C++ Thread Local Singleton intermittent failure - c++

I've tried to implement a very basic Thread Local Singleton class in C++ - it's a template class that other classes then inherit from. The problem is that it almost always works, but every now and again (say, 1 run in 15), it will fail with an error along the lines of:
* glibc detected * ./myExe: free(): invalid next size (fast): 0x00002b61a40008c0 ***
please forgive the rather contrived example below, but it serves to demonstrate the problem.
#include <thread>
#include <atomic>
#include <iostream>
#include <memory>
#include <vector>
using namespace std;
template<class T>
class ThreadLocalSingleton
{
public:
/// Return a reference to an instance of the object
static T& instance();
typedef unique_ptr<T> UPtr;
protected:
ThreadLocalSingleton() {}
ThreadLocalSingleton(ThreadLocalSingleton const&);
void operator=(ThreadLocalSingleton const&);
};
template<class T>
T& ThreadLocalSingleton<T>::instance()
{
thread_local T m_instance;
return m_instance;
}
// Create two atomic variables to keep track of the number of times the
// TLS class is created and accessed.
atomic<size_t> creationCount(0);
atomic<size_t> accessCount(0);
// Very simple class which derives from TLS
class MyClass : public ThreadLocalSingleton<MyClass>
{
friend class ThreadLocalSingleton<MyClass>;
public:
MyClass()
{
++creationCount;
}
string getType() const
{
++accessCount;
return "MyClass";
}
};
int main(int,char**)
{
vector<thread> threads;
vector<string> results;
threads.emplace_back([&]() { results.emplace_back(MyClass::instance().getType()); MyClass::instance().getType(); });
threads.emplace_back([&]() { results.emplace_back(MyClass::instance().getType()); MyClass::instance().getType(); });
threads.emplace_back([&]() { results.emplace_back(MyClass::instance().getType()); MyClass::instance().getType(); });
threads.emplace_back([&]() { results.emplace_back(MyClass::instance().getType()); MyClass::instance().getType(); });
for (auto& t : threads)
{
t.join();
}
// Expecting 4 creations and 8 accesses.
cout << "CreationCount: " << creationCount << " AccessCount: " << accessCount << endl;
}
I can replicate this on coliru, using the build command:
g++ -std=c++11 -O2 -Wall -pedantic -pthread main.cpp && ./a.out
Many thanks!

Thanks to both molbdnilo and Damon, who quickly pointed out the obvious - vector::emplace_back isn't thread safe, so there would be no guarantees on whether or not this code would actually work. I've replaced the main() function with the following, which seems to be more reliable.
int main(int,char**)
{
vector<thread> threads;
vector<string> results;
auto addToResult = [&results](const string& val)
{
static mutex m_mutex;
unique_lock<mutex> lock(m_mutex);
results.emplace_back(val);
};
threads.emplace_back([&addToResult]() { addToResult(MyClass::instance().getType()); MyClass::instance().getType(); });
threads.emplace_back([&addToResult]() { addToResult(MyClass::instance().getType()); MyClass::instance().getType(); });
threads.emplace_back([&addToResult]() { addToResult(MyClass::instance().getType()); MyClass::instance().getType(); });
threads.emplace_back([&addToResult]() { addToResult(MyClass::instance().getType()); MyClass::instance().getType(); });
for (auto& t : threads)
{
t.join();
}
// Expecting 4 creations and 8 accesses.
cout << "CreationCount: " << creationCount << " AccessCount: " << accessCount << endl;
}
Thanks!

Related

c++ multi-threading program architecture

I am currently practicing the use of multiple threads in C++. The program is simplified as follow. In this case, I have a global variable Obj, and within each task, a get function is processed by thread and thread detach will be called after.
In practice, get may take a great amount of time to run. If there are many tasks, get will be called repetitively (since each task has its own get function). I wonder if I can design a program where when one task has already obtained the data using get function and the data has been wrote to obj.text, then the rest of tasks can directly access or wait for the data from obj.text.
Can I use std::shared_ptr, std::future, std::async in c++ to implement this? If so, how to design the program? Any advice is greatly appreciated.
#include <chrono>
#include <future>
#include <iostream>
#include <memory>
#include <thread>
#include <vector>
using namespace std;
class Info {
public:
Info() { Ids = 10; };
int Ids;
std::string text;
};
Info Objs;
class Module {
public:
Module() {}
virtual void check(int &id){};
virtual void get(){};
};
class task1 : public Module {
public:
task1() { std::cout << "task1" << std::endl; }
void check(int &id) override {
thread s(&task1::get, this);
s.detach();
};
// The function will first do some other work (here, I use sleep to represent
// that) then set the value of Objs.text
void get() override {
// The task may take 2 seconds , So use text instead
std::this_thread::sleep_for(std::chrono::seconds(5));
Objs.text = "AAAA";
std::cout << Objs.text << std::endl;
};
};
class task2 : public Module {
public:
task2() { std::cout << "task2" << std::endl; }
void check(int &id) override {
thread s(&task2::get, this);
s.detach();
};
// The function will first do some other work (here, I use sleep to represent
// that) then set the value of Objs.text
void get() {
std::this_thread::sleep_for(std::chrono::seconds(5));
Objs.text = "AAAA";
std::cout << Objs.text << std::endl;
};
};
int main() {
std::vector<std::unique_ptr<Module>> modules;
modules.push_back(std::make_unique<task1>());
modules.push_back(std::make_unique<task2>());
for (auto &m : modules) {
m->check(Objs.Ids);
}
std::this_thread::sleep_for(std::chrono::seconds(12));
return 0;
}
It is a plain producer-consumer problem.
You have multiple “get()” producers. And did not implemented consumers yet.
First, you should have multiple “Info” for multithread. If there is only one Info, multithread programming is useless. I recommend “concurrent_queue”.
Second, “detach()” is not a good idea. You can’t manage child threads. You’d better use “join()”
My code sample follows. I used Visual Studio 2022
#include <chrono>
#include <iostream>
#include <thread>
#include <vector>
#include <concurrent_queue.h>
using namespace std;
class Info {
public:
Info() { Ids = 10; };
int Ids;
std::string text;
};
concurrency::concurrent_queue<Info> Objs;
void producer()
{
while (true) {
Info obj;
std::this_thread::sleep_for(std::chrono::seconds(5));
obj.text = "AAAA\n";
Objs.push(obj);
}
}
void consumer()
{
while (true) {
std::this_thread::sleep_for(std::chrono::seconds(1));
Info obj;
bool got_it = Objs.try_pop(obj);
if (got_it) {
std::cout << obj.text;
}
}
}
int main() {
const int NUM_CORES = 6;
std::vector<std::thread> threads;
for (int i = 0; i < NUM_CORES / 2; ++i)
threads.emplace_back(producer);
for (int i = 0; i < NUM_CORES / 2; ++i)
threads.emplace_back(consumer);
for (auto& th : threads) th.join();
}

How to Share Mutex, Condition Variable and Queue between two Classes C++?

When trying to learn threads most examples suggests that I should put std::mutex, std::condition_variable and std::queue global when sharing data between two different threads and it works perfectly fine for simple scenario. However, in real case scenario and bigger applications this may soon get complicated as I may soon lose track of the global variables and since I am using C++ this does not seem to be an appropriate option (may be I am wrong)
My question is if I have a producer/consumer problem and I want to put both in separate classes, since they will be sharing data I would need to pass them the same mutex and queue now how do I share these two variables between them without defining it to be global and what is the best practice for creating threads?
Here is a working example of my basic code using global variables.
#include <iostream>
#include <thread>
#include <mutex>
#include <queue>
#include <condition_variable>
std::queue<int> buffer;
std::mutex mtx;
std::condition_variable cond;
const int MAX_BUFFER_SIZE = 50;
class Producer
{
public:
void run(int val)
{
while(true) {
std::unique_lock locker(mtx) ;
cond.wait(locker, []() {
return buffer.size() < MAX_BUFFER_SIZE;
});
buffer.push(val);
std::cout << "Produced " << val << std::endl;
val --;
locker.unlock();
// std::this_thread::sleep_for(std::chrono::seconds(2));
cond.notify_one();
}
}
};
class Consumer
{
public:
void run()
{
while(true) {
std::unique_lock locker(mtx);
cond.wait(locker, []() {
return buffer.size() > 0;
});
int val = buffer.front();
buffer.pop();
std::cout << "Consumed " << val << std::endl;
locker.unlock();
std::this_thread::sleep_for(std::chrono::seconds(1));
cond.notify_one();
}
}
};
int main()
{
std::thread t1(&Producer::run, Producer(), MAX_BUFFER_SIZE);
std::thread t2(&Consumer::run, Consumer());
t1.join();
t2.join();
return 0;
}
Typically, you want to have synchronisation objects packaged alongside the resource(s) they are protecting.
A simple way to do that in your case would be a class that contains the buffer, the mutex, and the condition variable. All you really need is to share a reference to one of those to both the Consumer and the Producer.
Here's one way to go about it while keeping most of your code as-is:
class Channel {
std::queue<int> buffer;
std::mutex mtx;
std::condition_variable cond;
// Since we know `Consumer` and `Producer` are the only entities
// that will ever access buffer, mtx and cond, it's better to
// not provide *any* public (direct or indirect) interface to
// them, and use `friend` to grant access.
friend class Producer;
friend class Consumer;
public:
// ...
};
class Producer {
Channel* chan_;
public:
explicit Producer(Channel* chan) : chan_(chan) {}
// ...
};
class Consumer {
Channel* chan_;
public:
explicit Consumer(Channel* chan) : chan_(chan) {}
// ...
};
int main() {
Channel channel;
std::thread t1(&Producer::run, Producer(&channel), MAX_BUFFER_SIZE);
std::thread t2(&Consumer::run, Consumer(&channel));
t1.join();
t2.join();
}
However, (Thanks for the prompt, #Ext3h) a better way to go about this would be to encapsulate access to the synchronisation objects as well, i.e. keep them hidden in the class. At that point Channel becomes what is commonly known as a Synchronised Queue
Here's what I'd subjectively consider a nicer-looking implementation of your example code, with a few misc improvements thrown in as well:
#include <cassert>
#include <iostream>
#include <thread>
#include <mutex>
#include <queue>
#include <optional>
#include <condition_variable>
template<typename T>
class Channel {
static constexpr std::size_t default_max_length = 10;
public:
using value_type = T;
explicit Channel(std::size_t max_length = default_max_length)
: max_length_(max_length) {}
std::optional<value_type> next() {
std::unique_lock locker(mtx_);
cond_.wait(locker, [this]() {
return !buffer_.empty() || closed_;
});
if (buffer_.empty()) {
assert(closed_);
return std::nullopt;
}
value_type val = buffer_.front();
buffer_.pop();
cond_.notify_one();
return val;
}
void put(value_type val) {
std::unique_lock locker(mtx_);
cond_.wait(locker, [this]() {
return buffer_.size() < max_length_;
});
buffer_.push(std::move(val));
cond_.notify_one();
}
void close() {
std::scoped_lock locker(mtx_);
closed_ = true;
cond_.notify_all();
}
private:
std::size_t max_length_;
std::queue<value_type> buffer_;
bool closed_ = false;
std::mutex mtx_;
std::condition_variable cond_;
};
void producer_main(Channel<int>& chan, int val) {
// Don't use while(true), it's Undefined Behavior
while (val >= 0) {
chan.put(val);
std::cout << "Produced " << val << std::endl;
val--;
}
}
void consumer_main(Channel<int>& chan) {
bool running = true;
while (running) {
auto val = chan.next();
if (!val) {
running = false;
continue;
}
std::cout << "Consumed " << *val << std::endl;
};
}
int main()
{
// You are responsible for ensuring the channel outlives both threads.
Channel<int> channel;
std::thread producer_thread(producer_main, std::ref(channel), 13);
std::thread consumer_thread(consumer_main, std::ref(channel));
producer_thread.join();
channel.close();
consumer_thread.join();
return 0;
}

std::lock_guard with variadic templates

[It is not necessary to follow the links to understand the question].
I combined the implementation of the singleton pattern in this answer, together with the synchronized file writing of this other answer.
Then I wanted to see if the interface of SynchronizedFile could provide a variadic templated write method, but I couldn't figure out how to properly combine this with the std::lock_guard.
Below is a non-working example. In this case it doesn't work because (I think) the two threads manage to pump stuff into the buffer i_buf in a non-synchronized way, resulting in a garbled LOGFILE.txt.
If I put the std::lock_guard inside the general template of write then the program doesn't halt.
#include <iostream>
#include <mutex>
#include <sstream>
#include <fstream>
#include <string>
#include <memory>
#include <thread>
static const int N_LOOP_LENGTH{10};
// This class manages a log file and provides write method(s)
// that allow passing a variable number of parameters of different
// types to be written to the file in a line and separated by commas.
class SynchronizedFile {
public:
static SynchronizedFile& getInstance()
{
static SynchronizedFile instance;
return instance;
}
private:
std::ostringstream i_buf;
std::ofstream i_fout;
std::mutex _writerMutex;
SynchronizedFile () {
i_fout.open("LOGFILE.txt", std::ofstream::out);
}
public:
SynchronizedFile(SynchronizedFile const&) = delete;
void operator=(SynchronizedFile const&) = delete;
template<typename First, typename... Rest>
void write(First param1, Rest...param)
{
i_buf << param1 << ", ";
write(param...);
}
void write()
{
std::lock_guard<std::mutex> lock(_writerMutex);
i_fout << i_buf.str() << std::endl;
i_buf.str("");
i_buf.clear();
}
};
// This is just some class that is using the SynchronizedFile class
// to write stuff to the log file.
class Writer {
public:
Writer (SynchronizedFile& sf, const std::string& prefix)
: syncedFile(sf), prefix(prefix) {}
void someFunctionThatWritesToFile () {
syncedFile.write(prefix, "AAAAA", 4343, "BBBBB", 0.2345435, "GGGGGG");
}
private:
SynchronizedFile& syncedFile;
std::string prefix;
};
void thread_method()
{
SynchronizedFile &my_file1 = SynchronizedFile::getInstance();
Writer writer1(my_file1, "Writer 1:");
for (int i = 0; i < N_LOOP_LENGTH; ++ i)
writer1.someFunctionThatWritesToFile();
}
int main()
{
std::thread t(thread_method);
SynchronizedFile &my_file2 = SynchronizedFile::getInstance();
Writer writer2(my_file2, "Writer 2:");
for (int i = 0; i < N_LOOP_LENGTH; ++i)
writer2.someFunctionThatWritesToFile();
t.join();
std::cout << "Done" << std::endl;
return 0;
}
How could I successfully combine these three ideas?
The program deadlocks because write calls itself recursively while still holding the lock.
Either use a std::recursive_mutex or release the lock after writing your data out but before calling write.
E: Unlocking doesn't do the job, I didn't think this through...
E: Or lock once and defer to another private method to do the write.
template<typename... Args>
void write(Args&&... args)
{
std::unique_lock<std::mutex> lock(_writerMutex);
_write(std::forward<Args>(args)...);
}
template<typename First, typename... Rest>
void _write(First&& param1, Rest&&... param) // private method
{
i_buf << std::forward<First>(param1) << ", ";
_write(std::forward<Rest>(param)...);
}
void _write()
{
i_fout << i_buf.str() << std::endl;
i_buf.clear();
}

What's Wrong with the usage of thread and mutex

I wrote an test project for learning the c++ thread, but some error happened in my program.
the code is sample that a class provide a function that can add data to container and the data will be print in thread, and the data which has been printed will be removed from container.
that is the code:
#include <mutex>
#include <thread>
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;
class Manager
{
public:
Manager()
{
const auto expression = [&]()->void {return threadProc(); };
thread(expression).detach();
}
~Manager() {}
void addData(int num)
{
if (m_data.lock())
m_data.data.push_back(num);
}
private:
struct
{
vector<int> data;
unique_lock<mutex> lock()
{
return unique_lock<mutex>(m);
}
private:
mutex m;
}m_data;
void threadProc()
{
while (true)
{
if (m_data.lock())
{
for_each(m_data.data.begin(), m_data.data.end(), [](int num)
{
cout << num << endl;
});
m_data.data.clear();
}
}
}
};
int main()
{
Manager manager;
manager.addData(1);
system("pause");
}
when it runs, it will shows
error info
Could you please tell me where is the problem? thanks!
The temporary unique_lock returned by lock() is destroyed right away, unlocking the mutex. Access to data is not in fact protected from concurrent access. Your program exhibits undefined behavior by way of a data race.

Accessing counter from two threads

I have a counter that is being incremented from one thread. In the main thread, I basically print it out by calling data member of a class. In the below code, nothing is being printed out.
#include <iostream>
#include <thread>
#include <windows.h>
#include <mutex>
std::mutex mut;
class Foo
{
public:
Foo(const int& m) : m_delay(m), m_count(0)
{}
void update()
{
std::cout << "count: " << this->m_count << std::endl;
}
void operator()()
{
while (true){
mut.lock();
m_count++;
mut.unlock();
Sleep(m_delay);
}
}
private:
int m_delay;
int m_count;
};
Foo *obj = new Foo(200);
int main()
{
std::thread *t = new std::thread(*obj);
t->join();
while(true)
{
obj->update();
Sleep(10);
}
return 0;
}
The problem with the original code is that this copies the Foo object:
std::thread *t = new std::thread(*obj);
That means that the increments happen to the copy, and so the value in the original Foo never changes, and so when main prints it out (if you move the misplaced join()) the value is always the same.
A solution is to use a reference not a copy:
std::thread *t = new std::thread(std::ref(*obj));
You also need to protect the read of the variable by the mutex (or use std::atomic<int> for the counter) to avoid undefined behaviour caused by concurrently reading and writing a non-atomic variable.
You should also stop using mut.lock() and mut.unlock() directly, use a scoped lock instead.
There's also no need to create things on the heap unnecessarily, overusing new is a bad habit of people who learnt Java and C# first.
You can also make the code portable by replacing the Windows-specific Sleep call with standard C++.
A correct version would be:
#include <iostream>
#include <thread>
#include <chrono>
#include <mutex>
std::mutex mut;
class Foo
{
public:
Foo(std::chrono::milliseconds m) : m_delay(m), m_count(0)
{}
void update()
{
int count = 0;
{
std::lock_guard<std::mutex> lock(mut);
count = m_count;
}
std::cout << "count: " << count << std::endl;
}
void operator()()
{
while (true)
{
{
std::lock_guard<std::mutex> lock(mut);
m_count++;
}
std::this_thread::sleep_for(m_delay);
}
}
private:
std::chrono::milliseconds m_delay;
int m_count;
};
Foo obj(std::chrono::milliseconds(200));
int main()
{
std::thread t(std::ref(obj));
while(true)
{
obj.update();
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
t.join();
return 0;
}
Alternatively, use an atomic variable so you don't need the mutex:
#include <iostream>
#include <thread>
#include <chrono>
#include <atomic>
class Foo
{
public:
Foo(std::chrono::milliseconds m) : m_delay(m), m_count(0)
{}
void update()
{
std::cout << "count: " << m_count << std::endl;
}
void operator()()
{
while (true)
{
m_count++;
std::this_thread::sleep_for(m_delay);
}
}
private:
std::chrono::milliseconds m_delay;
std::atomic<int> m_count;
};
Foo obj(std::chrono::milliseconds(200));
int main()
{
std::thread t(std::ref(obj));
while(true)
{
obj.update();
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
t.join();
return 0;
}