Convergence criteria for scipy.eigvalsh - python-2.7

I am using python (scipy) to compute eigenvalues of a symmetric real matrix. I am currently using the
scipy.linalg.eigvalsh
function to compute the eigenvalues (http://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigvalsh.html#scipy.linalg.eigvalsh). Looking at the source code for eigvalsh it appears that python makes a call to a fortran package. It also mentions, in the documentation, that an error will be thrown in the computation does not converge.
My question is: what is the convergence criteria? and can I change it (relatively easily)?
In my specific application I compute the eigenvalues of a sequence of matrices and I am noticing strong correlation between several of the eigenvalues. I want to know if the correlation is not perfect purely because of numerical reasons. If I can strengthen the convergence criteria then I can see if the dependence increases.

If I read the source code right, the LAPACK function dsyevr() is used. If I understand it right, fiddling with its parameters will not necessarily get you a higher accuracy. If you need high accuracy, you could try mpmath:
import numpy as np
from mpmath import mp
print("*** Scipy calculations: ***")
# Generate matrix:
n = 25
AA = np.random.randn(n, n)
HH = np.dot(AA, AA.T)
# Calculate eigenvalues and -vectors:
w, VV = eigh(HH) # eigvalsh() calls also eigh()
# Check Result:
HH2 = np.dot(VV, np.diag(w).dot(VV.T))
dHH = HH - HH2
elem_diff_max = np.abs(HH-HH2).max()
print("Elements differ by maximally {}".format(np.abs(dHH).max()))
print("Froebenius norm: {}".format(np.linalg.norm(HH-HH2,'fro')))
print("")
print("*** Mpmath calculations (very slow): *** ")
mp.dps = 40 # number of precision digits for mpmath
mHH = mp.matrix(HH) # take previous atrix
mw, mVV = mp.eigh(mHH) # and do eigem decomposition
# Check rsults:
mHH2 = mVV*mp.diag(mw)*mVV.T
mdHH = mHH-mHH2
#Curiously I could not figure out how to determine abs(mdHH).max(),
hmax = mp.mpf(0)
for r in mdHH.tolist():
for c in r:
mc = c if c >= 0 else -c
hmax = mc if mc > hmax else hmax
print("Elements differ by maximally {}".format(hmax))
print("Froebenius norm: {}".format(mp.norm(mdHH)))
# Sample output (differs because of randn()):
#
# *** Scipy calculations: ***
# Elements differ by maximally 6.48370246381e-14
# Froebenius norm: 4.90996840307e-13
# *** Mpmath calculations (very slow): ***
# Elements differ by maximally 5.510129769479472693603452518229276614775e-39
# Froebenius norm: 3.772588954060141733111171961647528674136e-38

Related

Using gradient descent to solve a nonlinear system

I have the following code, which uses gradient descent to find the global minimum of y = (x+5)^2:
cur_x = 3 # the algorithm starts at x=3
rate = 0.01 # learning rate
precision = 0.000001 # this tells us when to stop the algorithm
previous_step_size = 1
max_iters = 10000 # maximum number of iterations
iters = 0 # iteration counter
df = lambda x: 2*(x+5) # gradient of our function
while previous_step_size > precision and iters < max_iters:
prev_x = cur_x # store current x value in prev_x
cur_x = cur_x - rate * df(prev_x) # grad descent
previous_step_size = abs(cur_x - prev_x) # change in x
iters = iters+1 # iteration count
print("Iteration",iters,"\nX value is",cur_x) # print iterations
print("The local minimum occurs at", cur_x)
The procedure is fairly simple, and among the most intuitive and brief for solving such a problem (at least, that I'm aware of).
I'd now like to apply this to solving a system of nonlinear equations. Namely, I want to use this to solve the Time Difference of Arrival problem in three dimensions. That is, given the coordinates of 4 observers (or, in general, n+1 observers for an n dimensional solution), the velocity v of some signal, and the time of arrival at each observer, I want to reconstruct the source (determine it's coordinates [x,y,z].
I've already accomplished this using approximation search (see this excellent post on the matter: ), and I'd now like to try doing so with gradient descent (really, just as an interesting exercise). I know that the problem in two dimensions can be described by the following non-linear system:
sqrt{(x-x_1)^2+(y-y_1)^2}+s(t_2-t_1) = sqrt{(x-x_2)^2 + (y-y_2)^2}
sqrt{(x-x_2)^2+(y-y_2)^2}+s(t_3-t_2) = sqrt{(x-x_3)^2 + (y-y_3)^2}
sqrt{(x-x_3)^2+(y-y_3)^2}+s(t_1-t_3) = sqrt{(x-x_1)^2 + (y-y_1)^2}
I know that it can be done, however I cannot determine how.
How might I go about applying this to 3-dimensions, or some nonlinear system in general?

Plot variables out of differential equations system function

I have a 4-4 differential equations system in a function (subsystem4) and I solved it with odeint funtion. I managed to plot the results of the system. My problem is that I want to plot and some other equations (e.g. x,y,vcxdot...) which are included in the same function (subsystem4) but I get NameError: name 'vcxdot' is not defined. Also, I want to use some of these equations (not only the results of the equation's system) as inputs in a following differential equations system and plot all the equations in the same period of time (t). I have done this using Matlab-Simulink but it was much easier because of Simulink blocks. How can I have access to and plot all the equations of a function (subsystem4) and use them as input in a following system? I am new in python and I use Python 2.7.12. Thank you in advance!
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
def subsystem4(u,t):
added_mass_x = 0.03 # kg
added_mass_y = 0.04
mb = 0.3 # kg
m1 = mb-added_mass_x
m2 = mb-added_mass_y
l1 = 0.07 # m
l2 = 0.05 # m
J = 0.00050797 # kgm^2
Sa = 0.0110 # m^2
Cd = 2.44
Cl = 3.41
Kd = 0.000655 # kgm^2
r = 1000 # kg/m^3
f = 2 # Hz
c1 = 0.5*r*Sa*Cd
c2 = 0.5*r*Sa*Cl
c3 = 0.5*mb*(l1**2)
c4 = Kd/J
c5 = (1/(2*J))*(l1**2)*mb*l2
c6 = (1/(3*J))*(l1**3)*mb
vcx = u[0]
vcy = u[1]
psi = u[2]
wz = u[3]
x = 3 + 0.3*np.cos(t)
y = 0.5 + 0.3*np.sin(t)
xdot = -0.3*np.sin(t)
ydot = 0.3*np.cos(t)
xdotdot = -0.3*np.cos(t)
ydotdot = -0.3*np.sin(t)
vcx = xdot*np.cos(psi)-ydot*np.sin(psi)
vcy = ydot*np.cos(psi)+xdot*np.sin(psi)
psidot = wz
vcxdot = xdotdot*np.cos(psi)-xdot*np.sin(psi)*psidot-ydotdot*np.sin(psi)-ydot*np.cos(psi)*psidot
vcydot = ydotdot*np.cos(psi)-ydot*np.sin(psi)*psidot+xdotdot*np.sin(psi)+xdot*np.cos(psi)*psidot
g1 = -(m1/c3)*vcxdot+(m2/c3)*vcy*wz-(c1/c3)*vcx*np.sqrt((vcx**2)+(vcy**2))+(c2/c3)*vcy*np.sqrt((vcx**2)+(vcy**2))*np.arctan2(vcy,vcx)
g2 = (m2/c3)*vcydot+(m1/c3)*vcx*wz+(c1/c3)*vcy*np.sqrt((vcx**2)+(vcy**2))+(c2/c3)*vcx*np.sqrt((vcx**2)+(vcy**2))*np.arctan2(vcy,vcx)
A = 12*np.sin(2*np.pi*f*t+np.pi)
if A>=0.1:
wzdot = ((m1-m2)/J)*vcx*vcy-c4*wz**2*np.sign(wz)-c5*g2-c6*np.sqrt((g1**2)+(g2**2))
elif A<-0.1:
wzdot = ((m1-m2)/J)*vcx*vcy-c4*wz**2*np.sign(wz)-c5*g2+c6*np.sqrt((g1**2)+(g2**2))
else:
wzdot = ((m1-m2)/J)*vcx*vcy-c4*wz**2*np.sign(wz)-c5*g2
return [vcxdot,vcydot,psidot,wzdot]
u0 = [0,0,0,0]
t = np.linspace(0,15,1000)
u = odeint(subsystem4,u0,t)
vcx = u[:,0]
vcy = u[:,1]
psi = u[:,2]
wz = u[:,3]
plt.figure(1)
plt.subplot(211)
plt.plot(t,vcx,'r-',linewidth=2,label='vcx')
plt.plot(t,vcy,'b--',linewidth=2,label='vcy')
plt.plot(t,psi,'g:',linewidth=2,label='psi')
plt.plot(t,wz,'c',linewidth=2,label='wz')
plt.xlabel('time')
plt.legend()
plt.show()
To the immediate question of plotting the derivatives, you can get the velocities by directly calling the ODE function again on the solution,
u = odeint(subsystem4,u0,t)
udot = subsystem4(u.T,t)
and get the separate velocity arrays via
vcxdot,vcydot,psidot,wzdot = udot
In this case the function involves branching, which is not very friendly to vectorized calls of it. There are ways to vectorize branching, but the easiest work-around is to loop manually through the solution points, which is slower than a working vectorized implementation. This will again procude a list of tuples like odeint, so the result has to be transposed as a tuple of lists for "easy" assignment to the single array variables.
udot = [ subsystem4(uk, tk) for uk, tk in zip(u,t) ];
vcxdot,vcydot,psidot,wzdot = np.asarray(udot).T
This may appear to double somewhat the computation, but not really, as the solution points are usually interpolated from the internal step points of the solver. The evaluation of the ODE function during integration will usually happen at points that are different from the solution points.
For the other variables, extract the computation of position and velocities into functions to have the constant and composition in one place only:
def xy_pos(t): return 3 + 0.3*np.cos(t), 0.5 + 0.3*np.sin(t)
def xy_vel(t): return -0.3*np.sin(t), 0.3*np.cos(t)
def xy_acc(t): return -0.3*np.cos(t), -0.3*np.sin(t)
or similar that you can then use both inside the ODE function and in preparing the plots.
What Simulink most likely does is to collect all the equations of all the blocks and form this into one big ODE system which is then solved for the whole state at once. You will need to implement something similar. One big state vector, and each subsystem knows its slice of the state resp. derivatives vector to get its specific state variables from and write the derivatives to. The computation of the derivatives can then use values communicated among the subsystems.
What you are trying to do, solving the subsystems separately, works only for resp. will likely result in a order 1 integration method. All higher order methods need to be able to simultaneously shift the state in some direction computed from previous stages of the method, and evaluate the whole system there.

How to calculate dice coefficient for measuring accuracy of image segmentation in python

I have an image of land cover and I segmented it using K-means clustering. Now I want to calculate the accuracy of my segmentation algorithm. I read somewhere that dice co-efficient is the substantive evaluation measure. But I am not sure how to calculate it.
I use Python 2.7
Are there any other effective evaluation methods? Please give a summary or a link to a source. Thank You!
Edits:
I used the following code for measuring the dice similarity for my original and the segmented image but it seems to take hours to calculate:
for i in xrange(0,7672320):
for j in xrange(0,3):
dice = np.sum([seg==gt])*2.0/(np.sum(seg)+np.sum(gt)) #seg is the segmented image and gt is the original image. Both are of same size
Please refer to Dice similarity coefficient at wiki
A sample code segment here for your reference. Please note that you need to replace k with your desired cluster since you are using k-means.
import numpy as np
k=1
# segmentation
seg = np.zeros((100,100), dtype='int')
seg[30:70, 30:70] = k
# ground truth
gt = np.zeros((100,100), dtype='int')
gt[30:70, 40:80] = k
dice = np.sum(seg[gt==k])*2.0 / (np.sum(seg) + np.sum(gt))
print 'Dice similarity score is {}'.format(dice)
If you are working with opencv you could use the following function:
import cv2
import numpy as np
#load images
y_pred = cv2.imread('predictions/image_001.png')
y_true = cv2.imread('ground_truth/image_001.png')
# Dice similarity function
def dice(pred, true, k = 1):
intersection = np.sum(pred[true==k]) * 2.0
dice = intersection / (np.sum(pred) + np.sum(true))
return dice
dice_score = dice(y_pred, y_true, k = 255) #255 in my case, can be 1
print ("Dice Similarity: {}".format(dice_score))
In case you want to evaluate with this metric within a deep learning model using tensorflow you can use the following:
def dice_coef(y_true, y_pred):
y_true_f = tf.reshape(tf.dtypes.cast(y_true, tf.float32), [-1])
y_pred_f = tf.reshape(tf.dtypes.cast(y_pred, tf.float32), [-1])
intersection = tf.reduce_sum(y_true_f * y_pred_f)
return (2. * intersection + 1.) / (tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + 1.)
This is an important clarification if what you're using has more than 2 classes (aka, a mask with 1 and 0).
If you are using multiple classes, make sure to specify that the prediction and ground truth also equal the value which you want. Otherwise you can end up getting DSC values greater than 1.
This is the extra ==k at the end of each [] statement:
import numpy as np
k=1
# segmentation
seg = np.zeros((100,100), dtype='int')
seg[30:70, 30:70] = k
# ground truth
gt = np.zeros((100,100), dtype='int')
gt[30:70, 40:80] = k
dice = np.sum(seg[gt==k]==k)*2.0 / (np.sum(seg[seg==k]==k) + np.sum(gt[gt==k]==k))
print 'Dice similarity score is {}'.format(dice)

Complex cross spectral density

mlab.csd from matplotlib: http://matplotlib.org/api/mlab_api.html#matplotlib.mlab.csd can be used to get real valued cross spectral density. If I want to get the phase information from the spectral density, I need a csd calculation which returns complex values. Is there one ?
This is discussed e.g. in this answer: https://stackoverflow.com/a/29306730/3920342
If you use csd of the mlab library you will get complex values so you can calculate phase angles (and the real valued coherence). In the following code s1 and and s2 contain the two signals (in time domain) to be correlated.
from matplotlib import mlab
# First create power sectral densities for normalization
(ps1, f) = mlab.psd(s1, Fs=1./dt, scale_by_freq=False)
(ps2, f) = mlab.psd(s2, Fs=1./dt, scale_by_freq=False)
plt.plot(f, ps1)
plt.plot(f, ps2)
# Then calculate cross spectral density
(csd, f) = mlab.csd(s1, s2, NFFT=256, Fs=1./dt,sides='default', scale_by_freq=False)
fig = plt.figure()
ax1 = fig.add_subplot(1, 2, 1)
# Normalize cross spectral absolute values by auto power spectral density
ax1.plot(f, np.absolute(csd)**2 / (ps1 * ps2))
ax2 = fig.add_subplot(1, 2, 2)
angle = np.angle(csd, deg=True)
angle[angle<-90] += 360
ax2.plot(f, angle)
# zoom in on frequency with maximum coherence
ax1.set_xlim(9, 11)
ax1.set_ylim(0, 1e-0)
ax1.set_title("Cross spectral density: Coherence")
ax2.set_xlim(9, 11)
ax2.set_ylim(0, 90)
ax2.set_title("Cross spectral density: Phase angle")
Here the real and imaginary(!) part of the cross spectral density:
This code is taken from the question How to use the cross-spectral density to calculate the phase shift of two related signals to create two signals s1 and s2:
"""
Compute the coherence of two signals
"""
import numpy as np
import matplotlib.pyplot as plt
# make a little extra space between the subplots
plt.subplots_adjust(wspace=0.5)
nfft = 256
dt = 0.01
t = np.arange(0, 30, dt)
nse1 = np.random.randn(len(t)) # white noise 1
nse2 = np.random.randn(len(t)) # white noise 2
r = np.exp(-t/0.05)
cnse1 = np.convolve(nse1, r, mode='same')*dt # colored noise 1
cnse2 = np.convolve(nse2, r, mode='same')*dt # colored noise 2
# two signals with a coherent part and a random part
s1 = 0.01*np.sin(2*np.pi*10*t) + cnse1
s2 = 0.01*np.sin(2*np.pi*10*t) + cnse2

Fourier coefficients for NFFT - non uniform fast Fourier transform?

I am trying to use the package pynfft in python 2.7 to do the non-uniform fast Fourier transform (nfft). I have learnt python for only two months, so I have some difficulties.
This is my code:
import numpy as np
from pynfft.nfft import NFFT
#loading data, 104 lines
t_diff, x_diff = np.loadtxt('data/analysis/amplitudes.dat', unpack = True)
N = [13,8]
M = 52
#fourier coefficients
f_hat = np.fft.fft(x_diff)/(2*M)
#instantiation
plan = NFFT(N,M)
#precomputation
x = t_diff
plan.x = x
plan.precompute()
# vector of non uniform samples
f = x_diff[0:M]
#execution
plan.f = f
plan.f_hat = f_hat
f = plan.trafo()
I am basically following the instructions I found in the pynfft tutorial (http://pythonhosted.org/pyNFFT/tutorial.html).
I need the nfft because the time intervals in which my data are taken are not constant (I mean, the first measure is taken at t, the second after dt, the third after dt+dt' with dt' different from dt and so on).
The pynfft package wants the vector of the fourier coefficients ("f_hat") before execution, so I calculated it using numpy.fft, but I am not sure this procedure is correct. Is there another way to do it (maybe with the nfft)?
I would like also to calculate the frquencies; I know that with numpy.fft there is a command: is ther anything like that also for pynfft? I did not find anything in the tutorial.
Thank you for any advice you can give me.
Here is a working example, taken from here:
First we define the function we want to reconstruct, which is the sum of four harmonics:
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(12345)
%pylab inline --no-import-all
# function we want to reconstruct
k=[1,5,10,30] # modulating coefficients
def myf(x,k):
return sum(np.sin(x*k0*(2*np.pi)) for k0 in k)
x=np.linspace(-0.5,0.5,1000) # 'continuous' time/spatial domain; -0.5<x<+0.5
y=myf(x,k) # 'true' underlying trigonometric function
fig=plt.figure(1,(20,5))
ax =fig.add_subplot(111)
ax.plot(x,y,'red')
ax.plot(x,y,'r.')
# we should sample at a rate of >2*~max(k)
M=256 # number of nodes
N=128 # number of Fourier coefficients
nodes =np.random.rand(M)-0.5 # non-uniform oversampling
values=myf(nodes,k) # nodes&values will be used below to reconstruct
# original function using the Solver
ax.plot(nodes,values,'bo')
ax.set_xlim(-0.5,+0.5)
The we initialize and run the Solver:
from pynfft import NFFT, Solver
f = np.empty(M, dtype=np.complex128)
f_hat = np.empty([N,N], dtype=np.complex128)
this_nfft = NFFT(N=[N,N], M=M)
this_nfft.x = np.array([[node_i,0.] for node_i in nodes])
this_nfft.precompute()
this_nfft.f = f
ret2=this_nfft.adjoint()
print this_nfft.M # number of nodes, complex typed
print this_nfft.N # number of Fourier coefficients, complex typed
#print this_nfft.x # nodes in [-0.5, 0.5), float typed
this_solver = Solver(this_nfft)
this_solver.y = values # '''right hand side, samples.'''
#this_solver.f_hat_iter = f_hat # assign arbitrary initial solution guess, default is 0
this_solver.before_loop() # initialize solver internals
while not np.all(this_solver.r_iter < 1e-2):
this_solver.loop_one_step()
Finally, we display the frequencies:
import matplotlib.pyplot as plt
fig=plt.figure(1,(20,5))
ax =fig.add_subplot(111)
foo=[ np.abs( this_solver.f_hat_iter[i][0])**2 for i in range(len(this_solver.f_hat_iter) ) ]
ax.plot(np.abs(np.arange(-N/2,+N/2,1)),foo)
cheers