments oMoments1 = moments(imgThresholded1);
double dM011 = oMoments1.m01;
double dM101 = oMoments1.m10;
double dArea1 = oMoments1.m00;
// if the area <= 10000, I consider that the there are no object in the image and it's because of the noise, the area is not zero
if (dArea1 > 10000)
{
//calculate the position of the ball
int posX1 = dM101 / dArea1;
int posY1 = dM011 / dArea1;
if (iLastX1 >= 0 && iLastY1 >= 0 && posX1 >= 0 && posY1 >= 0)
{
//Draw a red line from the previous point to the current point
line(imgLines1, Point(posX1, posY1), Point(iLastX1, iLastY1), Scalar(0, 0, 255), 2);
}
iLastX1 = posX1;
iLastY1 = posY1;
}
imshow("Thresholded Image 2", imgThresholded1); //show the thresholded image
imgOriginal1 = imgOriginal1 + imgLines1;
imshow("Original 2", imgOriginal1); //show the original image
if (waitKey(30) == 27) //wait for 'esc' key press for 30ms. If 'esc' key is pressed, break loop
{
cout << "esc key is pressed by user" << endl;
break;
}
}
return 0;
}

The answer to your question will be Stereo Vision. You need to do the Stereo Calibration of the two cameras in order to obtain the transformation matrix that allows to produce the depth map of the scene from the 2 views. OpenCV provides some functions to do that.
Here is a tutorial to begin with.

Related

OpenCV findContours() error VS2015 Opencv2413

I'm having a problem with OpenCV findContours when running. I don't quite understand what the error is. During building, there is no error.
Here is the error message:
]1
Here is my code:
#include <iostream>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
VideoCapture cap(0); //capture the video from web cam
if (!cap.isOpened()) // if not success, exit program
{
cout << "Cannot open the web cam" << endl;
return -1;
}
namedWindow("Control", CV_WINDOW_AUTOSIZE); //create a window called "Control"
int iLowH = 0;
int iHighH = 179;
int iLowS = 0;
int iHighS = 255;
int iLowV = 0;
int iHighV = 255;
//Create trackbars in "Control" window
cvCreateTrackbar("LowH", "Control", &iLowH, 179); //Hue (0 - 179)
cvCreateTrackbar("HighH", "Control", &iHighH, 179);
cvCreateTrackbar("LowS", "Control", &iLowS, 255); //Saturation (0 - 255)
cvCreateTrackbar("HighS", "Control", &iHighS, 255);
cvCreateTrackbar("LowV", "Control", &iLowV, 255); //Value (0 - 255)
cvCreateTrackbar("HighV", "Control", &iHighV, 255);
while (true)
{
Mat imgOriginal;
bool bSuccess = cap.read(imgOriginal); // read a new frame from video
if (!bSuccess) //if not success, break loop
{
cout << "Cannot read a frame from video stream" << endl;
break;
}
Mat imgHSV;
cvtColor(imgOriginal, imgHSV, COLOR_BGR2HSV); //Convert the captured frame from BGR to HSV
Mat imgThresholded;
inRange(imgHSV, Scalar(iLowH, iLowS, iLowV), Scalar(iHighH, iHighS, iHighV), imgThresholded); //Threshold the image
//morphological opening (remove small objects from the foreground)
erode(imgThresholded, imgThresholded, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));
dilate(imgThresholded, imgThresholded, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));
//morphological closing (fill small holes in the foreground)
dilate(imgThresholded, imgThresholded, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));
erode(imgThresholded, imgThresholded, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
findContours(imgThresholded, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
imshow("Thresholded Image", imgThresholded); //show the thresholded image
imshow("Original", imgOriginal); //show the original image
if (waitKey(30) == 27) //wait for 'esc' key press for 30ms. If 'esc' key is pressed, break loop
{
cout << "esc key is pressed by user" << endl;
break;
}
}
return 0;
}
Actually, this is a known compatibility error between VS2013, VS2015 and OpenCV. The temporary solution worked for me is to add the 2 lines shown below before return.
cv::imshow("img", threshold);
cv::destroyAllWindows();
I also met these mistakes, but when developing on visual studio 2010. and spent a lot of time with them.
In the end I found that the reason for this is just that I used opencv - lib instead of vc10 (for vs2010) vc14 (for vs2015).
Changing the opencv-lib corrects the error.
Build of vc10 - opencv lib also costs me a lot of time. When someone has tried but still doesn't get opencv-build successful. please contact me. I can maybe help you.

Opencv: Changing a code that uses video to an image for color detection using trackbars

I have a project where i need to detect specific colors from leaves images, like green, brown and yellow.
I found this tutorial (http://opencv-srf.blogspot.com.br/2010/09/object-detection-using-color-seperation.html) that explains how to create a real time trackbar to find the best values for that, but it uses images from a webcam, and i want to use it with pictures.
Can you guys please help me do that?
Thank you.
Here is the code for thresholding an HSV image, selecting the ranges with trackbars.
Note that, differently from a video (as described here), I used morphologyEx to perform morphological operations, and replaced C style cvCreateTrackbar with the C++ function createTrackbar.
The comments in the code should be clear. Please ping me if something is not clear:
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
// Load BGR image
Mat3b bgr = imread("path_to_image");
if (bgr.empty())
{
cout << "Cannot open the image" << endl;
return -1;
}
// Transform to HSV
Mat3b hsv;
cvtColor(bgr, hsv, COLOR_BGR2HSV);
// Create a window called "Control"
namedWindow("Control", CV_WINDOW_AUTOSIZE);
// Set starting values for ranges
int iLowH = 0;
int iHighH = 179;
int iLowS = 0;
int iHighS = 255;
int iLowV = 0;
int iHighV = 255;
//Create trackbars in "Control" window
createTrackbar("LowH", "Control", &iLowH, 179); //Hue (0 - 179)
createTrackbar("HighH", "Control", &iHighH, 179);
createTrackbar("LowS", "Control", &iLowS, 255); //Saturation (0 - 255)
createTrackbar("HighS", "Control", &iHighS, 255);
createTrackbar("LowV", "Control", &iLowV, 255); //Value (0 - 255)
createTrackbar("HighV", "Control", &iHighV, 255);
//Show the original image
imshow("Original", bgr);
// Create kernel for morphological operation
Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(5, 5));
// Infinte loop, until user press "esc"
while (true)
{
Mat mask;
inRange(hsv, Scalar(iLowH, iLowS, iLowV), Scalar(iHighH, iHighS, iHighV), mask); //Threshold the image
//morphological opening (remove small objects from the foreground)
morphologyEx(mask, mask, MORPH_OPEN, kernel);
//morphological closing (fill small holes in the foreground)
morphologyEx(mask, mask, MORPH_CLOSE, kernel);
//Show the thresholded image
imshow("Thresholded Image", mask);
if (waitKey(30) == 27) //wait for 'esc' key press for 30ms. If 'esc' key is pressed, break loop
{
cout << "esc key is pressed by user" << endl;
break;
}
}
return 0;
}

OpenCV face detection, how to crop and save face?

I'm using OpenCV 3 on Ubuntu. the following code is used to detect a face in an image and save the cropped part. The output isn't being shown but the cropped image is saved in my folder.
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;
// Function Headers
void detectAndDisplay(Mat frame);
// Global variables
// Copy this file from opencv/data/haarscascades to target folder
string face_cascade_name = "/home/sruthi/opencv/data/haarcascades/haarcascade_frontalface_alt.xml";
CascadeClassifier face_cascade;
string window_name = "Capture - Face detection";
int filenumber; // Number of file to be saved
string filename;
// Function main
int main(void)
{
// Load the cascade
if (!face_cascade.load(face_cascade_name)){
printf("--(!)Error loading\n");
return (-1);
}
// Read the image file
Mat frame = imread("/home/sruthi/Downloads/pic.jpg");
// Apply the classifier to the frame
if (!frame.empty()){
detectAndDisplay(frame);
}
else{
printf(" --(!) No captured frame -- Break!");
//break;
}
int c = waitKey(10);
if (27 == char(c)){
//break;
}
return 0;
}
// Function detectAndDisplay
void detectAndDisplay(Mat frame)
{
std::vector<Rect> faces;
Mat frame_gray;
Mat crop;
Mat res;
Mat gray;
string text;
stringstream sstm;
cvtColor(frame, frame_gray, COLOR_BGR2GRAY);
equalizeHist(frame_gray, frame_gray);
// Detect faces
face_cascade.detectMultiScale(frame_gray, faces, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
// Set Region of Interest
cv::Rect roi_b;
cv::Rect roi_c;
size_t ic = 0; // ic is index of current element
int ac = 0; // ac is area of current element
size_t ib = 0; // ib is index of biggest element
int ab = 0; // ab is area of biggest element
for (ic = 0; ic < faces.size(); ic++) // Iterate through all current elements (detected faces)
{
roi_c.x = faces[ic].x;
roi_c.y = faces[ic].y;
roi_c.width = (faces[ic].width);
roi_c.height = (faces[ic].height);
ac = roi_c.width * roi_c.height; // Get the area of current element (detected face)
roi_b.x = faces[ib].x;
roi_b.y = faces[ib].y;
roi_b.width = (faces[ib].width);
roi_b.height = (faces[ib].height);
ab = roi_b.width * roi_b.height; // Get the area of biggest element, at beginning it is same as "current" element
if (ac > ab)
{
ib = ic;
roi_b.x = faces[ib].x;
roi_b.y = faces[ib].y;
roi_b.width = (faces[ib].width);
roi_b.height = (faces[ib].height);
}
crop = frame(roi_b);
resize(crop, res, Size(128, 128), 0, 0, INTER_LINEAR); // This will be needed later while saving images
cvtColor(crop, gray, CV_BGR2GRAY); // Convert cropped image to Grayscale
// Form a filename
filename = "";
stringstream ssfn;
ssfn << filenumber << ".jpg";
filename = ssfn.str();
filenumber++;
imwrite(filename, gray);
Point pt1(faces[ic].x, faces[ic].y); // Display detected faces on main window
Point pt2((faces[ic].x + faces[ic].height), (faces[ic].y + faces[ic].width));
rectangle(frame, pt1, pt2, Scalar(0, 255, 0), 2, 8, 0);
}
// Show image
sstm << "Crop area size: " << roi_b.width << "x" << roi_b.height << " Filename: " << filename;
text = sstm.str();
putText(frame, text, cvPoint(30, 30), FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0, 0, 255), 1, CV_AA);
imshow("original", frame);
if (!crop.empty())
{
imshow("detected", crop);
}
else
destroyWindow("detected");
}
But at the end of the execution I'm getting:
sruthi#sruthi-5547:~/c++$ ./crop
pure virtual method called
terminate called without an active exception
Aborted (core dumped)
I think there are two issues here.
First, your code works fine, but you should add cv::waitKey(); after imshow to prevent the window from closing (it will close after pressing a key).
Second, there is a bug in OpenCV 3.0.0 that causes the pure virtual method called error. If your program runs ok, I'd bet the error message is because of the bug. If you get the latest (and unreleased) OpenCV version from its github repository, it will be fixed.
In python you can do this:
import cv2
import sys
cascPath = sys.argv[1]
faceCascade = cv2.CascadeClassifier(cascPath)
video_capture = cv2.VideoCapture(0)
while True:
# Capture frame-by-frame
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags=cv2.cv.CV_HAAR_SCALE_IMAGE
)
# Draw a rectangle around the faces
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
# Display the resulting frame
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if cv2.waitKey(1) & 0xFF == ord('c'):
crop = frame[y: y + h, x: x + w]
cv2.imwrite("face.jpg", crop)
# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()

OpenCV convert Mat Object to array in C++

I am attempting to use OpenCV to grab frames from a webcam and convert it in to HSV(Hue,Saturation,Value) Mat object.
Now i need to convert HSV Mat object in to a array which store the values of pixels.
this is the far i got right now.
int main()
{
Mat imgOriginal;
VideoCapture cap(0); //capture the video from web cam
int camOpen = cap.open(CV_CAP_ANY);
if ( !cap.isOpened() ) // if not success, exit program
{
cout << "Cannot open the web cam" << endl;
return -1;
}
namedWindow("Control", CV_WINDOW_AUTOSIZE); //create a window called "Control"
int iLowH = 0;
int iHighH = 179;
int iLowS = 0;
int iHighS = 255;
int iLowV = 0;
int iHighV = 255;
//Create trackbars in "Control" window
cvCreateTrackbar("LowH", "Control", &iLowH, 179); //Hue (0 - 179)
cvCreateTrackbar("HighH", "Control", &iHighH, 179);
cvCreateTrackbar("LowS", "Control", &iLowS, 255); //Saturation (0 - 255)
cvCreateTrackbar("HighS", "Control", &iHighS, 255);
cvCreateTrackbar("LowV", "Control", &iLowV, 255); //Value (0 - 255)
cvCreateTrackbar("HighV", "Control", &iHighV, 255);
time_t start, end;
int counter = 0;
time(&start);
while (true)
{
time(&end);
counter++;
if(1<difftime (end, start))
{
cout<<"fps"<<counter<<endl;
counter=0;
time(&start);
cout<<"iHighH :"<<iLowH<<endl;
cout<<"iHighS :"<<iLowS<<endl;
cout<<"iHighV :"<<iLowV<<endl;
}
cap >> imgOriginal;
bool bSuccess = cap.read(imgOriginal); // read a new frame from video
if (!bSuccess) //if not success, break loop
{
cout << "Cannot read a frame from video stream" << endl;
break;
}
Mat imgHSV;
cvtColor(imgOriginal, imgHSV, COLOR_BGR2HSV); //Convert the captured frame from BGR to HSV
Mat imgThresholded;
inRange(imgHSV, Scalar(iLowH, iLowS, iLowV), Scalar(iHighH, iHighS, iHighV), imgThresholded); //Threshold the image
//morphological opening (remove small objects from the foreground)
erode(imgThresholded, imgThresholded, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)) );
dilate( imgThresholded, imgThresholded, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)) );
//morphological closing (fill small holes in the foreground)
dilate( imgThresholded, imgThresholded, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)) );
erode(imgThresholded, imgThresholded, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)) );
//
// CONVERT imgHSV object in to an array
//
imshow("Thresholded Image", imgThresholded); //show the thresholded image
imshow("Original", imgOriginal); //show the original image
if (waitKey(30) == 27) //wait for 'esc' key press for 30ms. If 'esc' key is pressed, break loop
{
cout << "esc key is pressed by user" << endl;
break;
}
}
system("pause");
return 0;
}
This will copy the image pixels into a vector. If you need a C like array just use &pixels[0].
std::vector<cv::Vec3b> pixels;
cv::MatIterator_<Vec3b> it, end;
for(it = imgHSV .begin<Vec3b>(), end = imgHSV.end<Vec3b>(); it != end; ++it)
{
pixels.push_back(*it);
}
This is a more efficient way to fill the pixels vector:
std::vector<cv::Vec3b> pixels(imgHSV.rows * imgHSV.cols);
cv::Mat m(imgHSV.rows, imgHSV.cols, CV_8UC3, &pixels[0]);
imgHSV.copyTo(m);

OpenCV crop live feed from camera

How can I get properly one resolution feed from camera in OpenCV (640x320) but cut it into half and display only one half of the frame (320x240). So not to scale down, but to actually crop. I am using OpenCV 2.4.5, VS2010 and C++
This quite standard code gets 640x480 input resolution and I made some changes to crop resolution to 320x240. Should I use Mat instead of IplImage, and if so what would be the best way?
#include "stdafx.h"
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace std;
char key;
int main()
{
cvNamedWindow("Camera_Output", 1); //Create window
CvCapture* capture = cvCaptureFromCAM(1); //Capture using camera 1 connected to system
cvSetCaptureProperty( capture, CV_CAP_PROP_FRAME_WIDTH, 640 );
cvSetCaptureProperty( capture, CV_CAP_PROP_FRAME_HEIGHT, 480 );
while(1){ //Create loop for live streaming
IplImage* framein = cvQueryFrame(capture); //Create image frames from capture
/* sets the Region of Interest - rectangle area has to be __INSIDE__ the image */
cvSetImageROI(framein, cvRect(0, 0, 320, 240));
/* create destination image - cvGetSize will return the width and the height of ROI */
IplImage *frameout = cvCreateImage(cvGetSize(framein), framein->depth, framein->nChannels);
/* copy subimage */
cvCopy(framein, frameout, NULL);
/* always reset the Region of Interest */
cvResetImageROI(framein);
cvShowImage("Camera_Output", frameout); //Show image frames on created window
key = cvWaitKey(10); //Capture Keyboard stroke
if (char(key) == 27){
break; //ESC key loop will break.
}
}
cvReleaseCapture(&capture); //Release capture.
cvDestroyWindow("Camera_Output"); //Destroy Window
return 0;
}
I think you don't check whether you are getting a CvCapture. On my system with only one camera your code doesn't work because you query camera 1. But the first camera should be 0 Thus change this code.
CvCapture* capture = cvCaptureFromCAM(1); //Capture using camera 1 connected to system
to (note I change 1 to 0):
CvCapture* capture = cvCaptureFromCAM(0); //Capture using camera 1 connected to system
if (! capture ){
/*your error handling*/
}
Further than that your code seems to be working for me. You might also check the other pointer values whether you are not getting NULL.
You can easily crop a video by calling the following function.
cvSetMouseCallback("image", mouseHandler, NULL);
The mouseHandler function is like that.
void mouseHandler(int event, int x, int y, int flags, void* param){
if (event == CV_EVENT_LBUTTONDOWN && !drag)
{
/* left button clicked. ROI selection begins */
select_flag=0;
point1 = Point(x, y);
drag = 1;
}
if (event == CV_EVENT_MOUSEMOVE && drag)
{
/* mouse dragged. ROI being selected */
Mat img1 = img.clone();
point2 = Point(x, y);
rectangle(img1, point1, point2, CV_RGB(255, 0, 0), 3, 8, 0);
imshow("image", img1);
}
if (event == CV_EVENT_LBUTTONUP && drag)
{
point2 = Point(x, y);
rect = Rect(point1.x,point1.y,x-point1.x,y-point1.y);
drag = 0;
roiImg = img(rect);
}
if (event == CV_EVENT_LBUTTONUP)
{
/* ROI selected */
select_flag = 1;
drag = 0;
}
}
For the details you can visit the following link.:How to Crop Video from Webcam using OpenCV
this is easy in python... but the key idea is that cv2 arrays can be referenced and sliced. all you need is a slice of framein.
the following code takes a slice from (0,0) to (320,240). note that numpy arrays are indexed with column priority.
# Required modules
import cv2
# Constants for the crop size
xMin = 0
yMin = 0
xMax = 320
yMax = 240
# Open cam, decode image, show in window
cap = cv2.VideoCapture(0) # use 1 or 2 or ... for other camera
cv2.namedWindow("Original")
cv2.namedWindow("Cropped")
key = -1
while(key < 0):
success, img = cap.read()
cropImg = img[yMin:yMax,xMin:xMax] # this is all there is to cropping
cv2.imshow("Original", img)
cv2.imshow("Cropped", cropImg)
key = cv2.waitKey(1)
cv2.destroyAllWindows()
Working Example of cropping Faces from live camera
void CropFaces::DetectAndCropFaces(Mat frame, string locationToSaveFaces) {
std::vector<Rect> faces;
Mat frame_gray;
// Convert to gray scale
cvtColor(frame, frame_gray, COLOR_BGR2GRAY);
// Equalize histogram
equalizeHist(frame_gray, frame_gray);
// Detect faces
face_cascade.detectMultiScale(frame_gray, faces, 1.1, 3,
0 | CASCADE_SCALE_IMAGE, Size(30, 30));
// Iterate over all of the faces
for (size_t i = 0; i < faces.size(); i++) {
// Find center of faces
Point center(faces[i].x + faces[i].width / 2, faces[i].y + faces[i].height / 2);
Mat face = frame_gray(faces[i]);
std::vector<Rect> eyes;
Mat croppedRef(frame, faces[i]);
cv::Mat cropped;
// Copy the data into new matrix
croppedRef.copyTo(cropped);
string fileName = locationToSaveFaces+ "\\face_" + to_string(faces[i].x) + ".jpg";
resize(cropped, cropped, Size(65, 65));
imwrite(fileName, cropped);
}
// Display frame
imshow("DetectAndSave", frame);
}
void CropFaces::PlayVideoForCropFaces(string locationToSaveFaces) {
VideoCapture cap(0); // Open default camera
Mat frame;
face_cascade.load("haarcascade_frontalface_alt.xml"); // load faces
while (cap.read(frame)) {
DetectAndCropFaces(frame, locationToSaveFaces); // Call function to detect faces
if (waitKey(30) >= 0) // pause
break;
}
}