How to apply a function to a range in Clojure? - clojure

I'm new to Clojure and I tried to play with the example data from clojuredocs.org.
;; Data
(def scenes [{:subject "Frankie"
:action "say"
:object "relax"}
{:subject "Lucy"
:action "loves"
:object "Clojure"}
{:subject "Rich"
:action "tries"
:object "a new conditioner"}])
(defn play [scenes n]
"Play a scene"
(->>
scenes
(#(get % n))
((juxt :subject :action :object))
(interpose " ")
(apply str)))
The play function works fine:
my-stuff.core> (play scenes 0)
"Frankie say relax"
my-stuff.core> (play scenes 1)
"Lucy loves Clojure"
my-stuff.core> (play scenes 2)
"Rich tries a new conditioner"
This play-all function doesn't work:
(defn play-all [scenes]
"Play all the scenes"
(let [x (count scenes)]
(for [n (range x)]
(map play scenes n ))))
How to correct this play-all function, i.e. how to apply the play function to the range of data?

You don't need both for and map.
With only for:
user=> (defn play-all [scenes]
#_=> "Play all the scenes"
#_=> (let [x (count scenes)]
#_=> (for [n (range x)]
#_=> (play scenes n ))))
#'user/play-all
user=> (play-all scenes)
("Frankie say relax" "Lucy loves Clojure" "Rich tries a new conditioner")
and with only map:
user=> (defn play-all [scenes]
#_=> "Play all the scenes"
#_=> (let [x (count scenes)]
#_=> (map #(play scenes %1) (range x))))
#'user/play-all
user=> (play-all scenes)
("Frankie say relax" "Lucy loves Clojure" "Rich tries a new conditioner")
(I prefer the latter.)
Edit: If you like ->>, this is even better:
user=> (defn play-all [scenes]
#_=> "Play all the scenes"
#_=> (->> scenes
#_=> (count)
#_=> (range)
#_=> (map #(play scenes %))))
#'user/play-all
user=> (play-all scenes)
("Frankie say relax" "Lucy loves Clojure" "Rich tries a new conditioner")

map iterates over a collection (or several collections) to produce a sequence.
for build a sequence from a list comprehension.
In your case you can use either one or the other.
In terms of decomposition, it would make sens to have actually a function that plays one scene :
(defn play-one [scene]
"Play a scene"
(->>
scene
((juxt :subject :action :object))
(interpose " ")
(apply str)))
Then playing the nth can use precedent definition:
(defn play-nth [scenes n]
"Play the n(th) scene"
(->
scenes
(#(get % n))
play-one))
And you have several ways to play all the scenes:
(defn play-all-map1 [scenes]
"Play all the scenes"
(map (partial play-nth scenes) (range (count scenes))))
But you can really simplify since you don't need range because scenes can be treated as a sequence (assuming you are not interested in the index):
(defn play-all-map2 [scenes]
"Play all the scenes with map"
(map play-one scenes))
And with for:
(defn play-all-for [scenes]
"Play all the scenes with for"
(for [scene scenes]
(play-one scene)))

Before we do anything with it, your play function should deal with a single scene:
(defn play [scene]
"Play a scene"
(->> scene
((juxt :subject :action :object))
(interpose " ")
(apply str)))
You use it like so:
(play (scenes 0))
;"Frankie say relax"
... which is no easier or harder than before. But
it will work with any scene and
the scenes don't have to be kept in a vector.
It also makes play-all simpler:
(defn play-all [ss]
(map play ss))
(play-all scenes)
;("Frankie say relax" "Lucy loves Clojure" "Rich tries a new conditioner")
I was tempted to replace ((juxt :subject :action :object)) with vals in play, but we can't rely on the sequence order of the map entries.

Related

Clojure/FP: apply functions to each argument to an operator

Let's say I have several vectors
(def coll-a [{:name "foo"} ...])
(def coll-b [{:name "foo"} ...])
(def coll-c [{:name "foo"} ...])
and that I would like to see if the names of the first elements are equal.
I could
(= (:name (first coll-a)) (:name (first coll-b)) (:name (first coll-c)))
but this quickly gets tiring and overly verbose as more functions are composed. (Maybe I want to compare the last letter of the first element's name?)
To directly express the essence of the computation it seems intuitive to
(apply = (map (comp :name first) [coll-a coll-b coll-c]))
but it leaves me wondering if there's a higher level abstraction for this sort of thing.
I often find myself comparing / otherwise operating on things which are to be computed via a single composition applied to multiple elements, but the map syntax looks a little off to me.
If I were to home brew some sort of operator, I would want syntax like
(-op- (= :name first) coll-a coll-b coll-c)
because the majority of the computation is expressed in (= :name first).
I'd like an abstraction to apply to both the operator & the functions applied to each argument. That is, it should be just as easy to sum as compare.
(def coll-a [{:name "foo" :age 43}])
(def coll-b [{:name "foo" :age 35}])
(def coll-c [{:name "foo" :age 28}])
(-op- (+ :age first) coll-a coll-b coll-c)
; => 106
(-op- (= :name first) coll-a coll-b coll-c)
; => true
Something like
(defmacro -op-
[[op & to-comp] & args]
(let [args' (map (fn [a] `((comp ~#to-comp) ~a)) args)]
`(~op ~#args')))
Is there an idiomatic way to do this in clojure, some standard library function I could be using?
Is there a name for this type of expression?
For your addition example, I often use transduce:
(transduce
(map (comp :age first))
+
[coll-a coll-b coll-c])
Your equality use case is trickier, but you could create a custom reducing function to maintain a similar pattern. Here's one such function:
(defn all? [f]
(let [prev (volatile! ::no-value)]
(fn
([] true)
([result] result)
([result item]
(if (or (= ::no-value #prev)
(f #prev item))
(do
(vreset! prev item)
true)
(reduced false))))))
Then use it as
(transduce
(map (comp :name first))
(all? =)
[coll-a coll-b coll-c])
The semantics are fairly similar to your -op- macro, while being both more idiomatic Clojure and more extensible. Other Clojure developers will immediately understand your usage of transduce. They may have to investigate the custom reducing function, but such functions are common enough in Clojure that readers can see how it fits an existing pattern. Also, it should be fairly transparent how to create new reducing functions for use cases where a simple map-and-apply wouldn't work. The transducing function can also be composed with other transformations such as filter and mapcat, for cases when you have a more complex initial data structure.
You may be looking for the every? function, but I would enhance clarity by breaking it down and naming the sub-elements:
(let [colls [coll-a coll-b coll-c]
first-name (fn [coll] (:name (first coll)))
names (map first-name colls)
tgt-name (first-name coll-a)
all-names-equal (every? #(= tgt-name %) names)]
all-names-equal => true
I would avoid the DSL, as there is no need and it makes it much harder for others to read (since they don't know the DSL). Keep it simple:
(let [colls [coll-a coll-b coll-c]
vals (map #(:age (first %)) colls)
result (apply + vals)]
result => 106
I don't think you need a macro, you just need to parameterize your op function and compare functions. To me, you are pretty close with your (apply = (map (comp :name first) [coll-a coll-b coll-c])) version.
Here is one way you could make it more generic:
(defn compare-in [op to-compare & args]
(apply op (map #(get-in % to-compare) args)))
(compare-in + [0 :age] coll-a coll-b coll-c)
(compare-in = [0 :name] coll-a coll-b coll-c)
;; compares last element of "foo"
(compare-in = [0 :name 2] coll-a coll-b coll-c)
I actually did not know you can use get on strings, but in the third case you can see we compare the last element of each foo.
This approach doesn't allow the to-compare arguments to be arbitrary functions, but it seems like your use case mainly deals with digging out what elements you want to compare, and then applying an arbitrary function to those values.
I'm not sure this approach is better than the transducer version supplied above (certainly not as efficient), but I think it provides a simpler alternative when that efficiency is not needed.
I would split this process into three stages:
transform items in collections into the data in collections you want to operate
on - (map :name coll);
Operate on transformed items in collections, returning collection of results - (map = transf-coll-a transf-coll-b transf-coll-c)
Finally, selecting which result in resulting collection to return - (first calculated-coll)
When playing with collections, I try to put more than one item into collection:
(def coll-a [{:name "foo" :age 43} {:name "bar" :age 45}])
(def coll-b [{:name "foo" :age 35} {:name "bar" :age 37}])
(def coll-c [{:name "foo" :age 28} {:name "bra" :age 30}])
For example, matching items by second char in :name and returning result for items in second place:
(let
[colls [coll-a coll-b coll-c]
transf-fn (comp #(nth % 1) :name)
op =
fetch second]
(fetch (apply map op (map #(map transf-fn %) colls))))
;; => false
In transducers world you can use sequence function which also works on multiple collections:
(let
[colls [coll-a coll-b coll-c]
transf-fn (comp (map :name) (map #(nth % 1)))
op =
fetch second]
(fetch (apply sequence (map op) (map #(sequence transf-fn %) colls))))
Calculate sum of ages (for all items at the same level):
(let
[colls [coll-a coll-b coll-c]
transf-fn (comp (map :age))
op +
fetch identity]
(fetch (apply sequence (map op) (map #(sequence transf-fn %) colls))))
;; => (106 112)

Improving complex data structure replacement

I'm attempting to modify a specific field in a data structure, described below (a filled example can be found here:
[{:fields "There are a few other fields here"
:incidents [{:fields "There are a few other fields here"
:updates [{:fields "There are a few other fields here"
:content "THIS is the field I want to replace"
:translations [{:based_on "Based on the VALUE of this"
:content "Replace with this value"}]}]}]}]
I already have this implemented it in a number of functions, as below:
(defn- translation-content
[arr]
(:content (nth arr (.indexOf (map :locale arr) (env/get-locale)))))
(defn- translate
[k coll fn & [k2]]
(let [k2 (if (nil? k2) k k2)
c ((keyword k2) coll)]
(assoc-in coll [(keyword k)] (fn c))))
(defn- format-update-translation
[update]
(dissoc update :translations))
(defn translate-update
[update]
(format-update-translation (translate :content update translation-content :translations)))
(defn translate-updates
[updates]
(vec (map translate-update updates)))
(defn translate-incident
[incident]
(translate :updates incident translate-updates))
(defn translate-incidents
[incidents]
(vec (map translate-incident incidents)))
(defn translate-service
[service]
(assoc-in service [:incidents] (translate-incidents (:incidents service))))
(defn translate-services
[services]
(vec (map translate-service services)))
Each array could have any number of entries (though the number is likely less than 10).
The basic premise is to replace the :content in each :update with the relevant :translation based on a provided value.
My Clojure knowledge is limited, so I'm curious if there is a more optimal way to achieve this?
EDIT
Solution so far:
(defn- translation-content
[arr]
(:content (nth arr (.indexOf (map :locale arr) (env/get-locale)))))
(defn- translate
[k coll fn & [k2]]
(let [k2 (if (nil? k2) k k2)
c ((keyword k2) coll)]
(assoc-in coll [(keyword k)] (fn c))))
(defn- format-update-translation
[update]
(dissoc update :translations))
(defn translate-update
[update]
(format-update-translation (translate :content update translation-content :translations)))
(defn translate-updates
[updates]
(mapv translate-update updates))
(defn translate-incident
[incident]
(translate :updates incident translate-updates))
(defn translate-incidents
[incidents]
(mapv translate-incident incidents))
(defn translate-service
[service]
(assoc-in service [:incidents] (translate-incidents (:incidents service))))
(defn translate-services
[services]
(mapv translate-service services))
I would start more or less as you do, bottom-up, by defining some functions that look like they will be useful: how to choose a translation from among a list of translations, and how to apply that choice to an update. But I wouldn't make the functions so tiny as yours: the logic is all spread out into a lot of places, and it's not easy to get an overall idea of what is going on. Here are the two functions I'd start with:
(letfn [(choose-translation [translations]
(let [applicable (filter #(= (:locale %) (get-locale))
translations)]
(when (= 1 (count applicable))
(:content (first applicable)))))
(translate-update [update]
(-> update
(assoc :content (or (choose-translation (:translations update))
(:content update)))
(dissoc :translations)))]
...)
Of course you can defn them instead if you'd like, and I suspect many people would, but they're only going to be used in one place, and they're intimately involved with the context in which they're used, so I like a letfn. These two functions are really all the interesting logic; the rest is just some boring tree-traversal code to apply this logic in the right places.
Now to build out the body of the letfn is straightforward, and easy to read if you make your code be the same shape as the data it manipulates. We want to walk through a series of nested lists, updating objects on the way, and so we just write a series of nested for comprehensions, calling update to descend into the right keyspace:
(for [user users]
(update user :incidents
(fn [incidents]
(for [incident incidents]
(update incident :updates
(fn [updates]
(for [update updates]
(translate-update update))))))))
I think using for here is miles better than using map, although of course they are equivalent as always. The important difference is that as you read through the code you see the new context first ("okay, now we're doing something to each user"), and then what is happening inside that context; with map you see them in the other order and it is difficult to keep tack of what is happening where.
Combining these, and putting them into a defn, we get a function that you can call with your example input and which produces your desired output (assuming a suitable definition of get-locale):
(defn translate [users]
(letfn [(choose-translation [translations]
(let [applicable (filter #(= (:locale %) (get-locale))
translations)]
(when (= 1 (count applicable))
(:content (first applicable)))))
(translate-update [update]
(-> update
(assoc :content (or (choose-translation (:translations update))
(:content update)))
(dissoc :translations)))]
(for [user users]
(update user :incidents
(fn [incidents]
(for [incident incidents]
(update incident :updates
(fn [updates]
(for [update updates]
(translate-update update))))))))))
we can try to find some patterns in this task (based on the contents of the snippet from github gist, you've posted):
simply speaking, you need to
1) update every item (A) in vector of data
2) updating every item (B) in vector of A's :incidents
3) updating every item (C) in vector of B's :updates
4) translating C
The translate function could look like this:
(defn translate [{translations :translations :as item} locale]
(assoc item :content
(or (some #(when (= (:locale %) locale) (:content %)) translations)
:no-translation-found)))
it's usage (some fields are omitted for brevity):
user> (translate {:id 1
:content "abc"
:severity "101"
:translations [{:locale "fr_FR"
:content "abc"}
{:locale "ru_RU"
:content "абв"}]}
"ru_RU")
;;=> {:id 1,
;; :content "абв",
;; :severity "101",
;; :translations [{:locale "fr_FR", :content "abc"} {:locale "ru_RU", :content "абв"}]}
then we can see that 1 and 2 are totally similar, so we can generalize that:
(defn update-vec-of-maps [data k f]
(mapv (fn [item] (update item k f)) data))
using it as a building block you can make up the whole data transformation:
(defn transform [data locale]
(update-vec-of-maps
data :incidents
(fn [incidents]
(update-vec-of-maps
incidents :updates
(fn [updates] (mapv #(translate % locale) updates))))))
(transform data "it_IT")
returns what you need.
then you can generalize it further, making the utility function for arbitrary depth transformations:
(defn deep-update-vec-of-maps [data ks terminal-fn]
(if (seq ks)
((reduce (fn [f k] #(update-vec-of-maps % k f))
terminal-fn (reverse ks))
data)
data))
and use it like this:
(deep-update-vec-of-maps data [:incidents :updates]
(fn [updates]
(mapv #(translate % "it_IT") updates)))
I recommend you look at https://github.com/nathanmarz/specter
It makes it really easy to read and update clojure data structures. Same performance as hand-written code, but much shorter.

What is the difference between the reader monad and a partial function in Clojure?

Leonardo Borges has put together a fantastic presentation on Monads in Clojure. In it he describes the reader monad in Clojure using the following code:
;; Reader Monad
(def reader-m
{:return (fn [a]
(fn [_] a))
:bind (fn [m k]
(fn [r]
((k (m r)) r)))})
(defn ask [] identity)
(defn asks [f]
(fn [env]
(f env)))
(defn connect-to-db []
(do-m reader-m
[db-uri (asks :db-uri)]
(prn (format "Connected to db at %s" db-uri))))
(defn connect-to-api []
(do-m reader-m
[api-key (asks :api-key)
env (ask)]
(prn (format "Connected to api with key %s" api-key))))
(defn run-app []
(do-m reader-m
[_ (connect-to-db)
_ (connect-to-api)]
(prn "Done.")))
((run-app) {:db-uri "user:passwd#host/dbname" :api-key "AF167"})
;; "Connected to db at user:passwd#host/dbname"
;; "Connected to api with key AF167"
;; "Done."
The benefit of this is that you're reading values from the environment in a purely functional way.
But this approach looks very similar to the partial function in Clojure. Consider the following code:
user=> (def hundred-times (partial * 100))
#'user/hundred-times
user=> (hundred-times 5)
500
user=> (hundred-times 4 5 6)
12000
My question is: What is the difference between the reader monad and a partial function in Clojure?
The reader monad is a set of rules we can apply to cleanly compose readers. You could use partial to make a reader, but it doesn't really give us a way to put them together.
For example, say you wanted a reader that doubled the value it read. You might use partial to define it:
(def doubler
(partial * 2))
You might also want a reader that added one to whatever value it read:
(def plus-oner
(partial + 1))
Now, suppose you wanted to combine these guys in a single reader that adds their results. You'll probably end up with something like this:
(defn super-reader
[env]
(let [x (doubler env)
y (plus-oner env)]
(+ x y)))
Notice that you have to explicitly forward the environment to those readers. Total bummer, right? Using the rules provided by the reader monad, we can get much cleaner composition:
(def super-reader
(do-m reader-m
[x doubler
y plus-oner]
(+ x y)))
You can use partial to "do" the reader monad. Turn let into a do-reader by doing syntactic transformation on let with partial application of the environment on the right-hand side.
(defmacro do-reader
[bindings & body]
(let [env (gensym 'env_)
partial-env (fn [f] (list `(partial ~f ~env)))
bindings* (mapv #(%1 %2) (cycle [identity partial-env]) bindings)]
`(fn [~env] (let ~bindings* ~#body))))
Then do-reader is to the reader monad as let is to the identity monad (relationship discussed here).
Indeed, since only the "do notation" application of the reader monad was used in Beyamor's answer to your reader monad in Clojure question, the same examples will work as is with m/domonad Reader replaced with do-reader as above.
But, for the sake of variety I'll modify the first example to be just a bit more Clojurish with the environment map and take advantage of the fact that keywords can act as functions.
(def sample-bindings {:count 3, :one 1, :b 2})
(def ask identity)
(def calc-is-count-correct?
(do-reader [binding-count :count
bindings ask]
(= binding-count (count bindings))))
(calc-is-count-correct? sample-bindings)
;=> true
Second example
(defn local [modify reader] (comp reader modify))
(def calc-content-len
(do-reader [content ask]
(count content)))
(def calc-modified-content-len
(local #(str "Prefix " %) calc-content-len))
(calc-content-len "12345")
;=> 5
(calc-modified-content-len "12345")
;=> 12
Note since we built on let, we still have destructing at our disposal. Silly example:
(def example1
(do-reader [a :foo
b :bar]
(+ a b)))
(example1 {:foo 2 :bar 40 :baz 800})
;=> 42
(def example2
(do-reader [[a b] (juxt :foo :bar)]
(+ a b)))
(example2 {:foo 2 :bar 40 :baz 800})
;=> 42
So, in Clojure, you can indeed get the functionality of the do notation of reader monad without introducing monads proper. Analagous to doing a ReaderT transform on the identity monad, we can do a syntactic transformation on let. As you surmised, one way to do so is with partial application of the environment.
Perhaps more Clojurish would be to define a reader-> and reader->> to syntactically insert the environment as the second and last argument respectively. I'll leave those as an exercise for the reader for now.
One take-away from this is that while types and type-classes in Haskell have a lot of benefits and the monad structure is a useful idea, not having the constraints of the type system in Clojure allows us to treat data and programs in the same way and do arbitrary transformations to our programs to implement syntax and control as we see fit.

Converting a string into a function that is not in a namespace in clojure

Here is the sample code I want to get to work:
(letfn [(CONC [f] f)
(CONT [f] (str "\newline" f))]
((voodoo "CONC") "hamster"))
Is there some voodo that will make it call the CONC function with hamster as the parameter? That is, is there some way to convert the string "CONC" into a function that is not bound to a namespace but rather to a local binding?
EDIT:
To be clearer, the way this will be called is:
(map #((voodoo (:tag %)) (:value %))
[
{:tag "CONC" :value "hamster"}
{:tag "CONT" :value "gerbil"}
]
)
I'd probably solve this by creating a map of functions indexed by strings:
(def voodoo
{"CONC" (fn [f] f)
"CONT" (fn [f] (str "\newline" f))})
Then your desired code should work directly (exploiting the fact that a map is a function that looks up it's argument)
(map #((voodoo (:tag %)) (:value %))
[
{:tag "CONC" :value "hamster"}
{:tag "CONT" :value "gerbil"}
]
)
Note that the functions here are fully anonymous - you don't need them to be referenced anywhere in the namespace for this to work. In my view this is a good thing, because unless you also need the functions somewhere else then it's best to avoid polluting your top-level namespace too much.
No. Eval does not have access to the local/lexical environment, ever.
Edit: This is not a very good answer, and not really accurate either. You could write voodoo as a macro, and then it doesn't need runtime access to the lexical environment, just compile-time. However, this means it would only work if you know at compile time that the function you want to call is x, and so it wouldn't be very useful - why not just type x instead of (voodoo "x")?
(defmacro voodoo [fname]
(symbol fname))
(letfn [(x [y] (inc y))]
((voodoo "x") 2))
;; 3
(letfn [(x [y] (inc y))]
(let [f "x"]
((voodoo f) 2)))
;; error
Well, it's sort of possible:
(defmacro voodoo [s]
(let [env (zipmap (map (partial list 'quote) (keys &env))
(keys &env))]
`(if-let [v# (~env (symbol ~s))]
v#
(throw (RuntimeException. "no such local")))))
...and now we can do weird stuff like this:
user> (defn example [s]
(letfn [(foo [x] {:foo x})
(bar [x] {:bar x})]
((voodoo s) :quux)))
#'user/example
user> (example "foo")
{:foo :quux}
user> (example "bar")
{:bar :quux}
user> (example "quux")
; Evaluation aborted.
user> *e
#<RuntimeException java.lang.RuntimeException: no such local>
That "Evaluation aborted" means an exception was thrown.
You could also replace the throw branch of the if in voodoo with (resolve (symbol ~s)) to defer to the globals if no local is found:
(defmacro voodoo [s]
(let [env (zipmap (map (partial list 'quote) (keys &env))
(keys &env))]
`(if-let [v# (~env (symbol ~s))]
v#
(resolve (symbol ~s)))))
...and now this works with definition of example as above (though note that if you are experimenting at the REPL, you will need to recompile example after redefining voodoo):
user> (defn quux [x] {:quux x})
#'user/quux
user> (example "quux")
{:quux :quux}
Now, this is an abuse of Clojure's facilities which one would do well to try to do without. If one cannot, one should probably turn to evalive by Michael Fogus; it's a library which provides an "eval-with-locals" facility in the form of an evil function and a couple of utilities. The functionality seems to be well factored too, e.g. something like the ~(zipmap ...) thing above is encapsulated as a macro and evil there appears to be almost a drop-in replacement for eval (add the env parameter and you're good to go). I haven't read the source properly, but I probably will now, looks like fun. :-)
Im not really clear what you are asking for so i'll try a couple answers:
if you have a string that is the name of the function you wish to call:
(def name "+")
((find-var (symbol (str *ns* "/" name))) 1 2 3)
this would give voodoo a deffinition like this:
(defn voodoo [name args] (apply (find-var (symbol (str *ns* "/" name))) args))
#'clojure.core/voodoo
clojure.core=> (voodoo "+" [1 2 3])
6
clojure.core=>
this assumes your function is in the current namepace ns.
if you want to turn a string into a function you could use this pattern
(let [f (eval (read-string "(fn [] 4)"))] (f))

Can you give me some real-life examples of the -> macro?

It seems to be a powerful macro, yet I'm failing to apply it to anything but silly examples. Can you show me some real use of it?
Thanks!
Compare:
user> (:baz (:bar (:foo {:foo {:bar {:baz 123}}})))
123
user> (java.io.BufferedReader. (java.io.FileReader. "foo.txt"))
#<BufferedReader java.io.BufferedReader#6e1f8f>
user> (vec (reverse (.split (.replaceAll (.toLowerCase "FOO,BAR,BAZ") "b" "x") ",")))
["xaz" "xar" "foo"]
to:
user> (-> {:foo {:bar {:baz 123}}} :foo :bar :baz)
123
user> (-> "foo.txt" java.io.FileReader. java.io.BufferedReader.)
#<BufferedReader java.io.BufferedReader#7a6c34>
user> (-> "FOO,BAR,BAZ" .toLowerCase (.replaceAll "b" "x") (.split ",") reverse vec)
["xaz" "xar" "foo"]
-> is used when you want a concise way to nest calls. It lets you list the calls in the order they'll be called rather than inside-out, which can be more readable. In the third example, notice how much distance is between some of the arguments and the function they belong to; -> lets you group arguments and function calls a bit more cleanly. Because it's a macro it also works for Java calls, which is nice.
-> isn't that powerful, it just saves you a few parens now and then. Using it or not is a question of style and readability.
Look at the bottom of clojure.zip for extreme examples of how this is helpful.
(-> dz next next next next next next next next next remove up (append-child 'e) root)
Taken from the wiki I've always found this example impressive:
user=> (import '(java.net URL) '(java.util.zip ZipInputStream))
user=> (-> "http://clojure.googlecode.com/files/clojure_20081217.zip"
URL. .openStream ZipInputStream. .getNextEntry bean :name)
As Brian said - it isn't 'useful' so much as 'different style'. I find for all java interop this form of 'start with X' then do Y and Z ... more readable than do Z to Y of X.
Basically you have 4 options:
; imperative style named steps:
(let [X something
b (Y X)
c (Z b)] c)
; nested calls
(Z (Y X))
; threaded calls
(-> X Y Z)
; functional composition
((comp Z Y) X)
I find -> really shines for java interop but avoid it elsewhere.
(defn search-tickets-for [term]
(-> term search zip-soup first :content
((partial filter #(= :body (:tag %)))) first :content
((partial filter #(= :div (:tag %))))
((partial filter #(= "content" ((comp :id :attrs) %))))
((partial map :content)) first ((partial map :content))
((partial map first)) ((partial filter #(= :ul (:tag %)))) first :content
((partial map :content))
((partial map first))
((partial mapcat :content))
((partial filter #(= :h4 (:tag %))))
((partial mapcat :content))
((partial filter #(= :a (:tag %))))
((partial mapcat :content))))
clojurebot from #clojure uses this to search assembla tickets