Dear StackOverflow community,
I am trying to write code that accepts a "primefactorized" array, each element originally describing their final multiplicational product.
The code I'm trying to write then reads this array and turns it to the exponentiation of prime numbers, each index of the array corresponding to the next prime number, and each element on the index the power to which it must be raised. I believe I have done so, but I cannot for some reason get my IO working. For some reason when I switched the inner for-loops last incrementation part to an "i++" instead of the correct "j++", it would display the loop.
Relevant snippet
// Next stage: Take the array and turn in into the form described earlier
for(unsigned int i = 0; i < sizeof(result); i++)
{
temppower = result[i];
tempcounter = 1; // counter to control the loop.
for(unsigned int j = 0; i < sizeof(result)-1; j++)
{
if(result[j]+1 == temppower)
{
tempcounter++;
result[j+1] = 0;
}
}
result[i] = tempcounter;
}
for(unsigned int i = 0; i < sizeof(result); i++)
{
cout << result[i] << " ";
}
cout << endl;
Full code
#include <iostream>
#include <cmath>
#include <climits>
using namespace std;
#include "fact.h"
/** eartosthenes constructs an up-to-n primes array of length len .
* #param n call-by-value, top value for construction of primes.
* #param &len call-by-reference, the finished size of the array of primes.
* #return int* pointer to the first element of the array of primes.
* Description:
* The eartosthenes method of calculating primes are efficient for relative low primes (up to 10 million or so).
* You can read about the method at http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
* You can use wolfram-alpha https://www.wolframalpha.com/ and run Prime(start)...Prime(end) to get the primes
* between start and end, e.g. Prime(1)...Prime(10) yield {2,3,5,7,11,13,17,19,23,29}.
*/
int * eratosthenes(int n, int & len){
// computes all prime numbers up to n
// returns the prime numbers as an array
// the len parameter will be set to the length of the array
bool *isPrime=new bool [n+1]; // construct [n+1] booleans
len=0;
// initialize every value from 1..n to true.
for(int i=2; i<=n; i++){
isPrime[i]=true;
}
// now we'll start at 2, and for every number of multiplicity 2.
// e.g. 2*{1,2,3,4...n} is then set to false, as they are dividable by 2.
// then we increment to 3, during the same.
for(int i=2; i<=n; i++){
if(isPrime[i]){
len++; // for each such iteration, we increase our desired length.
for(int j=2*i; j<=n; j+=i){
isPrime[j]=false; // set every(n) multiplicity of 2 to false.
}
}
}
// having used erathosthenes formula, we now construct our array.
int *result=new int[len];
// now we need to return the primes-filled array.
for(int i=0, j=2; i<len; i++){
// if it's not a prime, then we spin the value up.
while(!isPrime[j]) j++;
// when the while-loop no longer hold, we'll have the iterations desired prime
// we then set it, and the for-loop will continue to the next.
result[i]=j++;
}
delete [] isPrime; // always delete what you have allocated with new.
// we say these allocation are on the heap or free store (c-syntax)
return result;
}
#include "fact.h"
factrep new_factrep()
{
factrep result;
result = new int[len];
return result;
}
factrep primfact(int n)
{
factrep result;
result = new int[len];
int m; // still to factorize number
int f; // current factor
int index = 0; // index of factrep array
int temppower = 0; // index for the power
int tempcounter = 0; // counter to help the power determine its size
m=n;
f=2;
// 0-initialize the result array
for(unsigned int i = 0; i < sizeof(result); i++)
{
result[i] = 0;
}
// continue until nothing to factorize
while(m != 1){
// while the factor divides m, go on
while(m % f == 0){
if(m!=1)
{
m=m/f;
result[index] = f;
index++;
}
else
{
result[index] = f;
break;
}
}
// increment factor
f++;
}
// Next stage: Take the array and turn in into the form described within
// the exercise handout,
for(unsigned int i = 0; i < sizeof(result); i++)
{
temppower = result[i];
tempcounter = 1; // counter to control the loop.
for(unsigned int j = 0; i < sizeof(result)-1; j++)
{
if(result[j]+1 == temppower)
{
tempcounter++;
result[j+1] = 0;
}
}
result[i] = tempcounter;
}
for(unsigned int i = 0; i < sizeof(result); i++)
{
cout << result[i] << " ";
}
cout << endl;
return result;
}
factrep mult(factrep f1, factrep f2)
{
factrep result;
result = new int[len];
for(int i = 0; i < len; i++)
{
result[i] = f1[i]+f2[i];
}
return result;
}
int getint(factrep f)
{
int result = 0;
// int *temparray = new int[len];
for(int i = 0; i < len; i++)
{
result *= pow(primes[i],f[i]);
}
return result;
}
// these are our global variables
// so in our header we called extern
// which basically tells c++, that we'll define them in another file.
int *primes;
int len;
int main(){
// construct our primes array with maximum integer value
primes=eratosthenes(sqrt(INT_MAX),len);
// len now contains the length of the primes.
// TEST VALUES
// these are our test values.
int n=60;
int m=25;
int l=640;
// first check for non-negative content
if ( n < 0 || m < 0 || l < 0){
cout << "values must be positive (n > 0)" << endl;
return 1;
}
// construct 3 prime-factorized arrays by the values (60,25,640)
factrep fn=primfact(n);
factrep fm=primfact(m);
factrep fl=primfact(l);
// Verify that these are indeed constructed with those values
cout << getint(fn) << " " << getint(fm) << " " << getint(fl) << endl;
// multiply: fn = fn*fm, fm = fl*fl, fl = fn*fm
// 1500 = 60*25, 409600 = 640*640, 614400000 = 1500*409600
fn=mult(fn,fm);
fm=mult(fl,fl);
fl=mult(fn,fm);
// Verify that our functions work as expected by printing out their values now.
cout << getint(fn) << " " << getint(fm) << " " << getint(fl) << endl;
/* Expected output:
60 25 640
1500 409600 614400000
*/
// and again, if we construct something on the heap/free-store we better delete it again
// otherwise we might have a memory-leak on our hands.
delete [] primes;
delete [] fn;
delete [] fm;
delete [] fl;
return 0;
}
Update
The error was pointed out to me: I had put an i variable reference within the inner-most loop instead of the j variable I was using. (facepalm).
In the meantime this realization quickly helped me to solve my original problem which I will paste below in case anyone might run into a similar problem (primes[] is an array of primes, one per element, established outside of the factrep functions)
for(unsigned int i = 0; i < sizeof(result); i++)
{
temppower = primes[i];
tempcounter = 0; // counter to control the loop.
for(unsigned int j = 0; j < sizeof(result); j++)
{
if(result[j] == temppower)
{
tempcounter++;
}
}
result[i] = tempcounter;
}
Line 116 : A loop is endless.
for(unsigned int j = 0; i < sizeof(result)-1; j++)
i never changes in the inner loop where j is increasing, thus preventing your program from advancing further and printing anything.
Related
I have a large array of numbers that range from 1-5. I need to get the total of each number in the array and and place it into another array, with the total of number of 1s in the first position of the array, total number of 2s in the second position, etc.
So if I had arr1[10] = {1,4,3,1,2,4,5,4,1,3}, I would want to get to arr2[5] = {3,1,2,3,1}.
However, with my current code, I get
1,0,0,1,0
Here is my code below:
n = 10
arr1[n] = {1,4,3,1,2,4,5,4,1,3}
arr2[5] = {0,0,0,0,0}
for (int i = 0; i < n; i++)
{
int rate = arr1[i];
if (arr2[i] == 0)
{
int count = 0;
if (rate == 1)
{
count += 1;
arr2[i] = count;
}
cout << count << endl;
}
}
Simply loop over the numbers in arr1 and increment the appropriate counter in arr2. Be aware that C arrays start at index 0 ;)
Only print the counts at the very end, once everything is tallied.
If you're allowed to use C++:
#include <vector>
#include <map>
#include <iostream>
using namespace std;
int main(void)
{
// Do count sort
// Init vector
vector<unsigned char> a = {1,5,3,4,2,2,4,5,1,1};
map<unsigned char, size_t> a_map;
// Populate map
for (size_t i = 0; i < a.size(); i++)
a_map[a[i]]++;
vector<unsigned char> b;
// Rebuild vector from map
for (map<unsigned char, size_t>::const_iterator ci = a_map.begin(); ci != a_map.end(); ci++)
{
for (size_t i = 0; i < ci->second; i++)
b.push_back(ci->first);
}
// Print sorted vector
for (size_t i = 0; i < b.size(); i++)
cout << static_cast<int>(b[i]) << endl;
return 0;
}
I am getting the error:
Invalid conversion from int to int*.
I have not created any int* (I think) and when I change the offending lines to be int*, There are no build errors but the program crashes upon launch.
Here is my code:
//Main:
int main(){
//Varibales:
Random randomInt;
clock_t start;
clock_t End;
double duration;
double clocksPerSec;
int result;
int arraySize;
//Repeat 100 times:
for(int i=1; i<=100; i++){
//Set array size:
arraySize = i*500;
//Create the array:
int testArray[arraySize];
//For the array size:
for(int j=0; j<arraySize; j++){
//Add random number to array:
testArray[j] = randomInt.randomInteger(1, 10000);
}
//Run the test:
start = clock();
result = algorithmTest(testArray[arraySize], arraySize);
End = clock();
//Calculate execution time:
duration = End - start;
clocksPerSec = duration/CLOCKS_PER_SEC;
//Display the result:
cout << "The median is: ";
cout << result << endl;
cout << "Exection time was: ";
cout << clocksPerSec;
cout << "s\n" << endl;
}
//Return 0:
return 0;
}
It seams to be throwing the error when i call algorithmTest(); Here it is:
//First Test:
int algorithmTest(int testArray[], int Size){
//Declare variables:
int k = Size/2;
int numSmaller;
int numEqual;
//For every element in the array:
for(int i=0; i<Size; i++){
//Set varibales to 0:
numSmaller = 0;
numEqual = 0;
//For every element in the array:
for(int j=0; j<Size; j++){
//If j is less than i:
if(testArray[j] < testArray[i]){
//Increment numSmaller:
numSmaller++;
//Else if j is equal to i:
}else if(testArray[j] == testArray[i]){
//Increment numEqual:
numEqual++;
}
}
//Determine if the median was found:
if(numSmaller < k && k <= (numSmaller + numEqual)){
//Retrun the medain:
return testArray[i];
}
}
//Return 0:
return 0;
}
result = algorithmTest(testArray[arraySize], arraySize);
should be
result = algorithmTest(testArray, arraySize);
Your function int algorithmTest(int testArray[], int Size) takes an int[] as first argument, while you pass a testArray[arraySize], where [i] operator means fetch the value at ith element of testArray, which is an int. Therefore you encounter that error.
In order to clarify something, the [...] in the line int testArray[arraySize]; is different from the [...] in the line result = algorithmTest(testArray[arraySize], arraySize);: first one is for indicating array's size, while the second one is for accessing the element.
Look at the definition of AlgorithmTest. You require an int[] (also known as int*) as first parameter, but when you call it you give it an actual int
i have an array full of values, the array can not contain any duplicate values. for any duplicate value add one to the value. here is the code i have so far, but im still getting duplicates. (randArray is where the values are located).
for (int i = 0; i < sizeof(randArray) - 1; i++) {
for (int j = sizeof(randArray); j == 0; j--) {
if (randArray[i] == randArray[j]) {
randArray[i] == randArray[i] + 1;
}
}
}
You have a typo when incrementing a duplicate:
randArray[i] = randArray[i] + 1; // not ==
Also, the increment might create another duplicate. If it's with an item that comes afterwards there's no problem. But as the array is not sorted, you might not catch such a new duplicate of a value already passed.
Therefore you might need several passes:
bool wasaninc;
do {
wasaninc=false;
for ...
for ...
... // if there is an increment, set wasaninc to true
} while (wasaninc);
Change randArray[i] == randArray[i] + 1; to randArray[i] = randArray[i] + 1;
for (int i = 0; i < sizeof(randArray) - 1; i++) {
for (int j = sizeof(randArray); j == 0; j--) {
if (randArray[i] == randArray[j]) {
randArray[i] = randArray[i] + 1;
}
}
}
Your problem is due to sizeof(randArray). This method doesn't return the number of elements that are in the array.
For example:
int array[5] = { 1, 2, 3, 4, 5};
sizeof(array); // -> returns 20, because of 5 * 4 bytes (integer = 4 bytes)
Instead of using this method you should actually use the number of elements in the array. You declared the size of the array already in the beginning. So it is clear how many elements can be in the array.
Correct example:
int array[100] = {...};
for (int i = 0; i < 99; i++) {
for (int j = 0; j < 99; j++) {
if (array[i] == array[j]) {
// code for duplicates
}
}
}
#include <iostream>
#include <unistd.h>
#include <algorithm>
using namespace std;
int main()
{
int arr[8]={0,1,1};
int n = sizeof(arr) / sizeof(arr[0]);
cout<<n<<"\n";
/*Here we take two parameters, the beginning of the
array and the length n upto which we want the array to
be sorted*/
//sort(arr, arr + n);
for (int i=0;i<=n;i++){
cout<<arr[i]<<" ";
}
int result=0;
do{
for (int i=0;i<=n;i++){
for (int j =0;j<i;j++){
if(arr[j]==arr[i]){
srand(time(NULL)); // Seed the time
int finalNum = rand()%((10-1)+1); // Generate the number, assign to variable.
arr[i] = finalNum;
result = result + 1;
sleep(1);
i--;
}
}
}
}
while(result<=2);
n = sizeof(arr) / sizeof(arr[0]);
/*Here we take two parameters, the beginning of the
array and the length n upto which we want the array to
be sorted*/
//sort(arr, arr + n);
cout<<"\n";
for (int i=0;i<=n;i++){
cout<<arr[i]<<" ";
}
return 0;
}
(I'm assuming that randArray is a C-style array.) sizeof(randArray) does not return the number of elements in the array, it returns the number of bytes that randArray occupies.
Example (on wandbox):
int main()
{
int arr[] = {1, 2, 3, 4};
// Prints 16! (on my machine)
std::cout << sizeof(arr) << "\n";
}
The correct way of working with arrays in modern C++ is either using std::array or std::vector. They both provide a .size() method that returns the number of elements in the collection.
Your code is failing for these reasons:
sizeof does not return the number of elements in the array.
Incrementing a duplicate element by one does not guarantee that it will be unique.
I know how to generate all n-digit number in the traditional number way,
for(long long number = pow(10, n-1); number < pow(10, n); number++) {
cout << number << endl;
}
for example,
for n = 5, it will generate 10000 to 99999;
However, since I will have to evaluate each number's digits, it is much convenient to construct the numbers in a digit array format in the first place.
for example, following code generate all 5-digit number in an array way:
for(int i = 1; i < 9; i++)
for(int j = 0; j < 9; j++)
for(int k = 0; k < 9; k++)
for(int l = 0; l < 9; l++)
for(int m = 0; m < 9; m++) {
//executed 9 * 10^4 = 90000 times
//construct my array instance with i, j, k, l, m
cout << i << j << k << l << m << endl;
}
Now the problem is: n is unknown. (for example, it could be 2, 3, 4, 5, 6..., 10)
Then how can I generate n-digit-array based on a number n?
For example, I want a piece of code like follows (any better ways than this one is highly appreciated):
for(int x = 0; x < n; x++) {
//each x is a layer of the loop ?!
.....
}
There is no reason to limit ourselves to the range 0 - 9 for each digit of the number.
For each numerical place, we'll represent a range:
std::pair<int,int> range;
Each loop in your example is iterating from the beginning of the range to the end of the range.
All the loops together are really just a series of ranges; each nested loop being responsible for the next digit of your generated number.
We can represent that, in the following way:
std::vector<std::pair<int, int>> ranges;
If you think about how nested for loops work, you can emulate the same functionality over the vector using two pointers. I've done that and wrapped the functionality into a class:
//header
class Range_Combinator {
public:
Range_Combinator(std::vector<std::pair<int, int>> const &ranges_in);
std::vector<int> Next();
std::vector<int> Current();
bool Done();
private:
bool Adjust();
void Reset_From_Current_Back(int from);
std::vector<std::pair<int, int>> ranges;
int current;
int last;
bool all_exausted;
std::vector<int> current_vals;
};
//source
Range_Combinator::Range_Combinator(
std::vector<std::pair<int, int>> const &ranges_in) {
ranges = ranges_in;
last = ranges.size() - 1;
current = last;
all_exausted = false;
for (auto it : ranges) {
current_vals.push_back(it.first);
}
}
std::vector<int> Range_Combinator::Next() {
all_exausted = Adjust();
return current_vals;
}
std::vector<int> Range_Combinator::Current() { return current_vals; }
bool Range_Combinator::Done() { return all_exausted; }
bool Range_Combinator::Adjust() {
if (current_vals[current] < ranges[current].second) {
current_vals[current]++;
} else {
while (current_vals[current] == ranges[current].second) {
current--;
}
if (current < 0) {
return true;
}
Reset_From_Current_Back(current + 1);
current_vals[current]++;
current = last;
}
return false;
}
void Range_Combinator::Reset_From_Current_Back(int from) {
for (int i = from; i <= last; ++i) {
current_vals[i] = ranges[i].first;
}
}
This is how you would use it:
//create range combinator
std::vector<std::pair<int,int>> ranges{{1,2},{3,4}};
Range_Combinator r(ranges);
//print each number
auto number = r.Current();
while (!r.Done()){
for (auto it: number) std::cout << it; std::cout << '\n';
number = r.Next();
}
//prints: 13
// 14
// 23
// 24
I don't know why you need that but you can try this:
size_t n = ; //whatever value
unsigned char* x = new unsigned char[n]();
x[0] = 1; //make it n-digit 10000...000
do
{
//process digits here
++x[n - 1];
for (size_t i = n; i > 1; --i)
{
if (x[i - 1] == 10)
{
x[i - 1] = 0;
++x[i - 2];
}
}
} while (x[0] < 10);
delete [] x;
You can even process not decimal numbers, just replace hard-coded 10 into appropriate number.
I suppose I could just write out the whole thing for you, but that would be no fun. Instead, I'll just outline the basic approach, and you can finish the answer yourself by filling in the blanks.
Consider an n-digit long number being represented this way:
struct digit {
struct digit *next;
int n; /* Digit 0-9 */
};
A single number represented, in this manner, can be printed out this way:
void print_digit(struct digit *p)
{
while (p)
{
std::cout << p->n;
p=p->next;
}
std::cout << std::endl;
}
Now, let's create a recursive loop, that iterates over all possible n-digit numbers:
void iterate(int ndigits)
{
for (int i=0; i<10; ++i)
{
if (ndigits > 1)
{
iterate(ndigits-1);
}
else
{ // This is the last digit
// Here be dragons
}
}
}
After a bit of thinking, you can see that if, for example, you call iterate(4), then when the "hear be dragons" part gets executed, this will be inside a four-deep nested iteration stack. There will be four level-deep for loops, nested within each other. And, with iterate(6), there will be six of them, and so on.
Now, consider the fact that the struct digit-based representation of n-digit numbers is also a stack, of sorts.
Therefore, the homework assignment here would be to use this recursive iteration to dynamically construct this linked list, on the stack, with the "here be dragons" part simply invoking print_digit() in order to print each number.
Hint: iterate() will need to have a few more parameters, that it will use appropriately, with a certain preset value for them, on the initial call to iterate().
A simple way without thinking of efficiency:
#include <cstdio>
int main(void) {
int n = 3; // the number of digits
long long start = 1;
int *array = new int[n];
for (int i = 1; i < n; i++) start *= 10;
for(long long x = start; x < start * 10; x++) { // not all 10-digit number will fit in 32-bit integer
// get each digits in decimal, lowest digit in array[0]
for (int i = 0, shift = 1; i < n; i++, shift *= 10) array[i] = (int)((x / shift) % 10);
// do some work with it (print it here)
for (int i = n - 1; i >= 0; i--) printf("%d", array[i]);
putchar('\n');
}
delete[] array;
return 0;
}
I am currently reading "Programming: Principles and Practice Using C++", in Chapter 4 there is an exercise in which:
I need to make a program to calculate prime numbers between 1 and 100 using the Sieve of Eratosthenes algorithm.
This is the program I came up with:
#include <vector>
#include <iostream>
using namespace std;
//finds prime numbers using Sieve of Eratosthenes algorithm
vector<int> calc_primes(const int max);
int main()
{
const int max = 100;
vector<int> primes = calc_primes(max);
for(int i = 0; i < primes.size(); i++)
{
if(primes[i] != 0)
cout<<primes[i]<<endl;
}
return 0;
}
vector<int> calc_primes(const int max)
{
vector<int> primes;
for(int i = 2; i < max; i++)
{
primes.push_back(i);
}
for(int i = 0; i < primes.size(); i++)
{
if(!(primes[i] % 2) && primes[i] != 2)
primes[i] = 0;
else if(!(primes[i] % 3) && primes[i] != 3)
primes[i]= 0;
else if(!(primes[i] % 5) && primes[i] != 5)
primes[i]= 0;
else if(!(primes[i] % 7) && primes[i] != 7)
primes[i]= 0;
}
return primes;
}
Not the best or fastest, but I am still early in the book and don't know much about C++.
Now the problem, until max is not bigger than 500 all the values print on the console, if max > 500 not everything gets printed.
Am I doing something wrong?
P.S.: Also any constructive criticism would be greatly appreciated.
I have no idea why you're not getting all the output, as it looks like you should get everything. What output are you missing?
The sieve is implemented wrongly. Something like
vector<int> sieve;
vector<int> primes;
for (int i = 1; i < max + 1; ++i)
sieve.push_back(i); // you'll learn more efficient ways to handle this later
sieve[0]=0;
for (int i = 2; i < max + 1; ++i) { // there are lots of brace styles, this is mine
if (sieve[i-1] != 0) {
primes.push_back(sieve[i-1]);
for (int j = 2 * sieve[i-1]; j < max + 1; j += sieve[i-1]) {
sieve[j-1] = 0;
}
}
}
would implement the sieve. (Code above written off the top of my head; not guaranteed to work or even compile. I don't think it's got anything not covered by the end of chapter 4.)
Return primes as usual, and print out the entire contents.
Think of the sieve as a set.
Go through the set in order. For each value in thesive remove all numbers that are divisable by it.
#include <set>
#include <algorithm>
#include <iterator>
#include <iostream>
typedef std::set<int> Sieve;
int main()
{
static int const max = 100;
Sieve sieve;
for(int loop=2;loop < max;++loop)
{
sieve.insert(loop);
}
// A set is ordered.
// So going from beginning to end will give all the values in order.
for(Sieve::iterator loop = sieve.begin();loop != sieve.end();++loop)
{
// prime is the next item in the set
// It has not been deleted so it must be prime.
int prime = *loop;
// deleter will iterate over all the items from
// here to the end of the sieve and remove any
// that are divisable be this prime.
Sieve::iterator deleter = loop;
++deleter;
while(deleter != sieve.end())
{
if (((*deleter) % prime) == 0)
{
// If it is exactly divasable then it is not a prime
// So delete it from the sieve. Note the use of post
// increment here. This increments deleter but returns
// the old value to be used in the erase method.
sieve.erase(deleter++);
}
else
{
// Otherwise just increment the deleter.
++deleter;
}
}
}
// This copies all the values left in the sieve to the output.
// i.e. It prints all the primes.
std::copy(sieve.begin(),sieve.end(),std::ostream_iterator<int>(std::cout,"\n"));
}
From Algorithms and Data Structures:
void runEratosthenesSieve(int upperBound) {
int upperBoundSquareRoot = (int)sqrt((double)upperBound);
bool *isComposite = new bool[upperBound + 1];
memset(isComposite, 0, sizeof(bool) * (upperBound + 1));
for (int m = 2; m <= upperBoundSquareRoot; m++) {
if (!isComposite[m]) {
cout << m << " ";
for (int k = m * m; k <= upperBound; k += m)
isComposite[k] = true;
}
}
for (int m = upperBoundSquareRoot; m <= upperBound; m++)
if (!isComposite[m])
cout << m << " ";
delete [] isComposite;
}
Interestingly, nobody seems to have answered your question about the output problem. I don't see anything in the code that should effect the output depending on the value of max.
For what it's worth, on my Mac, I get all the output. It's wrong of course, since the algorithm isn't correct, but I do get all the output. You don't mention what platform you're running on, which might be useful if you continue to have output problems.
Here's a version of your code, minimally modified to follow the actual Sieve algorithm.
#include <vector>
#include <iostream>
using namespace std;
//finds prime numbers using Sieve of Eratosthenes algorithm
vector<int> calc_primes(const int max);
int main()
{
const int max = 100;
vector<int> primes = calc_primes(max);
for(int i = 0; i < primes.size(); i++)
{
if(primes[i] != 0)
cout<<primes[i]<<endl;
}
return 0;
}
vector<int> calc_primes(const int max)
{
vector<int> primes;
// fill vector with candidates
for(int i = 2; i < max; i++)
{
primes.push_back(i);
}
// for each value in the vector...
for(int i = 0; i < primes.size(); i++)
{
//get the value
int v = primes[i];
if (v!=0) {
//remove all multiples of the value
int x = i+v;
while(x < primes.size()) {
primes[x]=0;
x = x+v;
}
}
}
return primes;
}
In the code fragment below, the numbers are filtered before they are inserted into the vector. The divisors come from the vector.
I'm also passing the vector by reference. This means that the huge vector won't be copied from the function to the caller. (Large chunks of memory take long times to copy)
vector<unsigned int> primes;
void calc_primes(vector<unsigned int>& primes, const unsigned int MAX)
{
// If MAX is less than 2, return an empty vector
// because 2 is the first prime and can't be placed in the vector.
if (MAX < 2)
{
return;
}
// 2 is the initial and unusual prime, so enter it without calculations.
primes.push_back(2);
for (unsigned int number = 3; number < MAX; number += 2)
{
bool is_prime = true;
for (unsigned int index = 0; index < primes.size(); ++index)
{
if ((number % primes[k]) == 0)
{
is_prime = false;
break;
}
}
if (is_prime)
{
primes.push_back(number);
}
}
}
This not the most efficient algorithm, but it follows the Sieve algorithm.
below is my version which basically uses a bit vector of bool and then goes through the odd numbers and a fast add to find multiples to set to false. In the end a vector is constructed and returned to the client of the prime values.
std::vector<int> getSieveOfEratosthenes ( int max )
{
std::vector<bool> primes(max, true);
int sz = primes.size();
for ( int i = 3; i < sz ; i+=2 )
if ( primes[i] )
for ( int j = i * i; j < sz; j+=i)
primes[j] = false;
std::vector<int> ret;
ret.reserve(primes.size());
ret.push_back(2);
for ( int i = 3; i < sz; i+=2 )
if ( primes[i] )
ret.push_back(i);
return ret;
}
Here is a concise, well explained implementation using bool type:
#include <iostream>
#include <cmath>
void find_primes(bool[], unsigned int);
void print_primes(bool [], unsigned int);
//=========================================================================
int main()
{
const unsigned int max = 100;
bool sieve[max];
find_primes(sieve, max);
print_primes(sieve, max);
}
//=========================================================================
/*
Function: find_primes()
Use: find_primes(bool_array, size_of_array);
It marks all the prime numbers till the
number: size_of_array, in the form of the
indexes of the array with value: true.
It implemenets the Sieve of Eratosthenes,
consisted of:
a loop through the first "sqrt(size_of_array)"
numbers starting from the first prime (2).
a loop through all the indexes < size_of_array,
marking the ones satisfying the relation i^2 + n * i
as false, i.e. composite numbers, where i - known prime
number starting from 2.
*/
void find_primes(bool sieve[], unsigned int size)
{
// by definition 0 and 1 are not prime numbers
sieve[0] = false;
sieve[1] = false;
// all numbers <= max are potential candidates for primes
for (unsigned int i = 2; i <= size; ++i)
{
sieve[i] = true;
}
// loop through the first prime numbers < sqrt(max) (suggested by the algorithm)
unsigned int first_prime = 2;
for (unsigned int i = first_prime; i <= std::sqrt(double(size)); ++i)
{
// find multiples of primes till < max
if (sieve[i] = true)
{
// mark as composite: i^2 + n * i
for (unsigned int j = i * i; j <= size; j += i)
{
sieve[j] = false;
}
}
}
}
/*
Function: print_primes()
Use: print_primes(bool_array, size_of_array);
It prints all the prime numbers,
i.e. the indexes with value: true.
*/
void print_primes(bool sieve[], unsigned int size)
{
// all the indexes of the array marked as true are primes
for (unsigned int i = 0; i <= size; ++i)
{
if (sieve[i] == true)
{
std::cout << i <<" ";
}
}
}
covering the array case. A std::vector implementation will include minor changes such as reducing the functions to one parameter, through which the vector is passed by reference and the loops will use the vector size() member function instead of the reduced parameter.
Here is a more efficient version for Sieve of Eratosthenes algorithm that I implemented.
#include <iostream>
#include <cmath>
#include <set>
using namespace std;
void sieve(int n){
set<int> primes;
primes.insert(2);
for(int i=3; i<=n ; i+=2){
primes.insert(i);
}
int p=*primes.begin();
cout<<p<<"\n";
primes.erase(p);
int maxRoot = sqrt(*(primes.rbegin()));
while(primes.size()>0){
if(p>maxRoot){
while(primes.size()>0){
p=*primes.begin();
cout<<p<<"\n";
primes.erase(p);
}
break;
}
int i=p*p;
int temp = (*(primes.rbegin()));
while(i<=temp){
primes.erase(i);
i+=p;
i+=p;
}
p=*primes.begin();
cout<<p<<"\n";
primes.erase(p);
}
}
int main(){
int n;
n = 1000000;
sieve(n);
return 0;
}
Here's my implementation not sure if 100% correct though :
http://pastebin.com/M2R2J72d
#include<iostream>
#include <stdlib.h>
using namespace std;
void listPrimes(int x);
int main() {
listPrimes(5000);
}
void listPrimes(int x) {
bool *not_prime = new bool[x];
unsigned j = 0, i = 0;
for (i = 0; i <= x; i++) {
if (i < 2) {
not_prime[i] = true;
} else if (i % 2 == 0 && i != 2) {
not_prime[i] = true;
}
}
while (j <= x) {
for (i = j; i <= x; i++) {
if (!not_prime[i]) {
j = i;
break;
}
}
for (i = (j * 2); i <= x; i += j) {
not_prime[i] = true;
}
j++;
}
for ( i = 0; i <= x; i++) {
if (!not_prime[i])
cout << i << ' ';
}
return;
}
I am following the same book now. I have come up with the following implementation of the algorithm.
#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
inline void keep_window_open() { char ch; cin>>ch; }
int main ()
{
int max_no = 100;
vector <int> numbers (max_no - 1);
iota(numbers.begin(), numbers.end(), 2);
for (unsigned int ind = 0; ind < numbers.size(); ++ind)
{
for (unsigned int index = ind+1; index < numbers.size(); ++index)
{
if (numbers[index] % numbers[ind] == 0)
{
numbers.erase(numbers.begin() + index);
}
}
}
cout << "The primes are\n";
for (int primes: numbers)
{
cout << primes << '\n';
}
}
Here is my version:
#include "std_lib_facilities.h"
//helper function:check an int prime, x assumed positive.
bool check_prime(int x) {
bool check_result = true;
for (int i = 2; i < x; ++i){
if (x%i == 0){
check_result = false;
break;
}
}
return check_result;
}
//helper function:return the largest prime smaller than n(>=2).
int near_prime(int n) {
for (int i = n; i > 0; --i) {
if (check_prime(i)) { return i; break; }
}
}
vector<int> sieve_primes(int max_limit) {
vector<int> num;
vector<int> primes;
int stop = near_prime(max_limit);
for (int i = 2; i < max_limit+1; ++i) { num.push_back(i); }
int step = 2;
primes.push_back(2);
//stop when finding the last prime
while (step!=stop){
for (int i = step; i < max_limit+1; i+=step) {num[i-2] = 0; }
//the multiples set to 0, the first none zero element is a prime also step
for (int j = step; j < max_limit+1; ++j) {
if (num[j-2] != 0) { step = num[j-2]; break; }
}
primes.push_back(step);
}
return primes;
}
int main() {
int max_limit = 1000000;
vector<int> primes = sieve_primes(max_limit);
for (int i = 0; i < primes.size(); ++i) {
cout << primes[i] << ',';
}
}
Here is a classic method for doing this,
int main()
{
int max = 500;
vector<int> array(max); // vector of max numbers, initialized to default value 0
for (int i = 2; i < array.size(); ++ i) // loop for rang of numbers from 2 to max
{
// initialize j as a composite number; increment in consecutive composite numbers
for (int j = i * i; j < array.size(); j +=i)
array[j] = 1; // assign j to array[index] with value 1
}
for (int i = 2; i < array.size(); ++ i) // loop for rang of numbers from 2 to max
if (array[i] == 0) // array[index] with value 0 is a prime number
cout << i << '\n'; // get array[index] with value 0
return 0;
}
I think im late to this party but im reading the same book as you, this is the solution in came up with! Feel free to make suggestions (you or any!), for what im seeing here a couple of us extracted the operation to know if a number is multiple of another to a function.
#include "../../std_lib_facilities.h"
bool numIsMultipleOf(int n, int m) {
return n%m == 0;
}
int main() {
vector<int> rawCollection = {};
vector<int> numsToCheck = {2,3,5,7};
// Prepare raw collection
for (int i=2;i<=100;++i) {
rawCollection.push_back(i);
}
// Check multiples
for (int m: numsToCheck) {
vector<int> _temp = {};
for (int n: rawCollection) {
if (!numIsMultipleOf(n,m)||n==m) _temp.push_back(n);
}
rawCollection = _temp;
}
for (int p: rawCollection) {
cout<<"N("<<p<<")"<<" is prime.\n";
}
return 0;
}
Try this code it will be useful to you by using java question bank
import java.io.*;
class Sieve
{
public static void main(String[] args) throws IOException
{
int n = 0, primeCounter = 0;
double sqrt = 0;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.println(“Enter the n value : ”);
n = Integer.parseInt(br.readLine());
sqrt = Math.sqrt(n);
boolean[] prime = new boolean[n];
System.out.println(“\n\nThe primes upto ” + n + ” are : ”);
for (int i = 2; i<n; i++)
{
prime[i] = true;
}
for (int i = 2; i <= sqrt; i++)
{
for (int j = i * 2; j<n; j += i)
{
prime[j] = false;
}
}
for (int i = 0; i<prime.length; i++)
{
if (prime[i])
{
primeCounter++;
System.out.print(i + ” “);
}
}
prime = new boolean[0];
}
}