SDL Tile and Sprite Rendering Terrain - c++

Hello recently i started to mess around with SDL. Since i was interested in some 2D/2.5D games.So i started messing around with SDL in C++, I was looking to recreate something similar to Original Zelda.
So as far as i understand those game work with some kind of isometric prespective, or standard Orthogonal view but one thing i do not understand is how can you generate 3D-like Collisions between those objects on the map (tiles, sprites etc which are in 2D). Have a look at the video link below. Is this created purely in SDL, is it PerPixel collision or rectangular ? Or it might involve OpenGL as well ?
Link: https://www.youtube.com/watch?v=wFvAByqAuk0

The original was probably a simple Rectangular collision.
I believe that your "3D collision" is the partial collision present in some objects. For example, Link can go through the leaves, but not through the trunk.
You can do it easily in 2 ways:
Layers of rendering and collision. The trunk is located in one layer and is covered by some collision boxes. Link is present in a intermediary layer. And the leaves are in another layer, on top of Link. Then you can check collision between Link's Layer and the layer with the trunk and other objects, for example.
Additionally you can create a property for your tiles in which you can store the type of collision you hope to obtain. For example, 'box' collision will tell your engine that the object is collidable on every side. Or 'bottom' collision will tell your engine that Link will collide with this object only if he is walking down into the object (this is the effect of you will see on some 2D sidescrollers: jump through a tile but then fall into it solid.
Per pixel collision in those simple cases is not worth it. I find it much better to personalize the collision ourselves, using creativity, masks and layers.
BTW: This topic would fit better on https://gamedev.stackexchange.com/

Related

Basic 3D OpenGL collision detection C++

I'm currently in the process of developing a very basic 3D OpenGL game in C++ as part of a small college project. We don't get a lot of insight from the teachers however, and only very limited documentation, as well as a small timeframe, so I'm kind of a little lost here at the moment.
My game is a tank battle on an orthogonal plane that pretty much looks exactly like the image I sketched below. Each tank (A and B) can be controlled by a different player, and each one can shoot projectiles, which are supposed to influence the other tank's score upon collision.
My question is, what would be the simplest way of effectively implementing collisions for the tanks? (Tank vs tank, tank vs map boundaries and tank vs any kind of parallelepipedic object like the one in the center of the picture - and the same thing but applied to the projectiles shot from the tank turrets).
Ideally, without the need of using an external physics engine, but also accepted if the implementation can be done easily. At the moment, I'm solely using the GLUT library.
Download and integrate Box2D (http://box2d.org) into your project.
Unless your project is to implement a physics engine, then don't bother doing it yourself. Your time will be much better spent learning how to integratate libraries and how proper physics engines work.
You can then easily use a box collider for your tanks, circle for projectiles and 4 lines for your perimeter. You can create callbacks to notify you when a projectile has collided with another tank.
You will have to use forces and torques to move and rotate your tanks, rather than just updating their positions. But you would probably have to do that anyway if you were going to implement the physics yourself.

Bullet to detect collision detection

Actually, I'm currently working on a simple project to detect collision between 2 specific objects in a surgery scene. The problem is that I don't have background on such problems so I'm really newbie to such things and I don't know yet what to do. After a little bit of research, I found Bullet library which can be used as a collision detection tool but not sure yet if it suits my case. I already checked some examples where the developer create the objects of interest manually which led me to think that I should detect first the objects of interest then launch the collision detection process.
In my case, I have 2 types of data:
Video shooting the operating room
Cloud points representing the room in 3D
I need to detect the collision between two objects in the scene. Is there any way to use Bullet to achieve such thing? Is it common to use a video as input for a detection collision problem(I'm wondering since I could find too much resources on it)?
I'm just starting so it might be a fuzzy question so sorry in advance for any inconveniences.
EDITED:
I already checked it but my point was to understand what options can be used before digging into the details. For me, a collision detection problem should have 2 parts: the objects of interest (The 2 or more objects that we're trying to detect their collision) and the scene in which we will be trying to detect the collision of the objects of interest. For the scene, the data I have is presented in 2 types mentioned above. So, I was asking about which type of data should be used as input for bullet collision process. Should it be an image taken from the video or should it be a list of 3D points? Or something else?
I have used Bullet half a year ago. I remember, that you need to register objects to Bullet with a collision shape. In simplistic case of your points, it could probably be small spheres. In case of your video, you need to have a 3d representation. I do not understand a 100% what you mean by detecting a "video" for collisions. However, to use Bullet, you need to have a collision shape associated with the object.
Further, you register a Collision Callback. This is one function called for each collision detected. All callbacks are listed here: http://www.bulletphysics.org/mediawiki-1.5.8/index.php?title=Collision_Callbacks_and_Triggers
As the wiki says - and I implemented it this way - to detect a specific collision, you need to iterate over allr esulting manifolds from Bullet manually. A little bit painful and performance wise strange approach. So you cannot register a specific callback for a specific object with another specific object!
Once the objects are registered, you run the algorithm and then you can check all manifolds in the callback.
To get started with Bullet, I used Bullet Physics Simplest Collision Example with the answers at that time.

Tilemap 2D realistic fluid physics

I'm interested in trying to create realistic fluids (water), for a 2D game. This game is similar to Terraria. I have heard about how you can slap a bunch of colliding particles on the scene and render over it and voila, realistic acting water.
Terraria uses tile based water, which I am not a fan of.. I want something more advanced.
I thought about using bullet 3D physics (box2d has limits I would hit). For non colliding particle effects, I am thinking about using something like SPARK, since I think that'd give me the best of both worlds.
The issue I am thinking about, is that each block is 16x16, so on a 1600x900 scene, there are about 5 thousand tiles.
So I need to tell the physics engine that these tiles are collidable. Of course, there are void tiles that are considered to be non collidable.
Does anyone have ideas on this? Language is C++, I doubt that's relevant though.
EDIT: i think i'm going to have to cave in and use grid based water. I suppose, in retrospect particle based just makes everything more difficult but for what gain?
Your question is about tiled fluids, but you seem to actually be asking about a particle based approach.
If that's the case, what you're looking for is "Smoothed Particle Hydrodynamics", or SPH, which is a very popular technique for 2D and 3D fluid simulations in realtime situations.
Yes, it's basically just a particle system, with each particle responding to the forces in your environment (gravity, collisions etc.) in a reasonable (mathematically stable) way, combined with a constraint that they must stay a certain distance apart in order that the fluid is incompressible.
You can render the particles as points, if you have enough of them, or you can use them as a source for deriving a surface (for example using marching-cubes, though in 2D I wouldn't worry about that).
http://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics
It has the advantage of being relatively easy to code, and indeed to accelerate on a GPU.
Indeed I think they're probably a better approach than trying some kind of tile-based approach, and you get some more interesting results, such as spray kicking up, waves kicking against the edges of objects, etc. It's not too hard to get something pleasing working, I'd give it a go.

Game engines: What are scene graphs?

I've started reading into the material on Wikipedia, but I still feel like I don't really understand how a scene graph works and how it can provide benefits for a game.
What is a scene graph in the game engine development context?
Why would I want to implement one for my 2D game engine?
Does the usage of a scene graph stand as an alternative to a classic entity system with a linear entity manager?
What is a scene graph in the game
engine development context?
Well, it's some code that actively sorts your game objects in the game space in a way that makes it easy to quickly find which objects are around a point in the game space.
That way, it's easy to :
quickly find which objects are in the camera view (and send only them to the graphics cards, making rendering very fast)
quickly find objects near to the player (and apply collision checks to only those ones)
And other things. It's about allowing quick search in space. It's called "space partitioning". It's about divide and conquer.
Why would I want to implement one for
my 2D game engine?
That depends on the type of game, more precisely on the structure of your game space.
For example, a game like Zelda could not need such techniques if it's fast enough to test collision between all objects in the screen. However it can easily be really really slow, so most of the time you at least setup a scene graph (or space partition of any kind) to at least know what is around all the moving objects and test collisions only on those objects.
So, that depends. Most of the time it's required for performance reasons. But the implementation of your space partitioning is totally relative to the way your game space is structured.
Does the usage of a scene graph stand
as an alternative to a classic entity
system with a linear entity manager?
No.
Whatever way you manage your game entities' object life, the space-partition/scene-graph is there only to allow you to quickly search objects in space, no more no less. Most of the time it will be an object that will have some slots of objects, corresponding to different parts of the game space and in those slots it will be objects that are in those parts.
It can be flat (like a 2D screen divider in 2 or 4), or it can be a tree (like binary tree or quadtree, or any other kind of tree) or any other sorting structure that limits the number of operations you have to execute to get some space-related informations.
Note one thing :
In some cases, you even need different separate space partition systems for different purposes. Often a "scene graph" is about rendering so it's optimized in a way that is dependent on the player's point of view and it's purpose is to allow quick gathering of a list of objects to render to send to the graphics card. It's not really suited to perform searches of objects around another object and that makes it hard to use for precise collision detection, like when you use a physic engine. So to help, you might have a different space partition system just for physics purpose.
To give an example, I want to make a "bullet hell" game, where there is a lot of balls that the player's spaceship has to dodge in a very precise way. To achieve enough rendering and collision detection performance I need to know :
when bullets appear in the screen space
when bullets leave the screen space
when the player enters in collision with bullets
when the player enters in collision with monsters
So I recursively cut the screen that is 2D in 4 parts, that gives me a quadtree. The quadtree is updated each game tick, because everything moves constantly, so I have to keep track of each object's (spaceship, bullet, monster) position in the quadtree to know which one is in which part of the screen.
Achieving 1. is easy, just enter the bullet in the system.
To achieve 2. I kept a list of leaves in the quadtree (squared sections of the screen) that are on the border of the screen. Those leaves contain the ids/pointers of the bullets that are near the border so I just have to check that they are moving out to know if I can stop rendering them and managing collision too. (It might be bit more complex but you get the idea.)
To achieve 3 and 4. I need to retrieve the objects that are near the player's spaceship. So first I get the leaf where the player's spaceship is and I get all of the objects in it. That way I will only test the collision with the player spaceship on objects that are around it, not all objects. (It IS a bit more complex but you get the idea.)
That way I can make sure that my game will run smoothly even with thousands of bullets constantly moving.
In other types of space structure, other types of space partitioning are required. Typically, kart/auto games will have a "tunnel" scene-graph because visually the player will see only things along the road, so you just have to check where he is on the road to retrieve all visible objects around in the "tunnel".
What is a scene graph? A Scene graph contains all of the geometry of a particular scene. They are useful for representing translations, rotations and scales (along with other affine transformations) of objects relative to each other.
For instance, consider a tank (the type with tracks and a gun). Your scene may have multiple tanks, but each one be oriented and positioned differently, with each having its turret rotated to different azimuth and with a different gun elevation. Rather than figuring out exactly how the gun should be positioned for each tank, you can accumulate affine transformations as you traverse your scene graph to properly position it. It makes computation of such things much easier.
2D Scene Graphs: Use of a scene graph for 2D may be useful if your content is sufficiently complex and if your objects have a number of sub components not rigidly fixed to the larger body. Otherwise, as others have mentioned, it's probably overkill. The complexity of affine transformations in 2D is quite a bit less than in the 3D case.
Linear Entity Manager: I'm not clear on exactly what you mean by a linear entity manager, but if you are refering to just keeping track of where things are positioned in your scene, then scene graphs can make things easier if there is a high degree of spatial dependence between the various objects or sub-objects in your scene.
A scene graph is a way of organizing all objects in the environment. Usually care is taken to organize the data for efficient rendering. The graph, or tree if you like, can show ownership of sub objects. For example, at the highest level there may be a city object, under it would be many building objects, under those may be walls, furniture...
For the most part though, these are only used for 3D scenes. I would suggest not going with something that complicated for a 2D scene.
There appear to be quite a few different philosophies on the web as to what the responsebilties are of a scenegraph. People tend to put in a lot of different things like geometry, camera's, light sources, game triggers etc.
In general I would describe a scenegraph as a description of a scene and is composed of a single or multiple datastructures containing the entities present in the scene. These datastructures can be of any kind (array, tree, Composite pattern, etc) and can describe any property of the entities or any relationship between the entities in the scene.
These entities can be anything ranging from solid drawable objects to collision-meshes, camera's and lightsources.
The only real restriction I saw so far is that people recommend keeping game specific components (like game triggers) out to prevent depedency problems later on. Such things would have to be abstracted away to, say, "LogicEntity", "InvisibleEntity" or just "Entity".
Here are some common uses of and datastructures in a scenegraph.
Parent/Child relationships
The way you could use a scenegraph in a game or engine is to describe parent/child relationships between anything that has a position, be it a solid object, a camera or anything else. Such a relationship would mean that the position, scale and orientation of any child would be relative to that of its parent. This would allow you to make the camera follow the player or to have a lightsource follow a flashlight object. It would also allow you to make things like the solar system in which you can describe the position of planets relative to the sun and the position of moons relative to their planet if that is what you're making.
Also things specific to some system in your game/engine can be stored in the scenegraph. For example, as part of a physics engine you may have defined simple collision-meshes for solid objects which may have too complex geometry to test collisions on. You could put these collision-meshes (I'm sure they have another name but I forgot it:P) in your scenegraph and have them follow the objects they model.
Space-partitioning
Another possible datastructure in a scenegraph is some form of space-partitioning as stated in other answers. This would allow you to perform fast queries on the scene like clipping any object that isn't in the viewing frustum or to efficiently filter out objects that need collision checking. You can also allow client code (in case you're writing an engine) to perform custom queries for whatever purpose. That way client code doesn't have to maintain its own space-partitioning structures.
I hope I gave you, and other readers, some ideas of how you can use a scenegraph and what you could put in it. I'm sure there are alot of other ways to use a scenegraph but these are the things I came up with.
In practice, scene objects in videogames are rarely organized into a graph that is "walked" as a tree when the scene is rendered. A graphics system typically expects one big array of stuff to render, and this big array is walked linearly.
Games that require geometric parenting relationships, such as those with people holding guns or tanks with turrets, define and enforce those relationships on an as-needed basis outside of the graphics system. These relationships tend to be only one-deep, and so there is almost never a need for an arbitrarily deep tree structure.

2D collision detection and stuff with OpenGL

I am working on a simple 2D openGL project. It contains a main actor you can control with the keyboard arrows. I got that to work okay. What I am wanting is something that can help explain how to make another actor object follow the main actor. Maybe a tutorial on openGL. The three main things I need to learn are the actor following, collision detection, and some kind of way to create gravity. Any good books or tutorials to help get me in the right direction would be great.
You could use a physics library like Chipmunk Physics, which lets you attach springs and things between the two objects and detect when they hit each other and other things.
A pre-rolled library would be good, but the concepts you describe are ones you need to know if you are going to do any sort of game programming anyways:
A simple way to make one actor follow behind another is to have the lead actor store its position every time it moves. Feed these positions to a trailing actor with a delay of a few values - the longer the delay, the further behind they travel. Simple, but doesn't handle dynamic collision (other actors moving the block collision.)
Collision detection in 2D can simply be axis aligned (AA) bounding boxes. Search for this and you'll see the 4 ifs or so that are needed.
Gravity is just adding a fixed velocity (usually down) to every object every game loop. This is constant acceleration which is exactly how gravity works.