multiple buffers using threads - c++

I need some algorithm help with a multithreaded program I'm writing. It's basically the cp command in unix, but with a read thread and a write thread. I'm using semaphores for thread synchronization. I have structs for buffer and thread data defined as
struct bufType {
char buf[BUFFER_SIZE];
int numBytes;
};
struct threadData {
int fd;
bufType buf;
};
and a global array of bufType. Code for my main is
int main(int argc, const char * argv[])
{
int in, out;
pthread_t Producer, Consumer;
threadData producerData, consumerData;
if (argc != 3)
{
cout << "Error: incorrect number of params" << endl;
exit(0);
}
if ((in = open(argv[1], O_RDONLY, 0666)) == -1)
{
cout << "Error: cannot open input file" << endl;
exit(0);
}
if ((out = open(argv[2], O_WRONLY | O_CREAT, 0666)) == -1)
{
cout << "Cannot create output file" << endl;
exit(0);
}
sem_init(&sem_empty, 0, NUM_BUFFERS);
sem_init(&sem_full, 0, 0);
pthread_create (&Producer, NULL, read_thread, (void *) &producerData);
pthread_create (&Consumer, NULL, write_thread, (void *) &consumerData);
pthread_join(Producer, NULL);
pthread_join(Consumer, NULL);
return 0;
}
and read and write threads:
void *read_thread(void *data)
{
threadData *thread_data;
thread_data = (threadData *) data;
while((thread_data->buf.numBytes = slow_read(thread_data->fd, thread_data->buf.buf, BUFFER_SIZE)) != 0)
{
sem_post(&sem_full);
sem_wait(&sem_empty);
}
pthread_exit(0);
}
void *write_thread(void *data)
{
threadData *thread_data;
thread_data = (threadData *) data;
sem_wait(&sem_full);
slow_write(thread_data->fd, thread_data->buf.buf, thread_data->buf.numBytes);
sem_post(&sem_empty);
pthread_exit(0);
}
So my issue is in what to assign to my threadData variables in main, and my semaphore logic in the read and write threads. I appreciate any help you're able to give

Being a windows guy who does not use file descriptors I might be wrong with the in's and out's but I think this needs to be done in your main in order to setup the threadData structures.
producerData.fd = in;
consumerData.fd = out;
Then declare ONE SINGLE object of type bufType for both structures. Change for example the definition of threadData to
struct threadData {
int fd;
bufType* buf;
};
and in your Main, you write
bufType buffer;
producerData.buf = &buffer;
consumerData.buf = &buffer;
Then both threads will use a common buffer. Otherwise you would be writing to the producerData buffer, but the consumerData buffer will stay empty (and this is where your writer thread is looking for data)
Then you need to change your signalling logic. Right now your program cannot accept input that exceeds BUFFER_SIZE, because your write thread will only write once. There needs to be a loop around it. And then you need some mechanism that signals the writer thread that no more data will be sent. For example you could do this
void *read_thread(void *data)
{
threadData *thread_data;
thread_data = (threadData *) data;
while((thread_data->buf->numBytes = slow_read(thread_data->fd, thread_data->buf->buf, BUFFER_SIZE)) > 0)
{
sem_post(&sem_full);
sem_wait(&sem_empty);
}
sem_post(&sem_full); // Note that thread_data->buf->numBytes <= 0 now
pthread_exit(0);
}
void *write_thread(void *data)
{
threadData *thread_data;
thread_data = (threadData *) data;
sem_wait(&sem_full);
while (thread_data->buf->numBytes > 0)
{
slow_write(thread_data->fd, thread_data->buf->buf, thread_data->buf->numBytes);
sem_post(&sem_empty);
sem_wait(&sem_full);
}
pthread_exit(0);
}
Hope there are no more errors, did not test solution. But the concept should be what you were asking for.

You could use a common buffer pool, either a circular array or a linked lists. Here is a link to a zip of a Windows example that is similar to what you're asking, using linked lists as part of a inter-thread messaging system to buffer data. Other than the creation of the mutexes, semaphores, and the write thread, the functions are small and simple. mtcopy.zip .

Related

Using pthreads in C++

I need to use pthreads in C++ but I can't use the function pthread_create, it shows me an error. Also, I need to pass multiple parameters to a method:
void Read(int socks, int client) {
while (1) {
int n;
char buffer1[256];
bzero(buffer1, 256);
n = read(socks, buffer1, 255);
if (n < 0) {
perror("ERROR leyendo el socket");
exit(1);
}
cout << "Mensaje de cliente " << client << ":" << buffer1 << endl;
Jsons json1;
json1.parseJson(buffer1);
writeMsg(socks, "hola\n");
}
}
void ThreadServer::Thread(int sock, int client) {
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_t tid;
pthread_create(&tid,&attr,Read);
}
If I understand you correctly, you want to send multiple parameters to a thread. The thread functions for pthread take a single void *.
void threadfn(void *data);
you just need to create a data structure to hold your parameters
struct threadData
{
int param1;
int param2;
};
declare your struct and assign parameter values. When you call pthread_create, pass the struct pointer.
struct threadData data = {1,2};
pthread_create(&tid, &attr, Read, &data);
when you get the pointer in read function, cast and use it to extract parameters.
void Read( void * thrData)
{
struct threadData *myParams = (struct threadData*)thrData;
.
.
.

How to pass struct to a new thread (C++)

So, I am writing a small winsock app and I need to make a multi-client server.
I decided to use threads for every new connection, the problem is that I don't know how to pass multiple data to a thread, so I use struct.
Struct:
typedef struct s_par {
char lttr;
SOCKET clientSocket;
} par;
_stdcall:
unsigned __stdcall ClientSession(void *data) {
par param = data;
char ch = param.lttr;
SOCKET clntSocket = param.clientSocket;
// ..working with client
}
Main:
int main() {
unsigned seed = time (0);
srand(seed);
/*
..........
*/
SOCKET clientSockets[nMaxClients-1];
char ch = 'a' + rand()%26;
while(true) {
cout << "Waiting for clients(MAX " << nMaxClients << "." << endl;
while ((clientSockets[nClient] = accept(soketas, NULL, NULL))&&(nClient < nMaxClients)) {
par param;
// Create a new thread for the accepted client (also pass the accepted client socket).
if(clientSockets[nClient] == INVALID_SOCKET) {
cout << "bla bla" << endl;
exit(1);
}
cout << "Succesfull connection." << endl;
param.clientSocket = clientSockets[nClient];
param.lttr = ch;
unsigned threadID;
HANDLE hThread = (HANDLE)_beginthreadex(NULL, 0, &ClientSession, &param, 0, &threadID);
nClient++;
}
The problem is that I get errors with data type conversion. Maybe someone could suggest an easy fix with passing this struct to a thread?
With each round of your while-loop you're doing two ill-advised activites:
Passing the address of an automatic variable that will be destroyed with each cycle of the loop.
Leaking a thread HANDLE returned from _beginthreadex
Neither of those is good. Ideally your thread proc should look something like this:
unsigned __stdcall ClientSession(void *data)
{
par * param = reinterpret_cast<par*>(data);
char ch = param->lttr;
SOCKET clntSocket = param->clientSocket;
// ..working with client
delete param;
return 0U;
}
And the caller side should do something like this:
par *param = new par;
param->clientSocket = clientSockets[nClient];
param->lttr = ch;
...
HANDLE hThread = (HANDLE)_beginthreadex(NULL, 0, &ClientSession, param, 0, &threadID);
if (hThread != NULL)
CloseHandle(hThread);
else
delete param; // probably report error here as well
That should be enough to get you going. I would advise you may wish to take some time to learn about the C++11 Threading Model. It makes much of this considerably more elegant (and portable!).
Best of luck.

Is this piece of code correct?

I compiled it on Linux with: g++ test.c -o test
I rewritten the original example.
Now made the first process to wait 2 seconds, (so that process2 could write on the shared memory), then I made process1 to read from that memory. Is this test correct?
Secondo question: where should I put:
shmdt(tests[0]); // or 1
shmctl(statesid, IPC_RMID, 0);
//Global scope
char *state[2];
//...
//...
struct teststruct {
int stateid;
teststruct *next;
//other things
};
void write(teststruct &t, char* what)
{
strcpy(state[t.next->stateid], what);
printf("\n\nI am (%d), I wrote on: %d", t.stateid, t.next->stateid);
}
void read(teststruct &t)
{
printf("\n\nI am (%d), I read: **%s**", t.stateid, state[t.stateid]);
}
int main() {
key_t key;
if ((key = ftok(".", 'a')) == -1) {
perror("ftok");
exit(1);
}
int statesid;
if ((statesid = shmget(key, sizeof(char*)*50, 0600 | IPC_CREAT )) == -1) {
perror("shmget error");
exit(1);
}
state[0] = (char*)shmat(statesid, NULL, 0);
state[1] = (char*)shmat(statesid, NULL, 0);
teststruct tests[2];
tests[0].stateid = 0;
tests[0].next = &tests[1];
tests[1].stateid = 1;
tests[1].next = &tests[0];
int t0, t1;
switch (t0 = fork()) {
case (0):
sleep(2);
read(tests[0]);
exit(0);
case (-1):
printf("\nError!");
exit(-1);
default:
wait();
}
switch (t1 = fork()) {
case (0):
write(tests[1], "1 write on 0 in theory.");
exit(0);
case (-1):
printf("\nError!");
exit(-1);
default:
wait();
}
return 0;
}
In particular I am asking if "state" is really shared between the two process, and If what I've done is a good way to do that.
My goal is to make char *state[2] shared (reading/modifying) between the two processes after fork.
You don't need to call shmat() twice. You've only allocated enough space for two pointers, so you can't communicate much between the two processes. And you can't rely on being able to copy a pointer to memory in the first process into shared memory and then have the second process read and use it. The address may be valid in the first process and not in the second; it may well point at completely different data in the second process (dynamic memory allocation in particular could screw this up). You can only rely on the contents of the shared memory being the same in both processes. You should allocate enough shared memory to hold the shared data.
However, with that said, the two processes should be sharing that small piece of shared memory, and in both processes, state[0] and state[1] will point at the shared memory and you should be able to communicate between the two by writing in the shared memory. Note that after forking, if either process changes the value stored in its state[0] or state[1], the other process will not see that change — the other process can only see what changes in the shared memory those pointers point to.
Of course, you've not set up any synchronization mechanism, so the access will likely be chaotic.
How can I modify my code just to make it works as intended (without considering synchronization issues)?
It isn't entirely clear how it is intended to work, which complicates answering the question. However, if you want (for sake of example) the child process to write a word to the shared memory and the parent process to read the word from shared memory, then you allocate enough shared memory for the biggest word you're willing to process, then arrange for the child to copy a word from its per-process memory into the shared memory (and notify the parent that it has done so), and then the parent can copy or read the word from shared memory and compare it with data from its per-process memory.
Because you have a parent-child process which are forks of the same process, you will find that the two processes share a lot of the same memory addresses containing the same information. This is, however, coincidental. You can have unrelated processes connect to shared memory, and they need not have any addresses in common. Thus, it would be trivial to get spurious results from your current setup.
Working Code
For some definitions of 'working', the following C++ code does. The code is subtly C++; the code assumes struct teststruct declares type teststruct, and uses references as parameters.
Note that the (revised) code in the question has its wait() calls infelicitously placed.
shm2.cpp
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <unistd.h>
static char *state = 0;
struct teststruct
{
int stateid;
teststruct *next;
};
void sm_write(teststruct &t, char* /*what*/)
{
//strcpy(state[t.next->stateid], what);
printf("[%5d] I am (%d), I wrote on: %d\n", (int)getpid(), t.stateid, t.next->stateid);
}
void sm_read(teststruct &t)
{
printf("[%5d] I am (%d), I read: **%s**\n", (int)getpid(), t.stateid, state);
}
int main(void)
{
key_t key;
if ((key = ftok(".", 'a')) == -1) {
perror("ftok");
exit(1);
}
int statesid;
if ((statesid = shmget(key, sizeof(char)*512, 0600 | IPC_CREAT )) == -1) {
perror("shmget error");
exit(1);
}
if ((state = (char*)shmat(statesid, NULL, 0)) == 0)
{
perror("shmat");
exit(1);
}
sprintf(state, "This is a string in shared memory %d", 919);
teststruct tests[2];
tests[0].stateid = 0;
tests[0].next = &tests[1];
tests[1].stateid = 0;
tests[1].next = &tests[0];
int t0, t1;
if ((t0 = fork()) < 0)
{
perror("fork-1");
exit(1);
}
else if (t0 == 0)
{
sm_read(tests[0]);
printf("[%5d] sleeping\n", (int)getpid());
sleep(2);
printf("[%5d] waking\n", (int)getpid());
sm_read(tests[0]);
exit(0);
}
else if ((t1 = fork()) < 0)
{
perror("fork-2");
exit(-1);
}
else if (t1 == 0)
{
printf("[%5d] sleeping\n", (int)getpid());
sleep(1);
printf("[%5d] waking\n", (int)getpid());
strcpy(state, "1 write on 0 in theory.");
sm_write(tests[1], state);
exit(0);
}
int corpse;
int status;
while ((corpse = wait(&status)) > 0)
printf("PID %5d died with status 0x%.4X\n", corpse, status);
return 0;
}
Example run
[20440] sleeping
[20440] waking
[20440] I am (0), I wrote on: 0
[20439] I am (0), I read: **This is a string in shared memory 919**
[20439] sleeping
[20439] waking
[20439] I am (0), I read: **1 write on 0 in theory.**
PID 20440 died with status 0x0000
PID 20439 died with status 0x0000
You have a problem with the size of the shared memory. In:
(statesid = shmget(key, sizeof(char*)*2, 0600 | IPC_CREAT )
you are just reserving space for 2 pointers to char. You need to allocate enough space for all your data, that based on the struct is kind of linked structure. The code could be something like the following, though the purpose of the fork() and shared memory is not very clear to me:
struct teststruct {
int stateid;
teststruct *next;
//other things
};
void dosomething(teststruct &t){
//forget about global space, you don't need it
}
int main() {
key_t key;
if ((key = ftok(".", 'a')) == -1) {
perror("ftok");
exit(1);
}
int statesid;
int size_struct = sizeof(teststruct)*2; //assuming you will have only 1 level of linking
if ((statesid = shmget(key, size_struct, 0600 | IPC_CREAT )) == -1) {
perror("shmget error");
exit(1);
}
//if you need to hold just one teststruct object data, you can do
teststruct* p_test_struct = (teststruct*)shmat(statesid, NULL, 0);
for (int i=0; i<2; i++){
*p_test_struct = tests[i]; //this actually writes tests[i] into shared mem
int t0, t1;
switch (t0 = fork()) {
case (0):
dosomething(*p_test_struct);
exit(0);
case (-1):
printf("\nError!");
exit(-1);
default:
wait();
}
}
return 0;
}
No, it does not. Because you are using fork (multiprocess) instead of threads (multithread). Memory zones are not shared into parent and child process. You will have the same value into it on the child but after that it will be independent to the another one.

share pointer between processes via shared-memory IPC

I'm trying to share a pointer of defined class between the parent and the forked child through shared memory.
so in parent's main i create the pointer
mydata *p;
Reader::GetInstance()->Read(p, i+1);
pid = fork();
if (pid == -1){
cout << "error on fork"<<endl;
}else if (pid == 0){
cout << "i will fork now" <<endl;
const char * path = "./mydatamanager";
execl (path, "-", (char *)0);
break;
}else {
writer(shmid, p);
}
writer contains this
void writer(int shmid , mydata * p)
{
void *shmaddr;
shmaddr = shmat(shmid, (void *)0, 0);
if((int)shmaddr == -1)
{
perror("Error in attach in writer");
exit(-1);
}
else
{
memcpy( shmaddr, p, sizeof(*p) );
}
}
and my data is
class mydara {
public:
int var1;
int var2;
int var3;
int var4;
int var5;
int var6;
char *var7;
mydata (int v2, int v3,char *v7, int v6){
var2 = v2;
var3 = v3;
var7 =new char[128];
strcpy(var7, v7);
var6 = v6;
var4 = 0;
var5 = 0;
}
};
and in the mydatamanager i get this pointer this way
void reader(int shmid, mydata *& p)
{
cout << "in reader" << endl;
void *shmaddr;
//sleep(3);
shmaddr = shmat(shmid, (void *)0, SHM_RDONLY|0644);
if((int)shmaddr == -1)
{
perror("Error in reader");
exit(-1);
}
else
{
cout << "in else "<< endl;
p = (mydata*) shmaddr;
cout <<"shared memory address is " <<shmaddr <<endl;
cout <<"var5 "<< p->var5<< endl;
cout <<"var2 "<< p->var2<< " match with "<<getpid() << "?" << endl;
cout <<"var3 "<< p->var3<< endl;
cout <<"var4 "<< p->var4<< endl;
cout <<"var7 "<< p->var7<< endl; // the
//shmdt(shmaddr);
}
}
and mydatamanager main :
int main()
{
cout << "in main" <<endl;
int shmid;
shmid = shmget(IPC_PRIVATE, 4096, IPC_CREAT|0644);
cout << "in advanced point" <<endl;
sleep(1);
mydata * p;
reader (shmid, p);
cout << p->var7 <<endl;
return 0;
}
the results are always 0.
how can i share this pointer through the parent and the child and where is the fault in my code?
Hi i had a IPC task some weeks ago and finally decided to use boost.
http://blog.wolfgang-vogl.com/?p=528
http://www.boost.org/doc/libs/1_36_0/doc/html/interprocess/synchronization_mechanisms.html#interprocess.synchronization_mechanisms.semaphores.semaphores_interprocess_semaphores
First of all, you are not synchronising anything. So how do you know which runs first, the reader or the writer. Memory is bound to be zero in a newly allocated block, so hence you get zero as a result.
Any shared memory must ensure that the reader doesn't read until the writer has completed (at least part of) the writing process, at the very least.
Beware of sharing classes - you must not use virtual functions, as that will almost certainly do something ohterthan what you expect (crash, most likely, but other options are available, none of them particularly pleasant)
The simplest way to handle your problem is to create a semaphore in the parent process before the fork, have the child process try to acquire it before the read (instead of doing a sleep) and the parent process release it after the write.
First, here's functions to create, destroy, and retreive the id of the semaphore:
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int create_semaphore(const char *path, char id, int count){
key_t k = ftok(path, id);
semid = semget(k, 1, IPC_CREAT | IPC_EXCL | 0600);
semctl(semid, 0, SET_VAL, count);
return semid;
}
int destroy_semaphore(int semid){
semctl(semid, 0, IPC_RMID, 0);
}
int get_semaphore(const char *path, char id){
key_t k = ftok(path, id);
semid = semget(k, 1, 0600);
return semid;
}
Now we need a function to acquire it, and another one to release it:
void acquire_semaphore(int semid){
sembuf op;
op.sem_num = O;
op.sem_op = -1;
op.sem_flg = 0;
semop(semid,&op,1);
}
void release_semaphore(int semid){
sembuf op;
op.sem_num = 0;
op.sem_op = 1;
op.sem_flg = 0;
semop(semid,&op,1);
}
With these boilerplate functions in place, you should be able to synchronize your processes.
So, you will need to provide a path and a unique id (in the form of a simple character) to create and identify your semaphore. If you already used ftok to create your shared memory id (shmid), you should understand the idea. Otherwise, just make sure that both values are the same within both processes.
In your writer code, put the following line:
semid = create_semaphore(argv[0], 'S', 0);
right before the pid = fork(); line, to create and acquire the semaphore at the same time.
Add the line:
release_semaphore(semid);
after the writer(shmid, mydata); instruction to release the semaphore. You will also need to declare semid somewhere in scope. I used the writer program path to create the semaphore, which is good practice to ensure that no other process has already used our path. The only catch is that you need to make sure that reader will use that same path. You can hardcode that value somewhere in reader's code, or better yet, pass it from writer in the execl parameters (left as an exercise).
Assuming that path is known in reader, all is left to do is to acquire the the semaphore likeso:
semid = get_semaphore(path, 'S');
acquire_semaphore(semid);
destroy_semaphore(semid);
before the line reader(shmid, mydata); in the main function of reader.
As other posts have said, sharing class instances through a shared memory segment is usually a very bad idea. It is much safer
to pass simple struct data, and reconstruct your object on the reader side (look up serialization and marshalling on the net for more information).
Ask if you have problems with this (untested) code.
Merry Christmas!

How to guarantee read() actually sends 100% of data sent by write() through named pipes

I've got the following two programs, one acting as a reader and the other as a writer. The writer seems to only send about 3/4 of the data correctly to be read by the reader. Is there any way to guarantee that all the data is being sent? I think I've got it set up so that it reads and writes reliably, but it still seems to miss 1/4 of the data.
Heres the source of the writer
#define pipe "/tmp/testPipe"
using namespace std;
queue<string> sproutFeed;
ssize_t r_write(int fd, char *buf, size_t size) {
char *bufp;
size_t bytestowrite;
ssize_t byteswritten;
size_t totalbytes;
for (bufp = buf, bytestowrite = size, totalbytes = 0;
bytestowrite > 0;
bufp += byteswritten, bytestowrite -= byteswritten) {
byteswritten = write(fd, bufp, bytestowrite);
if(errno == EPIPE)
{
signal(SIGPIPE,SIG_IGN);
}
if ((byteswritten) == -1 && (errno != EINTR))
return -1;
if (byteswritten == -1)
byteswritten = 0;
totalbytes += byteswritten;
}
return totalbytes;
}
void* sendData(void *thread_arg)
{
int fd, ret_val, count, numread;
string word;
char bufpipe[5];
ret_val = mkfifo(pipe, 0777); //make the sprout pipe
if (( ret_val == -1) && (errno != EEXIST))
{
perror("Error creating named pipe");
exit(1);
}
while(1)
{
if(!sproutFeed.empty())
{
string s;
s.clear();
s = sproutFeed.front();
int sizeOfData = s.length();
snprintf(bufpipe, 5, "%04d\0", sizeOfData);
char stringToSend[strlen(bufpipe) + sizeOfData +1];
bzero(stringToSend, sizeof(stringToSend));
strncpy(stringToSend,bufpipe, strlen(bufpipe));
strncat(stringToSend,s.c_str(),strlen(s.c_str()));
strncat(stringToSend, "\0", strlen("\0"));
int fullSize = strlen(stringToSend);
signal(SIGPIPE,SIG_IGN);
fd = open(pipe,O_WRONLY);
int numWrite = r_write(fd, stringToSend, strlen(stringToSend) );
cout << errno << endl;
if(errno == EPIPE)
{
signal(SIGPIPE,SIG_IGN);
}
if(numWrite != fullSize )
{
signal(SIGPIPE,SIG_IGN);
bzero(bufpipe, strlen(bufpipe));
bzero(stringToSend, strlen(stringToSend));
close(fd);
}
else
{
signal(SIGPIPE,SIG_IGN);
sproutFeed.pop();
close(fd);
bzero(bufpipe, strlen(bufpipe));
bzero(stringToSend, strlen(stringToSend));
}
}
else
{
if(usleep(.0002) == -1)
{
perror("sleeping error\n");
}
}
}
}
int main(int argc, char *argv[])
{
signal(SIGPIPE,SIG_IGN);
int x;
for(x = 0; x < 100; x++)
{
sproutFeed.push("All ships in the sea sink except for that blue one over there, that one never sinks. Most likley because it\'s blue and thats the mightiest colour of ship. Interesting huh?");
}
int rc, i , status;
pthread_t threads[1];
printf("Starting Threads...\n");
pthread_create(&threads[0], NULL, sendData, NULL);
rc = pthread_join(threads[0], (void **) &status);
}
Heres the source of the reader
#define pipe "/tmp/testPipe"
char dataString[50000];
using namespace std;
char *getSproutItem();
void* readItem(void *thread_arg)
{
while(1)
{
x++;
char *s = getSproutItem();
if(s != NULL)
{
cout << "READ IN: " << s << endl;
}
}
}
ssize_t r_read(int fd, char *buf, size_t size) {
ssize_t retval;
while (retval = read(fd, buf, size), retval == -1 && errno == EINTR) ;
return retval;
}
char * getSproutItem()
{
cout << "Getting item" << endl;
char stringSize[4];
bzero(stringSize, sizeof(stringSize));
int fd = open(pipe,O_RDONLY);
cout << "Reading" << endl;
int numread = r_read(fd,stringSize, sizeof(stringSize));
if(errno == EPIPE)
{
signal(SIGPIPE,SIG_IGN);
}
cout << "Read Complete" << endl;
if(numread > 1)
{
stringSize[numread] = '\0';
int length = atoi(stringSize);
char recievedString[length];
bzero(recievedString, sizeof(recievedString));
int numread1 = r_read(fd, recievedString, sizeof(recievedString));
if(errno == EPIPE)
{
signal(SIGPIPE,SIG_IGN);
}
if(numread1 > 1)
{
recievedString[numread1] = '\0';
cout << "DATA RECIEVED: " << recievedString << endl;
bzero(dataString, sizeof(dataString));
strncpy(dataString, recievedString, strlen(recievedString));
strncat(dataString, "\0", strlen("\0"));
close(fd);
return dataString;
}
else
{
return NULL;
}
}
else
{
return NULL;
}
close(fd);
}
int main(int argc, char *argv[])
{
int rc, i , status;
pthread_t threads[1];
printf("Starting Threads...\n");
pthread_create(&threads[0], NULL, readItem, NULL);
rc = pthread_join(threads[0], (void **) &status);
}
You are definitely using signals the wrong way. Threads are completely unnecessary here - at least in the code provided. String calculations are just weird. Get this book and do not touch the keyboard until you finished reading :)
The general method used to send data through named pipes is to tack on a header with the length of the payload. Then you read(fd, header_len); read(rd, data_len); Note the latter read() will need to be done in a loop until data_len is read or eof. Note also if you've multiple writers to a named pipe then the writes are atomic (as long as a reasonable size) I.E. multiple writers will not case partial messages in the kernel buffers.
It's difficult to say what is going on here. Maybe you are getting an error returned from one of your system calls? Are you sure that you are successfully sending all of the data?
You also appear to have some invalid code here:
int length = atoi(stringSize);
char recievedString[length];
This is a syntax error, since you cannot create an array on the stack using a non-constanct expression for the size. Maybe you are using different code in your real version?
Do you need to read the data in a loop? Sometimes a function will return a portion of the available data and require you to call it repeatedly until all of the data is gone.
Some system calls in Unix can also return EAGAIN if the system call is interrupted - you are not handling this case by the looks of things.
You are possibly getting bitten by POSIX thread signal handling semantics in your reader main thread.
The POSIX standard allows for a POSIX thread to receive the signal, not necessarily the thread you expect. Block signals where not wanted.
signal(SIG_PIPE,SIG_IGN) is your friend. Add one to reader main.
POSIX thread handling semantics, putting the POS into POSIX. ( but it does make it easier to implement POSIX threads.)
Examine the pipe in /tmp with ls ? is it not empty ?