I have a boost::mpl::vector and now would need a template (function), which "iterates" over the types until the first match (at runtime) is found. Something similar to boost::fusion::find_if, but without sequence being a runtime value.
Would image it to work like this:
typedef boost::mpl::vector<Foo, Bar> Types;
template< typename T >
struct Finder {
bool operator()() const;
};
struct Callback {
template< typename T >
void operator()();
};
Callback callback;
magic_find_if<Types, Finder>(callback);
Is something like this already possible in mpl/fusion (could not find it)
I know, that all variants of Callback::operator() would be "instantiated" but this is ok. Could imagine to implement this with Variadic Templates, but sadly am stuck with C++98.
I'd suggest combining the filter and callback into a conditional operation:
template <template<typename> class Finder, typename Callback>
struct ConditionOperation {
ConditionOperation(Callback cb = {}) : _callback(std::move(cb))
{ }
template <typename T>
void operator()(boost::type<T>) const {
if (Finder<T>()())
_callback.template operator()<T>();
}
private:
Callback _callback;
};
Then, freely after the answer by Eric Niebler¹ you can write:
ConditionOperation<Finder, Callback> op;
mpl::for_each<Types, boost::type<mpl::_1> >(op);
Here's a full demo
Live On Coliru
#include <boost/type.hpp>
#include <boost/mpl/vector.hpp>
#include <boost/mpl/for_each.hpp>
#include <iostream>
struct Foo { enum { id = 879 }; };
struct Bar { enum { id = 321 }; };
struct Qux { enum { id = 555 }; };
typedef boost::mpl::vector<Foo, Bar, Qux> Types;
template <typename T>
struct Finder {
bool operator()() const { return T::id > 500; }
};
struct Callback {
template<typename T> void operator()() const {
std::cout << __PRETTY_FUNCTION__ << "\n";
}
};
template <template<typename> class Finder, typename Callback>
struct ConditionOperation {
ConditionOperation(Callback cb = {}) : _callback(std::move(cb))
{ }
template <typename T>
void operator()(boost::type<T>) const {
if (Finder<T>()())
_callback.template operator()<T>();
}
private:
Callback _callback;
};
int main() {
using namespace boost;
ConditionOperation<Finder, Callback> op;
mpl::for_each<Types, boost::type<mpl::_1> >(op);
}
Printing
void Callback::operator()() const [with T = Foo]
void Callback::operator()() const [with T = Qux]
¹ boost::mpl::for_each without instantiating
Related
It's a pity that there are some APIs provided by others that are out of my control and the said APIs return the same type(i.e. uint8_t other than the enum type).
But the meaning is different when the same value is returned by the different APIs. I hope to use overloading to convert the returned value to readable strings.
However, as per this answer, which says:
a typedef is just another name for the same type. But you can only overload on different types.
I thought and thought, and I found a solution. But I think there must be a better one. How?
But when I finish the code snippet below. I am more confused.
Since Demo::Foo::SampleType and Demo::Bar::SampleTypeare the same thing, so the overloading should not work. But the code snippet works well! What a surprise!
Here is the demo code snippet for my solution:
#include <iostream>
#include <map>
namespace Demo
{
class Foo
{
public:
using SampleType = uint8_t;
SampleType GetFooData(){return SampleType{1};}
};
class Bar
{
public:
using SampleType = uint8_t;
SampleType GetBarData(){return SampleType{2};}
};
}
//////////////////code above is provided by others/////////////
template <typename T>
void FindAndPrint(const T& val, const std::map<T, std::string>& mp)
{
auto itr = mp.find(static_cast<T>(val));
if(itr != mp.end())
{
std::cout << itr->second;
}
else
{
std::cout << "can't classify";
}
std::cout << std::endl;
}
template <typename ServiceName>
void Print(const typename ServiceName::SampleType& data);
template <>
void Print<Demo::Foo>(const typename Demo::Foo::SampleType& data)
{
enum class Color
{
Blue = 1,
Red = 2,
};
std::map<Color, std::string> mp ={
{Color::Blue, "Blue"},
{Color::Red, "Red"},
};
FindAndPrint(static_cast<Color>(data), mp);
return;
}
template <>
void Print<Demo::Bar>(const typename Demo::Foo::SampleType& data)
{
// similar code like above
// When I write this line, I start to realize my solution is wrong since `Demo::Foo::SampleType` and `Demo::Foo::SampleType`are the same thing!
// But, what a surprise! This code snippet compiles and works well. Why?
enum class Animal
{
Dog = 1,
Cat = 2,
};
std::map<Animal, std::string> mp ={
{Animal::Dog, "Dog"},
{Animal::Cat, "Cat"},
};
FindAndPrint(static_cast<Animal>(data), mp);
return;
}
int main()
{
Demo::Foo foo;
Print<Demo::Foo>(foo.GetFooData());
Demo::Bar bar;
Print<Demo::Bar>(bar.GetBarData());
}
What you have is not function overload. It is template specialization. The 3 functions you have:
template <typename ServiceName>
void Print(const typename ServiceName::SampleType& data);
template <>
void Print<Demo::Foo>(const typename Demo::Foo::SampleType& data);
template <>
void Print<Demo::Bar>(const typename Demo::Foo::SampleType& data);
It doesn't really matter how you spell out the parameter type, as long the deduced type is consistent with how you primary template was defined. Which mean you can also write them as:
template<>
void Print<Demo::Foo>(const uint8_t& data);
And the reason Print<Demo::Foo>(...) and Print<Demo::Bar>(...) are considered different functions is because you are providing different template parameters. As long Demo::Foo and Demo::Bar are not the same type, then they are considered 2 different template specialization of your base template.
You can put all the specifics about how to decode the uint8_t in a template class SampleTypeInfo that you specialize for the services. If you do that properly, the Print function can be collapsed to
template <typename ServiceName>
void Print(const typename ServiceName::SampleType& data) {
typedef SampleTypeInfo<ServiceName> Info;
FindAndPrint(Info::decode(data), Info().stringMap);
}
Here is how you can implement SampleTypeInfo:
template <typename T> struct SampleTypeInfo {};
template <typename T>
struct SampleTypeInfoBase {
typedef T SampleType;
static T decode(uint8_t x) {
return static_cast<T>(x);
}
std::map<T, std::string> stringMap;
protected:
void regString(T k, const std::string& v) {
stringMap[k] = v;
}
};
template <>
struct SampleTypeInfo<Demo::Foo> : public SampleTypeInfoBase<Color> {
SampleTypeInfo() {
regString(Color::Blue, "blue");
regString(Color::Red, "red");
}
};
template <>
struct SampleTypeInfo<Demo::Bar> : public SampleTypeInfoBase<Animal> {
SampleTypeInfo() {
regString(Animal::Cat, "cat");
regString(Animal::Dog, "dog");
}
};
I have a template class of the form:
template<typename ContainerType>
class ConfIntParamStat {
public:
typedef typename ContainerType::Type Type;
...
private:
void sample(int iteration) {...}
}
I would like to create a specific version of the function sample for the case when ContainerType is a Vector. Where Vector itself is a template class, but I do not know which type of values this Vector holds.
My intuition was to create this in the header file:
template<typename Type>
ConfIntParamStat<Vector<Type> >::sample(int iteration) {
...
}
But it does not compile, and the error from clang is:
error: nested name specifier 'ConfIntParamStat<Vector<Type> >::' for declaration does not refer into a class, class template or class template partial specialization
Is it possible using another syntax ?
If you didnt want to specialize the template and were looking for a member only specialization try the following
#include <iostream>
#include <vector>
using namespace std;
template <typename ContainerType>
class Something {
public:
void do_something(int);
template <typename Which>
struct do_something_implementation {
void operator()() {
cout << "general implementation" << endl;
}
};
template <typename Which>
struct do_something_implementation<vector<Which>> {
void operator()() {
cout << "specialized implementation for vectors" << endl;
}
};
};
template <typename ContainerType>
void Something<ContainerType>::do_something(int) {
do_something_implementation<ContainerType>{}();
}
int main() {
Something<double> something;
something.do_something(1);
return 0;
}
If your intent is to specialize a function, I would just overload the function like so
#include <iostream>
#include <vector>
using namespace std;
template <typename ContainerType>
class Something {
public:
void do_something(int);
template <typename Type>
void do_something(const vector<Type>&);
};
template <typename ContainerType>
void Something<ContainerType>::do_something(int) {
cout << "Called the general method for do_something" << endl;
}
template <typename ContainerType>
template <typename Type>
void Something<ContainerType>::do_something(const vector<Type>&) {
cout << "Called the specialised method" << endl;
}
int main() {
vector<int> vec{1, 2, 3};
Something<double> something;
something.do_something(1);
something.do_something(vec);
return 0;
}
This is mostly why full/explicit function template specializations are not required. Overloading allows for almost the same effects!
Note This is a great article related to your question! http://www.gotw.ca/publications/mill17.htm
You could make use of the overloading mechanism and tag dispatch:
#include <vector>
template <class T>
struct Tag { };
template<typename ContainerType>
class ConfIntParamStat {
public:
typedef typename ContainerType::value_type Type;
//...
// private:
void sample(int iteration) {
sample_impl(Tag<ContainerType>(), iteration);
}
template <class T>
void sample_impl(Tag<std::vector<T> >, int iteration) {
//if vector
}
template <class T>
void sample_impl(Tag<T>, int iteration) {
//if not a vector
}
};
int main() {
ConfIntParamStat<std::vector<int> > cips;
cips.sample(1);
}
As skypjack mentioned this approach has a little draw when using const. If you are not using c++11 (I suspect you dont because you use > > syntax for nested templates) you could workaround this as follows:
#include <iostream>
#include <vector>
template <class T>
struct Tag { };
template <class T>
struct Decay {
typedef T Type;
};
template <class T>
struct Decay<const T> {
typedef T Type;
};
template<typename ContainerType>
class ConfIntParamStat {
public:
typedef typename ContainerType::value_type Type;
//...
// private:
void sample(int iteration) {
sample_impl(Tag<typename Decay<ContainerType>::Type>(), iteration);
}
template <class T>
void sample_impl(Tag<std::vector<T> >, int iteration) {
std::cout << "vector specialization" << std::endl;
}
template <class T>
void sample_impl(Tag<T>, int iteration) {
std::cout << "general" << std::endl;
}
};
int main() {
ConfIntParamStat<const std::vector<int> > cips;
cips.sample(1);
}
Another way to approach this is composition.
The act of adding a sample can be thought of as a component of the implementation of the class. If we remove the implementation of adding a sample into this template class, we can then partially specialise only this discrete component.
For example:
#include <vector>
//
// default implementation of the sample component
//
template<class Outer>
struct implements_sample
{
using sample_implementation = implements_sample;
// implements one function
void sample(int iteration) {
// default actions
auto self = static_cast<Outer*>(this);
// do something with self
// e.g. self->_samples.insert(self->_samples.end(), iteration);
}
};
// refactor the container to be composed of component(s)
template<typename ContainerType>
class ConfIntParamStat
: private implements_sample<ConfIntParamStat<ContainerType>>
{
using this_class = ConfIntParamStat<ContainerType>;
public:
// I have added a public interface
void activate_sample(int i) { sample(i); }
// here we give the components rights over this class
private:
friend implements_sample<this_class>;
using this_class::sample_implementation::sample;
ContainerType _samples;
};
//
// now specialise the sample function component for std::vector
//
template<class T, class A>
struct implements_sample<ConfIntParamStat<std::vector<T, A>>>
{
using sample_implementation = implements_sample;
void sample(int iteration) {
auto self = static_cast<ConfIntParamStat<std::vector<T, A>>*>(this);
// do something with self
self->_samples.push_back(iteration);
}
};
int main()
{
ConfIntParamStat< std::vector<int> > cip;
cip.activate_sample(1);
cip.activate_sample(2);
}
basicly what i want to do is written in code. so , is there a way with templates or with something else get outer class name in global function ? is there a way to get this code work?
#include <iostream>
class A
{
public:
enum class B
{
val1,
val2
};
typedef B InnerEnum;
static void f(InnerEnum val)
{
std::cout << static_cast<int>(val);
}
};
template <typename T1>
void f(typename T1::InnerEnum val)
{
T1::f(val);
}
int main()
{
A::InnerEnum v = A::InnerEnum::val1;
f(v);
return 0;
}
You may create trait for that and manually feed it:
template <typename T>
struct outer_class;
template <>
struct outer_class<A::B> { using type = A;};
And then
template <typename E>
void f(E val)
{
using T = typename outer_class<E>::type;
T::f(val);
}
I have something working but it seems awfully verbose.
#include <array>
#include <iostream>
#include <type_traits>
using DataArrayShort = std::array<unsigned char, 4>;
using DataArrayLong = std::array<unsigned char, 11>;
// Two base classes the later template stuff should choose between
class Short
{
public:
Short(const DataArrayShort & data) { /* do some init */}
};
class Long
{
public:
Long(const DataArrayLong & data) { /* do some init */}
};
// Concrete derived of the two bases
class S1 : public Short
{
public:
using Short::Short;
operator std::string() { return "S1!";}
};
class S2 : public Short
{
public:
using Short::Short;
operator std::string() { return "S2!";}
};
class L1 : public Long
{
public:
using Long::Long;
operator std::string() { return "L1!";}
};
class L2 : public Long
{
public:
using Long::Long;
operator std::string() { return "L2!";}
};
// Variables that will be modified by parsing other things before calling parse<>()
bool shortDataSet = false;
bool longDataSet = false;
DataArrayShort shortData;
DataArrayLong longData;
// Begin overly verbose template stuff
template<bool IsShort, bool IsLong>
bool getFlag();
template<>
bool getFlag<true, false>()
{
return shortDataSet;
}
template<>
bool getFlag<false, true>()
{
return longDataSet;
}
template<bool IsShort, bool IsLong>
struct RetType
{};
template<>
struct RetType<true, false>
{
typedef DataArrayShort & type;
};
template<>
struct RetType<false, true>
{
typedef DataArrayLong & type;
};
template<bool IsShort, bool IsLong>
typename RetType<IsShort, IsLong>::type getData();
template<>
DataArrayShort & getData<true, false>()
{
return shortData;
}
template<>
DataArrayLong & getData<false, true>()
{
return longData;
}
template<typename T>
inline std::string parse()
{
// First test if I can create the type with initialized data
if (getFlag<std::is_base_of<Short, T>::value, std::is_base_of<Long, T>::value>())
{
// If it's initialized, Then create it with the correct array
T t(getData<std::is_base_of<Short, T>::value, std::is_base_of<Long, T>::value>());
return t;
}
else
{
return "with uninitialized data";
}
}
// End overly verbose template stuff
int main(int argc, const char * argv[])
{
// Something things that may or may not set shortDataSet and longDataSet and give shortData and longData values
std::cout << parse<S1>() << std::endl;
shortDataSet = true;
std::cout << parse<S1>() << std::endl;
std::cout << parse<L2>() << std::endl;
longDataSet = true;
std::cout << parse<L2>() << std::endl;
}
The syntax that's important to me is parse(). Within parse, I want to make sure I route to the correct flag and data to instantiate ConcreteType with.
I'm starting to think I can't use a function template to do what I want - I'm better off using a class template with static function members.
Using std::is_base_of seems clumsy - can I use built-in inheritance with overloads rather than is_base_of with overloads based on Short and Long?
RetType seems unnecessary but there seemed to be no other way to declare getData().
Part of the difficulty is that I need to determine the data to initialize t with before instantiating it.
I don't like the separate template bools for IsShort and IsLong - it won't scale.
What can I do to tighten this up?
You should just forward to a dispatcher that is SFINAE-enabled. Start with an inheritance tree:
template <int I> struct chooser : chooser<I-1> { };
template <> struct chooser<0> { };
Forward to it:
template <typename T>
std::string parse() { return parse_impl<T>(chooser<2>{}); }
And write your cases:
template <typename T,
typename = std::enable_if_t<std::is_base_of<Short, T>::value>
>
std::string parse_impl(chooser<2> ) { // (1)
// we're a Short!
if (shortDataSet) {
return T{shortData};
}
else {
return "with uninitialized data";
}
}
template <typename T,
typename = std::enable_if_t<std::is_base_of<Long, T>::value>
>
std::string parse_impl(chooser<1> ) { // (2)
// we're a Long!
if (longDataSet) {
return T{longData};
}
else {
return "with uninitialized data";
}
}
template <typename >
std::string parse_impl(chooser<0> ) { // (3)
// base case
return "with uninitialized data";
}
If T inherits from Short, (1) is called. Else, if it inherits from Long, (2) is called. Else, (3) is called. This is a handy way to do SFINAE on multiple potentially-overlapping criteria (since you can, after all, inherit from both Short and Long right?)
A little bit of refactoring goes a long way:
template<class T, bool IsShort = std::is_base_of<Short, T>::value,
bool IsLong = std::is_base_of<Long, T>::value>
struct data_traits { };
template<class T>
struct data_traits<T, true, false> {
static bool getFlag() { return shortDataSet; }
static DataArrayShort & getData() { return shortData; }
};
template<class T>
struct data_traits<T, false, true> {
static bool getFlag() { return longDataSet; }
static DataArrayLong & getData() { return longData; }
};
template<typename T>
inline std::string parse()
{
using traits = data_traits<T>;
// First test if I can create the type with initialized data
if (traits::getFlag())
{
// If it's initialized, Then create it with the correct array
T t(traits::getData());
return t;
}
else
{
return "with uninitialized data";
}
}
I can suggest to use traits technique, like other answer. But my solution is better in the way that it allows scability of this solution, I mean no more true, false, ... flags in your code;)
So starting from this comment:
// Variables that will be modified by parsing other things before calling parse<>()
Change your code to more scalable version.
First connect base types with data types:
template <typename BaseType>
class BaseDataTypeTraits;
template <> struct BaseDataTypeTraits<Short>
{
typedef DataArrayShort DataType;
};
template <> struct BaseDataTypeTraits<Long>
{
typedef DataArrayLong DataType;
};
Then define your base type traits:
template <typename BaseType>
struct BaseParseTypeTraits
{
static bool dataSet;
typedef typename BaseDataTypeTraits<BaseType>::DataType DataType;
static DataType data;
};
template <typename BaseType>
bool BaseParseTypeTraits<BaseType>::dataSet = false;
template <typename BaseType>
typename BaseParseTypeTraits<BaseType>::DataType BaseParseTypeTraits<BaseType>::data;
And parse traits for each specific base type:
template <typename T, typename EnableIf = void>
class ParseTypeTraits;
template <typename T>
class ParseTypeTraits<T, typename std::enable_if<std::is_base_of<Short, T>::value>::type>
: public BaseParseTypeTraits<Short>
{};
template <typename T>
class ParseTypeTraits<T, typename std::enable_if<std::is_base_of<Long, T>::value>::type>
: public BaseParseTypeTraits<Long>
{};
And your parse is then almost identical to other "traits" answer:
template<typename T>
inline std::string parse()
{
typedef ParseTypeTraits<T> TTraits;
// First test if I can create the type with initialized data
if (TTraits::dataSet)
{
// If it's initialized, Then create it with the correct array
T t(TTraits::data);
return t;
}
else
{
return "with uninitialized data";
}
}
int main(int argc, const char * argv[])
{
// Something things that may or may not set shortDataSet and longDataSet and give shortData and longData values
std::cout << parse<S1>() << std::endl;
BaseParseTypeTraits<Short>::dataSet = true;
std::cout << parse<S1>() << std::endl;
std::cout << parse<L2>() << std::endl;
BaseParseTypeTraits<Long>::dataSet = true;
std::cout << parse<L2>() << std::endl;
}
Working example: ideone
[UPDATE]
In this example code I also added what is required to add new base and data type.
I mean you have this:
using DataArrayNew = std::array<unsigned char, 200>;
class New
{
public:
New(const DataArrayNew & data) { /* do some init */}
};
class N1 : public New
{
public:
using New::New;
operator std::string() { return "N1!";}
};
And to make these types be supported by your parse - you need only these two specialization:
template <> struct BaseDataTypeTraits<New>
{
typedef DataArrayNew DataType;
};
template <typename T>
class ParseTypeTraits<T, typename std::enable_if<std::is_base_of<New, T>::value>::type>
: public BaseParseTypeTraits<New>
{};
This can be enclosed in a macro:
#define DEFINE_PARSE_TRAITS_TYPE(BaseTypeParam, DataTypeParam) \
template <> struct BaseDataTypeTraits<BaseTypeParam> \
{ \
typedef DataTypeParam DataType; \
}; \
template <typename T> \
class ParseTypeTraits<T, \
typename std::enable_if< \
std::is_base_of<BaseTypeParam, T>::value>::type> \
: public BaseParseTypeTraits<BaseTypeParam> \
{}
So support for new types is as simple as this:
DEFINE_PARSE_TRAITS_TYPE(New, DataArrayNew);
The more simplification can be achieved when we can require that base type has its datatype defined within its class definition - like here:
class New
{
public:
typedef DataArrayNew DataType;
New(const DataArrayNew & data) { /* do some init */}
};
Then we can have generic BaseDataTypeTraits definition:
template <typename BaseType>
struct BaseDataTypeTraits
{
typedef typename BaseType::DataType DataType;
};
So for new type - you only require to add specialization for DataTypeTraits:
template <typename T>
class ParseTypeTraits<T, typename std::enable_if<std::is_base_of<New, T>::value>::type>
: public BaseParseTypeTraits<New>
{};
I am trying to use boost fusion for one of my projects and I an figuring out how to get type names and variable names for structures and classes.
#include <typeinfo>
#include <string>
#include <iostream>
#include <boost/fusion/include/sequence.hpp>
#include <boost/fusion/include/algorithm.hpp>
#include <boost/fusion/include/vector.hpp>
#include <boost/fusion/include/adapt_struct.hpp>
#include <boost/fusion/include/adapt_adt.hpp>
#include <boost/lexical_cast.hpp>
using namespace boost::fusion;
struct Foo
{
int integer_value;
bool boolean_value;
};
class Bar
{
int integer_value;
bool boolean_value;
public:
Bar(int i_val, bool b_val):integer_value(i_val),boolean_value(b_val) {}
int get_integer_value() const { return integer_value; }
void set_integer_value(int i_val) { integer_value = i_val; }
bool get_boolean_value() const { return boolean_value; }
void set_boolean_value(bool b_val) { boolean_value = b_val; }
};
BOOST_FUSION_ADAPT_STRUCT(
Foo,
(int, integer_value)
(bool, boolean_value)
)
BOOST_FUSION_ADAPT_ADT(
Bar,
(int, int, obj.get_integer_value() , obj.set_integer_value(val))
(bool, bool, obj.get_boolean_value(), obj.set_boolean_value(val))
)
struct DisplayMembers
{
template <typename T>
void operator()(T& t) const {
std::cout << typeid(t).name() << " : " << boost::lexical_cast<std::string>(t) << std::endl;
}
};
int main(int argc, char *argv[])
{
struct Foo f = { 33, false};
for_each(f, DisplayMembers());
Bar b(34,true);
for_each(b, DisplayMembers());
return 0;
}
In the above example the result is
int : 33
bool : 0
struct boost::fusion::extension::adt_attribute_proxy<class Bar,0,0> : 34
struct boost::fusion::extension::adt_attribute_proxy<class Bar,1,0> : 1
I want the result as
int : integer_value : 33
bool : boolean_value : 0
int : integer_value : 34
bool : boolean_value : 1
I distilled the answer by sehe into something much simpler, provided you are using C++14
#include <iostream>
#include <boost/fusion/include/algorithm.hpp>
#include <boost/fusion/adapted/struct/adapt_struct.hpp>
#include <boost/fusion/include/adapt_struct.hpp>
#include <boost/mpl/range_c.hpp>
struct MyStruct {
std::string foo;
double bar;
};
BOOST_FUSION_ADAPT_STRUCT(MyStruct,
foo,
bar)
namespace fuz = boost::fusion;
namespace mpl = boost::mpl;
int main(int argc, char* argv[]) {
MyStruct dummy{"yo",3.14};
fuz::for_each(mpl::range_c<
unsigned, 0, fuz::result_of::size<MyStruct>::value>(),
[&](auto index){
std::cout << "Name: "
<< fuz::extension::struct_member_name<MyStruct,index>::call()
<< " Value: "
<< fuz::at_c<index>(dummy) << std::endl;
});
}
Outputs:
Name: foo Value: yo
Name: bar Value: 3.14
See it live on coliru
There's boost::fusion::extension::struct_member_name<S, N::value> to access the names.
Here's a generic fusion object visitor that I use:
namespace visitor {
template <typename Flavour, typename T> struct VisitorApplication;
namespace detail
{
template <typename V, typename Enable = void>
struct is_vector : boost::mpl::false_ { };
template <typename T>
struct is_vector<std::vector<T>, void> : boost::mpl::true_ { };
namespace iteration
{
// Iteration over a sequence
template <typename FusionVisitorConcept, typename S, typename N>
struct members_impl
{
// Type of the current member
typedef typename boost::fusion::result_of::value_at<S, N>::type current_t;
typedef typename boost::mpl::next<N>::type next_t;
typedef boost::fusion::extension::struct_member_name<S, N::value> name_t;
static inline void handle(FusionVisitorConcept& visitor, const S& s)
{
visitor.start_member(name_t::call());
VisitorApplication<FusionVisitorConcept, current_t>::handle(visitor, boost::fusion::at<N>(s));
visitor.finish_member(name_t::call());
members_impl<FusionVisitorConcept, S, next_t>::handle(visitor, s);
}
};
// End condition of sequence iteration
template <typename FusionVisitorConcept, typename S>
struct members_impl<FusionVisitorConcept, S, typename boost::fusion::result_of::size<S>::type>
{
static inline void handle(FusionVisitorConcept const&, const S&) { /*Nothing to do*/ }
};
// Iterate over struct/sequence. Base template
template <typename FusionVisitorConcept, typename S>
struct Struct : members_impl<FusionVisitorConcept, S, boost::mpl::int_<0>> {};
} // iteration
template <typename FusionVisitorConcept, typename T>
struct array_application
{
typedef array_application<FusionVisitorConcept, T> type;
typedef typename T::value_type value_type;
static inline void handle(FusionVisitorConcept& visitor, const T& t)
{
visitor.empty_array();
for (auto& el : t)
VisitorApplication<FusionVisitorConcept, value_type>::handle(visitor, el);
}
};
template <typename FusionVisitorConcept, typename T>
struct struct_application
{
typedef struct_application<FusionVisitorConcept, T> type;
static inline void handle(FusionVisitorConcept& visitor, const T& t)
{
visitor.empty_object();
iteration::Struct<FusionVisitorConcept, T>::handle(visitor, t);
}
};
template <typename FusionVisitorConcept, typename T, typename Enable = void>
struct value_application
{
typedef value_application<FusionVisitorConcept, T> type;
static inline void handle(FusionVisitorConcept& visitor, const T& t) {
visitor.value(t);
}
};
template <typename FusionVisitorConcept, typename T>
struct value_application<FusionVisitorConcept, boost::optional<T> >
{
typedef value_application<FusionVisitorConcept, boost::optional<T> > type;
static inline void handle(FusionVisitorConcept& visitor, const boost::optional<T>& t) {
if (t)
VisitorApplication<FusionVisitorConcept, T>::handle(visitor, *t);
else
; // perhaps some default action?
}
};
template <typename FusionVisitorConcept, typename T>
struct select_application
{
typedef
//typename boost::mpl::eval_if<boost::is_array<T>, boost::mpl::identity<array_application<FusionVisitorConcept, T>>,
typename boost::mpl::eval_if<detail::is_vector<T>, boost::mpl::identity<array_application <FusionVisitorConcept, T>>,
typename boost::mpl::eval_if<boost::fusion::traits::is_sequence<T>, boost::mpl::identity<struct_application<FusionVisitorConcept, T>>,
boost::mpl::identity<value_application<FusionVisitorConcept, T>>
> >::type type;
};
} // detail
template <typename FusionVisitorConcept, typename T>
struct VisitorApplication : public detail::select_application<FusionVisitorConcept, T>::type
{
};
}
template <typename FusionVisitorConcept, typename T>
void apply_fusion_visitor(FusionVisitorConcept& visitor, T const& o)
{
visitor::VisitorApplication<FusionVisitorConcept, T>::handle(visitor, o);
}
You can use it by supplying a visitor, e.g. for xml-like output:
struct DisplayMemberVisitor {
typedef std::string result_type;
DisplayMemberVisitor() { ss << std::boolalpha; }
std::string complete() { return ss.str(); }
void start_member (const char* name) {
ss << "<" << name << ">";
}
void finish_member(const char* name) {
ss << "</" << name << ">";
}
template <typename T> void value(T const& value) {
ss << value;
}
void empty_object() { }
void empty_array() { }
private:
std::stringstream ss;
};
See it Live On Coliru where (including some debug output) it prints:
<integer_value>33</integer_value><boolean_value>false</boolean_value><integer_value>34</integer_value><boolean_value>true</boolean_value>
Note that the ADT adaptation macro doesn't include a name (because none is available). You can probably quite easily make a macro FUSION_ADAPT_KEYD_ADT that also accepts a name and generates the relevant specializations of boost::fusion::extension::struct_member_name.
BONUS MATERIAL
Adding member name traits to ADT adapted members
Here's a simplistic approach that shows what little amount of work needs to be done.
#define MY_ADT_MEMBER_NAME(CLASSNAME, IDX, MEMBERNAME) \
namespace boost { namespace fusion { namespace extension { \
template <> struct struct_member_name<CLASSNAME, IDX> { typedef char const *type; static type call() { return #MEMBERNAME; } \
}; } } }
MY_ADT_MEMBER_NAME(Bar, 0, integer_value)
MY_ADT_MEMBER_NAME(Bar, 1, boolean_value)
This defines a macro to avoid most of the repetition. If you are a BOOST_PP whizkid you could somehow weave this into an adt_ex.hpp¹ header of sorts, so you could instead say:
BOOST_FUSION_ADAPT_ADT(Bar, // NOTE THIS PSEUDO-CODE
(integer_value, int, int, obj.get_integer_value(), obj.set_integer_value(val))
(boolean_value, bool, bool, obj.get_boolean_value(), obj.set_boolean_value(val)))
For now here's the ADT adapted trick Live On Coliru
¹ in case you're interested, here's a tarball of a prepared adt_ex tree (drop in alongsize adt.hpp): adt_ex.tgz as a starting point. It's just adt* but with macros and header guards renamed to adt_ex*