QSerialPort proper sending of many lines - c++

I am trying to write really big files to serialport using QSerialPort (QT 5.3.1). The problem is - I keep sending more than device can handle.
Programm works like this (this function is called once in 50ms):
void MainWindow::sendNext()
{
if(sending && !paused && port.isWritable())
{
if(currentLine >= gcode.size()) //check if we are at the end of array
{
sending = false;
currentLine = 0;
ui->sendBtn->setText("Send");
ui->pauseBtn->setDisabled("true");
return;
}
if(sendLine(gcode.at(currentLine))) currentLine++; //check if this was written to a serial port
ui->filelines->setText(QString::number(gcode.size()) + QString("/") + QString::number(currentLine) + QString(" Lines"));
ui->progressBar->setValue(((float)currentLine/gcode.size()) * 100);
}
}
But it eventually gets flawed and hangs (on the device, not on the PC). If only I could check somehow if the device is ready or not for next line, but I cant find anything like it in the QSerial docs.
Any ideas?

You can use QSerialPort::waitForBytesWritten to ensure that the bytes are written. However this function would block the thread and it's recommended to use it in a new thread, otherwise your main thread would be blocked and your application freezes periodically.

The RS232 does have some flow control capabilities.
Check if Your device uses RTS/CTS and if so change the connection properties to use hardware flow control.
The QSerialPort also allows for checking the flow control lines manually with dataTerminalReady or requestToSend

Related

Qt5 - ASSERT: "bytesTransferred == writeChunkBuffer.size()"

I've written a tool which uses the QSerialPort to write to a serial device. It runs for a certain time until I get the following error message:
ASSERT: "bytesTransferred == writeChunkBuffer.size()" in file
qserialport_win.cpp, line 511
My sending function looks like this:
/**
* #brief Send text to device
* #param text
* #return Success/Fail
*/
bool Serial::send(QString text)
{
if (connectionStatus && qsp.isWritable()) {
QByteArray buffer = text.toLatin1();
if (buffer.size() != qsp.write(buffer))
qDebug() << "Send does not work";
qsp.flush();
msleep(15);
return true;
} else {
return false;
}
}
If I understand it correctly I write the text (which is around 20 chars) with flush to the device, wait 15ms and repeat it afterwards. I don't really understand why I get this message?
// EDIT:
After some time I figured out what the problem was. I forgot to mention, why I wait 15 ms. That was part of the documentation, to wait after I send the data. The biggest problem, related to sending data was, that I run QSerialPort in a separate thread. By using that I run in trouble. I moved it to the MainThread and use signal slot design by Qt.
Without knowing the API you're using or how it works, there is no inherent reason why a write() method should transfer all the data supplied, especially when it returns a write count: a clear signal that it may not transfer everything in one go.
The only problem is the assertion itself. You should loop until the data is written, not assume it is all written in a single write. Nor should you sleep between writes, in a vain attempt to outguess the device you're sending to. This is literally just a waste of time.

How should QLocalSocket/QDataStream be read to avoid deadlocks?

How should QLocalSocket/QDataStream be read?
I have a program that communicates with another via named pipes using QLocalSocket and QDataStream. The recieveMessage() slot below is connected to the QLocalSocket's readyRead() signal.
void MySceneClient::receiveMessage()
{
qint32 msglength;
(*m_stream) >> msglength;
char* msgdata = new char[msglength];
int read = 0;
while (read < msglength) {
read += m_stream->readRawData(&msgdata[read], msglength - read);
}
...
}
I find that the application sometimes hangs on readRawData(). That is, it succesfully reads the 4 byte header, but then never returns from readRawData().
If I add...
if (m_socket->bytesAvailable() < 5)
return;
...to the start of this function, the application works fine (with the short test message).
I am guessing then (the documentation is very sparse) that there is some sort of deadlock occurring, and that I must use the bytesAvailable() signal to gradually build up the buffer rather than blocking.
Why is this? And what is the correct approach to reading from QLocalSocket?
Your loop blocks the event loop, so you will never get data if all did not arrive pn first read, is what causes your problem I think.
Correct approach is to use signals and slots, readyRead-signal here, and just read the available data in your slot, and if there's not enough, buffer it and return, and read more when you get the next signal.
Be careful with this alternative approach: If you are absolutely sure all the data you expect is going to arrive promptly (perhaps not unreasonable with a local socket where you control both client and server), or if the whole thing is in a thread which doesn nothing else, then it may be ok to use waitForReadyRead method. But the event loop will remain blocked until data arrives, freezing GUI for example (if in GUI thread), and generally troublesome.

Qt creator - RS232 writing over serial to fast

for(int i = 0; i < receivedACLCommands.count(); i++ )
{
QByteArray s = receivedACLCommands[i].toLatin1();
serialport->write(s);
serialport->waitForBytesWritten(1000);
}
In my method I have a QStringList that contains all my commands. The commands will be send to a PID controller that needs to process the command before a new one I being send. I tried this with the waitForBytesWriten but this isnt working for me.
*the controller is an old SCORBOT controller-a.(works with ACL commands).
Yes, waitForBytesWritten() isn't going to solve that. Only other thing you can do is sleep for a while after the wait call, thus giving the device some time to process the command you have just written. Exactly how long to sleep is of course a blind guess, it is not necessarily a constant.
Do focus on enabling handshaking first, typically ignored too often. QSerialPort::setFlowControl() function. A decent device will use its RTS signal to turn off your CTS input (Clear to Send) when it isn't ready to receive anything. CTS/RTS handshaking is supported by Qt, you use QSerialPort::HardwareControl

UDP real time sending and receiving on Linux on command from control computer

I am currently working on a project written in C++ involving UDP real time connection. I receive UDP packets from a control computer containing commands to start/stop an infinite while loop that reads data from an IMU and sends that data to the control computer.
My problem is the following: First I implemented an exit condition from the loop using recvfrom() and read(), but the control computer sends a UDP packet every second, which was delaying the whole loop and made sending the data in the desired time interval of 5ms impossible.
I tried to fix this problem by usingfcntl(fd, F_SETFL, O_NONBLOCK);and using only read(), which actually works fine, but I am unsure whether this is a wise idea or not, since I am not checking for errors anymore. Is there any elegant way how to solve this problem? I thought about using Pthreads or something like that, however I have never worked with threads or parallel programming so I would have to spend some time learning that.
I appreciate any advice on that problem you could give me.
Here is a code example:
//include
...
int main() {
RNet cmd; //RNet: struct that contains all the information of the UDP header and the command
RNet* pCmd = &cmd;
ssize_t b;
int fd2;
struct sockaddr_in snd; // sender is control computer
socklen_t length;
// further declaration of variables, connecting to socket, etc...
...
fcntl(fd2, F_SETFL, O_NONBLOCK);
while (1)
{
// read messages from control computer
if ((b = read(fd2, pCmd, 19)) > 0) {
memcpy(&cmd, pCmd, b);
}
// transmission
while (cmd.CLout.MotionCommand == 1) // MotionCommand: 1 - send messages; 0 - do nothing
{
if(time_elapsed >= 5) // elapsed time in ms
{
// update sensor values
...
//sendto ()
...
// update control time, timestamp, etc.
...
}
if (recvfrom(fd2, pCmd, (int)sizeof(pCmd), 0, (struct sockaddr*) &snd, &length) < 0) {
perror("error receiving data");
return 0;
}
// checking Control Model Command
if ((b = read(fd2, pCmd, 19)) > 0) {
memcpy(&cmd, pCmd, b);
}
}
}
}
I really like the "blocking calls on multiple threads" design. It enables you to have distinct independent tasks, and you don't have to worry about how each task can disturb another. It can have some drawbacks but it is usually a good fit for many needs.
To do that, just use pthread_create to create a new thread for each task (you may keep the main thread for one task). In your case, you should have a thread to receive commands, and another one to send your data. You also need for the receiving thread to notify the sending thread of the commands. To do that, you can use some synchronization tool, like a mutex.
Overall, you should have your receiving thread blocking on recvfrom, and the sending thread waiting for a signal from the mutex (wait for the mutex to be freed, technically). When the receiving thread receive a start command, it signals the mutex and go back to recvfrom (optionally you can set a variable to provide more information to the other thread).
As a comment, remember that UDP are 1-to-many, thus your code here will react to any packet sent to you (even from some random or malicious host). You may want to filter with the remote sockaddr after recvfrom, or use connect + recv. It depends on what you want.

Emitting signal when bytes are received in serial port

I am trying to connect a signal and a slot in C++ using the boost libraries. My code currently opens a file and reads data from it. However, I am trying to improve the code so that it can read and analyze data in real time using a serial port. What I would like to do is have the analyze functions called only once there is data available in the serial port.
How would I go about doing this? I have done it in Qt before, however I cannot use signals and slots in Qt because this code does not use their moc tool.
Your OS (Linux) provides you with the following mechanism when dealing with the serial port.
You can set your serial port to noncanonical mode (by unsetting ICANON flag in termios structure). Then, if MIN and TIME parameters in c_cc[] are zero, the read() function will return if and only if there is new data in the serial port input buffer (see termios man page for details). So, you may run a separate thread responsible for getting the incoming serial data:
ssize_t count, bytesReceived = 0;
char myBuffer[1024];
while(1)
{
if (count = read(portFD,
myBuffer + bytesReceived,
sizeof(myBuffer)-bytesReceived) > 0)
{
/*
Here we check the arrived bytes. If they can be processed as a complete message,
you can alert other thread in a way you choose, put them to some kind of
queue etc. The details depend greatly on communication protocol being used.
If there is not enough bytes to process, you just store them in buffer
*/
bytesReceived += count;
if (MyProtocolMessageComplete(myBuffer, bytesReceived))
{
ProcessMyData(myBuffer, bytesReceived);
AlertOtherThread(); //emit your 'signal' here
bytesReceived = 0; //going to wait for next message
}
}
else
{
//process read() error
}
}
The main idea here is that the thread calling read() is going to be active only when new data arrives. The rest of the time OS will keep this thread in wait state. Thus it will not consume CPU time. It is up to you how to implement the actual signal part.
The example above uses regular read system call to get data from port, but you can use the boost class in the same manner. Just use syncronous read function and the result will be the same.