I read that in Unions, the data members occupy the same block of memory. So, I tried to read off ASCII codes of the English Alphabet using this implementation.
union {
int i;
char a,b;
}eps;
eps.i=65;
cout<<eps.a<<eps.b;
I got the right output (A) for 65 but, both a and b seem to occupy the same place in the memory.
Q. But an integer being 2 bytes, shouldn't a have occupied the first 8 bits and b the other 8 ?
Also, while repeating the above with multiple integers inside the union, they seem to have the same value.
Q. So does that mean that every variable of a given data type acts like a reference for any other variable for the same data type? (Given simple adding on the variables int i,j,k,l.....)
Q. Can we only use one (distinct) variable of a given datatype in a union since all others point at the same location?
EDIT
I would like to mention that while adding on any more variables inside the union, it simply means adding them like int i,j,k... not using wrapping them inside struct or in any other way.
As Clarified by Baum mit in the chat (and comments), Here's the discussion for other/future users to see.
Reading a member of a union that is not the one you last wrote to is undefined behavior. This means that your code could do anything and arguing about its behavior is not meaningful.
To perform conversion between types, use the appropriate cast, not a union.
To answer your questions after the edit:
Q. But an integer being 2 bytes, shouldn't a have occupied the first 8 bits and b the other 8 ?
As you said, every member of the union shares the same space. Since a and b are different members, they share the same space too (in the sense that they both live somewhere in the space belonging to the union). The actual layout of the union might look like this:
byte 0 | byte 1 | byte 2 | byte 3
i i i i
a
b
Q. So does that mean that every variable of a given data type acts as a reference for any other variable for the same data type?
No, members of the same time do not act as references to one another. If your have a reference to an object, you can reliably access that object through the reference. Two members of the same type will probably use the exact same memory, but you cannot rely on that. The rule I stated above still applies.
Q. Can we only use one (distinct) variable of a given datatype in a union since all others point at the same location?
You can have as many members of the same type as you want. They might or might not live in the exact same memory. It does not matter because you can only access the last one written to anyways.
You have misunderstood what unions are for. They make no guarantees about sharing memory in any predictable way. They simply provide a way to say an entity could store one of several types of information. If you set one type, the others are undefined (could be anything, even something unrelated to the data you put in). How they share memory is up to the compiler, and could depend on optimisations which are enabled (e.g. memory alignment rules).
Having said all that, in most situations (and with optimisations disabled), you will find that each part of a union begins at byte 0 of the union (do not rely on this). In your code, union{int i;char a,b;} says "this union could be an integer i, or a char a, or a char b". You could use (as many have suggested), union{int i;struct{char a,b;}}, which would tell the compiler: "this union could be an integer i, or it could be a structure of characters a and b".
Casting from one type to another, or to its component bytes, therefore is not a job for unions. Instead you should use casts.
So where would you use a union? Here's an example:
struct {
int type; // maybe 0 = int, 1 = long, ...
union {
char c;
int i;
long l;
float f;
double d;
struct {
int x;
int y;
} pos;
// etc.
} value;
};
With an object like that, we can dynamically store numbers of any type (or whatever else we might want, like 2D position in this example), while keeping track of what's actually there using an external variable. It uses much less memory than the equivalent code would without a union, and makes setting/getting safe (we don't need to cast pointers all over the place)
Recall that an union type is a set of alternative possibilities. The formal wording is that it's the co-product of all the types its fields belong to.
union {
int i;
char a,b;
}
is syntactically equivalent to:
union {
int i;
char a;
char b;
}
a and b being of the same type, they don't contribute more together than each other taken individually. In other words, b is redundant.
You need to wrap the a and b fields in a struct to get them bundled as one alternative of the union.
union {
int i;
struct {
char a;
char b;
};
}
Furthermore, the int type is on most platforms a 32 bits wide integral type, and char a 8 bit wide integral type — I say usually, because the sizes are not formally defined more than just in terms of int being larger or equal to char.
So, assuming we have the usual definitions for char and int, the second alternative being 16 bit wide, the compiler has the opportunity to place it where it wants within the same space occupied by the larger field (32 bits).
Another issue is the byte ordering which could be different from one platform to the next.
You could perhaps get it to work (and in practice it almost always works) by padding the struct with the missing bytes to reach 32 bits:
union {
int i;
struct {
char a;
char b;
char c;
char d;
};
}
(think of a int representation of an IPv4 address for instance, and the htons function to cover the byte ordering issue).
The definitive rule however is dictated by the C language specifications, which don't specify that point.
To be on the safe side, rather than using an union, I would go for a set of functions to pull out bytes by bit masking, but if you are targeting a specific platform, and the above union works...
Related
Can I assume that a C/C++ struct pointer will always point to the first member?
Example 1:
typedef struct {
unsigned char array_a[2];
unsigned char array_b[5];
}test;
//..
test var;
//..
In the above example will &var always point to array_a?
Also in the above example is it possible to cast the pointer
to an unsigned char pointer and access each byte separately?
Example 2:
function((unsigned char *)&var,sizeof(test));
//...
//...
void function(unsigned char *array, int len){
int i;
for( i=0; i<len; i++){
array[i]++;
}
}
Will that work correctly?
Note: I know that chars are byte aligned in a struct therefore I assume the size of the above struct is 7 bytes.
For C structs, yes, you can rely on it. This is how almost all "object orientated"-style APIs work in C (such as GObject and GTK).
For C++, you can rely on it only for "plain old data" (POD) types, which are guaranteed to be laid out in memory the same way as C structs. Exactly what constitutes a POD type is a little complicated and has changed between C++03 and C++11, but the crux of it is that if your type has any virtual functions then it's not a POD.
(In C++11 you can use std::is_pod to test at compile-time whether a struct is a POD type.)
EDIT: This tells you what constitutes a POD type in C++: http://en.cppreference.com/w/cpp/concept/PODType
EDIT2: Actually, in C++11, it doesn't need to be a POD, just "standard layout", which is a lightly weaker condition. Quoth section 9.2 [class.mem] paragraph 20 of the standard:
A pointer to a standard-layout struct object, suitably converted using a reinterpret_cast, points to its
initial member (or if that member is a bit-field, then to the unit in which it resides) and vice versa. [ Note:
There might therefore be unnamed padding within a standard-layout struct object, but not at its beginning,
as necessary to achieve appropriate alignment. — end note ]
From the C99 standard section 6.7.2.1 bullet point 13:
Within a structure object, the non-bit-field members and the units in
which bit-fields reside have addresses that increase in the order in
which they are declared. A pointer to a structure object, suitably
converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides), and vice versa.
There may be unnamed padding within a structure object, but not at its
beginning.
The answer to your question is therefore yes.
Reference (see page 103)
The compiler is free to add padding and reorganize the struct how it sees fit. Especially in C++ you can add (virtual) functions and then chances are that the virtual table is hidden before that. But of course that are implementation details.
For C this assumption is valid.
For C, it's largely implementation-specific, but in practice the rule (in the absence of #pragma pack or something likewise) is:
Struct members are stored in the order they are declared. (This is required by the C99 standard, as mentioned here earlier.)
If necessary, padding is added before each struct member, to ensure correct alignment.
So given a struct like
struct test{
char ch;
int i;
}
will have ch at offset 0, then a padding byte to align, i at offset 2 and then at the end, padding bytes are added to make the struct size a multiple of 8 bytes.(on a 64-bit machine, 4 byte alignment may be permitted in 32 bit machines)
So at least in this case, for C, I think you can assume that the struct pointer will point to the first array.
As an example, consider the following structure:
struct S {
int a[4];
int b[4];
} s;
Would it be legal to write s.a[6] and expect it to be equal to s.b[2]?
Personally, I feel that it must be UB in C++, whereas I'm not sure about C.
However, I failed to find anything relevant in the standards of C and C++ languages.
Update
There are several answers suggesting ways to make sure there is no padding
between fields in order to make the code work reliably. I'd like to emphasize
that if such code is UB, then absense of padding is not enough. If it is UB,
then the compiler is free to assume that accesses to S.a[i] and S.b[j] do not
overlap and the compiler is free to reorder such memory accesses. For example,
int x = s.b[2];
s.a[6] = 2;
return x;
can be transformed to
s.a[6] = 2;
int x = s.b[2];
return x;
which always returns 2.
Would it be legal to write s.a[6] and expect it to be equal to s.b[2]?
No. Because accessing an array out of bound invoked undefined behaviour in C and C++.
C11 J.2 Undefined behavior
Addition or subtraction of a pointer into, or just beyond, an array object and an integer type produces a result that points just beyond
the array object and is used as the operand of a unary * operator that
is evaluated (6.5.6).
An array subscript is out of range, even if an object is apparently accessible with the given subscript (as in the lvalue expression
a[1][7] given the declaration int a[4][5]) (6.5.6).
C++ standard draft section 5.7 Additive operators paragraph 5 says:
When an expression that has integral type is added to or subtracted
from a pointer, the result has the type of the pointer operand. If the
pointer operand points to an element of an array object, and the array
is large enough, the result points to an element offset from the
original element such that the difference of the subscripts of the
resulting and original array elements equals the integral expression.
[...] If both the pointer operand and the result point to elements
of the same array object, or one past the last element of the array
object, the evaluation shall not produce an overflow; otherwise, the
behavior is undefined.
Apart from the answer of #rsp (Undefined behavior for an array subscript that is out of range) I can add that it is not legal to access b via a because the C language does not specify how much padding space can be between the end of area allocated for a and the start of b, so even if you can run it on a particular implementation , it is not portable.
instance of struct:
+-----------+----------------+-----------+---------------+
| array a | maybe padding | array b | maybe padding |
+-----------+----------------+-----------+---------------+
The second padding may miss as well as the alignment of struct object is the alignment of a which is the same as the alignment of b but the C language also does not impose the second padding not to be there.
a and b are two different arrays, and a is defined as containing 4 elements. Hence, a[6] accesses the array out of bounds and is therefore undefined behaviour. Note that array subscript a[6] is defined as *(a+6), so the proof of UB is actually given by section "Additive operators" in conjunction with pointers". See the following section of the C11-standard (e.g. this online draft version) describing this aspect:
6.5.6 Additive operators
When an expression that has integer type is added to or subtracted
from a pointer, the result has the type of the pointer operand. If the
pointer operand points to an element of an array object, and the array
is large enough, the result points to an element offset from the
original element such that the difference of the subscripts of the
resulting and original array elements equals the integer expression.
In other words, if the expression P points to the i-th element of an
array object, the expressions (P)+N (equivalently, N+(P)) and (P)-N
(where N has the value n) point to, respectively, the i+n-th and
i-n-th elements of the array object, provided they exist. Moreover, if
the expression P points to the last element of an array object, the
expression (P)+1 points one past the last element of the array object,
and if the expression Q points one past the last element of an array
object, the expression (Q)-1 points to the last element of the array
object. If both the pointer operand and the result point to elements
of the same array object, or one past the last element of the array
object, the evaluation shall not produce an overflow; otherwise, the
behavior is undefined. If the result points one past the last element
of the array object, it shall not be used as the operand of a unary *
operator that is evaluated.
The same argument applies to C++ (though not quoted here).
Further, though it is clearly undefined behaviour due to the fact of exceeding array bounds of a, note that the compiler might introduce padding between members a and b, such that - even if such pointer arithmetics were allowed - a+6 would not necessarily yield the same address as b+2.
Is it legal? No. As others mentioned, it invokes Undefined Behavior.
Will it work? That depends on your compiler. That's the thing about undefined behavior: it's undefined.
On many C and C++ compilers, the struct will be laid out such that b will immediately follow a in memory and there will be no bounds checking. So accessing a[6] will effectively be the same as b[2] and will not cause any sort of exception.
Given
struct S {
int a[4];
int b[4];
} s
and assuming no extra padding, the structure is really just a way of looking at a block of memory containing 8 integers. You could cast it to (int*) and ((int*)s)[6] would point to the same memory as s.b[2].
Should you rely on this sort of behavior? Absolutely not. Undefined means that the compiler doesn't have to support this. The compiler is free to pad the structure which could render the assumption that &(s.b[2]) == &(s.a[6]) incorrect. The compiler could also add bounds checking on the array access (although enabling compiler optimizations would probably disable such a check).
I've have experienced the effects of this in the past. It's quite common to have a struct like this
struct Bob {
char name[16];
char whatever[64];
} bob;
strcpy(bob.name, "some name longer than 16 characters");
Now bob.whatever will be " than 16 characters". (which is why you should always use strncpy, BTW)
As #MartinJames mentioned in a comment, if you need to guarantee that a and b are in contiguous memory (or at least able to be treated as such, (edit) unless your architecture/compiler uses an unusual memory block size/offset and forced alignment that would require padding to be added), you need to use a union.
union overlap {
char all[8]; /* all the bytes in sequence */
struct { /* (anonymous struct so its members can be accessed directly) */
char a[4]; /* padding may be added after this if the alignment is not a sub-factor of 4 */
char b[4];
};
};
You can't directly access b from a (e.g. a[6], like you asked), but you can access the elements of both a and b by using all (e.g. all[6] refers to the same memory location as b[2]).
(Edit: You could replace 8 and 4 in the code above with 2*sizeof(int) and sizeof(int), respectively, to be more likely to match the architecture's alignment, especially if the code needs to be more portable, but then you have to be careful to avoid making any assumptions about how many bytes are in a, b, or all. However, this will work on what are probably the most common (1-, 2-, and 4-byte) memory alignments.)
Here is a simple example:
#include <stdio.h>
union overlap {
char all[2*sizeof(int)]; /* all the bytes in sequence */
struct { /* anonymous struct so its members can be accessed directly */
char a[sizeof(int)]; /* low word */
char b[sizeof(int)]; /* high word */
};
};
int main()
{
union overlap testing;
testing.a[0] = 'a';
testing.a[1] = 'b';
testing.a[2] = 'c';
testing.a[3] = '\0'; /* null terminator */
testing.b[0] = 'e';
testing.b[1] = 'f';
testing.b[2] = 'g';
testing.b[3] = '\0'; /* null terminator */
printf("a=%s\n",testing.a); /* output: a=abc */
printf("b=%s\n",testing.b); /* output: b=efg */
printf("all=%s\n",testing.all); /* output: all=abc */
testing.a[3] = 'd'; /* makes printf keep reading past the end of a */
printf("a=%s\n",testing.a); /* output: a=abcdefg */
printf("b=%s\n",testing.b); /* output: b=efg */
printf("all=%s\n",testing.all); /* output: all=abcdefg */
return 0;
}
No, since accesing an array out of bounds invokes Undefined Behavior, both in C and C++.
Short Answer: No. You're in the land of undefined behavior.
Long Answer: No. But that doesn't mean that you can't access the data in other sketchier ways... if you're using GCC you can do something like the following (elaboration of dwillis's answer):
struct __attribute__((packed,aligned(4))) Bad_Access {
int arr1[3];
int arr2[3];
};
and then you could access via (Godbolt source+asm):
int x = ((int*)ba_pointer)[4];
But that cast violates strict aliasing so is only safe with g++ -fno-strict-aliasing. You can cast a struct pointer to a pointer to the first member, but then you're back in the UB boat because you're accessing outside the first member.
Alternatively, just don't do that. Save a future programmer (probably yourself) the heartache of that mess.
Also, while we're at it, why not use std::vector? It's not fool-proof, but on the back-end it has guards to prevent such bad behavior.
Addendum:
If you're really concerned about performance:
Let's say you have two same-typed pointers that you're accessing. The compiler will more than likely assume that both pointers have the chance to interfere, and will instantiate additional logic to protect you from doing something dumb.
If you solemnly swear to the compiler that you're not trying to alias, the compiler will reward you handsomely:
Does the restrict keyword provide significant benefits in gcc / g++
Conclusion: Don't be evil; your future self, and the compiler will thank you.
Jed Schaff’s answer is on the right track, but not quite correct. If the compiler inserts padding between a and b, his solution will still fail. If, however, you declare:
typedef struct {
int a[4];
int b[4];
} s_t;
typedef union {
char bytes[sizeof(s_t)];
s_t s;
} u_t;
You may now access (int*)(bytes + offsetof(s_t, b)) to get the address of s.b, no matter how the compiler lays out the structure. The offsetof() macro is declared in <stddef.h>.
The expression sizeof(s_t) is a constant expression, legal in an array declaration in both C and C++. It will not give a variable-length array. (Apologies for misreading the C standard before. I thought that sounded wrong.)
In the real world, though, two consecutive arrays of int in a structure are going to be laid out the way you expect. (You might be able to engineer a very contrived counterexample by setting the bound of a to 3 or 5 instead of 4 and then getting the compiler to align both a and b on a 16-byte boundary.) Rather than convoluted methods to try to get a program that makes no assumptions whatsoever beyond the strict wording of the standard, you want some kind of defensive coding, such as static assert(&both_arrays[4] == &s.b[0], "");. These add no run-time overhead and will fail if your compiler is doing something that would break your program, so long as you don’t trigger UB in the assertion itself.
If you want a portable way to guarantee that both sub-arrays are packed into a contiguous memory range, or split a block of memory the other way, you can copy them with memcpy().
The Standard does not impose any restrictions upon what implementations must do when a program tries to use an out-of-bounds array subscript in one structure field to access a member of another. Out-of-bounds accesses are thus "illegal" in strictly conforming programs, and programs which make use of such accesses cannot simultaneously be 100% portable and free of errors. On the other hand, many implementations do define the behavior of such code, and programs which are targeted solely at such implementations may exploit such behavior.
There are three issues with such code:
While many implementations lay out structures in predictable fashion, the Standard allows implementations to add arbitrary padding before any structure member other than the first. Code could use sizeof or offsetof to ensure that structure members are placed as expected, but the other two issues would remain.
Given something like:
if (structPtr->array1[x])
structPtr->array2[y]++;
return structPtr->array1[x];
it would normally be useful for a compiler to assume that the use of structPtr->array1[x] will yield the same value as the preceding use in the "if" condition, even though it would change the behavior of code that relies upon aliasing between the two arrays.
If array1[] has e.g. 4 elements, a compiler given something like:
if (x < 4) foo(x);
structPtr->array1[x]=1;
might conclude that since there would be no defined cases where x isn't less than 4, it could call foo(x) unconditionally.
Unfortunately, while programs can use sizeof or offsetof to ensure that there aren't any surprises with struct layout, there's no way by which they can test whether compilers promise to refrain from the optimizations of types #2 or #3. Further, the Standard is a little vague about what would be meant in a case like:
struct foo {char array1[4],array2[4]; };
int test(struct foo *p, int i, int x, int y, int z)
{
if (p->array2[x])
{
((char*)p)[x]++;
((char*)(p->array1))[y]++;
p->array1[z]++;
}
return p->array2[x];
}
The Standard is pretty clear that behavior would only be defined if z is in the range 0..3, but since the type of p->array in that expression is char* (due to decay) it's not clear the cast in the access using y would have any effect. On the other hand, since converting pointer to the first element of a struct to char* should yield the same result as converting a struct pointer to char*, and the converted struct pointer should be usable to access all bytes therein, it would seem the access using x should be defined for (at minimum) x=0..7 [if the offset of array2 is greater than 4, it would affect the value of x needed to hit members of array2, but some value of x could do so with defined behavior].
IMHO, a good remedy would be to define the subscript operator on array types in a fashion that does not involve pointer decay. In that case, the expressions p->array[x] and &(p->array1[x]) could invite a compiler to assume that x is 0..3, but p->array+x and *(p->array+x) would require a compiler to allow for the possibility of other values. I don't know if any compilers do that, but the Standard doesn't require it.
Can I assume that a C/C++ struct pointer will always point to the first member?
Example 1:
typedef struct {
unsigned char array_a[2];
unsigned char array_b[5];
}test;
//..
test var;
//..
In the above example will &var always point to array_a?
Also in the above example is it possible to cast the pointer
to an unsigned char pointer and access each byte separately?
Example 2:
function((unsigned char *)&var,sizeof(test));
//...
//...
void function(unsigned char *array, int len){
int i;
for( i=0; i<len; i++){
array[i]++;
}
}
Will that work correctly?
Note: I know that chars are byte aligned in a struct therefore I assume the size of the above struct is 7 bytes.
For C structs, yes, you can rely on it. This is how almost all "object orientated"-style APIs work in C (such as GObject and GTK).
For C++, you can rely on it only for "plain old data" (POD) types, which are guaranteed to be laid out in memory the same way as C structs. Exactly what constitutes a POD type is a little complicated and has changed between C++03 and C++11, but the crux of it is that if your type has any virtual functions then it's not a POD.
(In C++11 you can use std::is_pod to test at compile-time whether a struct is a POD type.)
EDIT: This tells you what constitutes a POD type in C++: http://en.cppreference.com/w/cpp/concept/PODType
EDIT2: Actually, in C++11, it doesn't need to be a POD, just "standard layout", which is a lightly weaker condition. Quoth section 9.2 [class.mem] paragraph 20 of the standard:
A pointer to a standard-layout struct object, suitably converted using a reinterpret_cast, points to its
initial member (or if that member is a bit-field, then to the unit in which it resides) and vice versa. [ Note:
There might therefore be unnamed padding within a standard-layout struct object, but not at its beginning,
as necessary to achieve appropriate alignment. — end note ]
From the C99 standard section 6.7.2.1 bullet point 13:
Within a structure object, the non-bit-field members and the units in
which bit-fields reside have addresses that increase in the order in
which they are declared. A pointer to a structure object, suitably
converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides), and vice versa.
There may be unnamed padding within a structure object, but not at its
beginning.
The answer to your question is therefore yes.
Reference (see page 103)
The compiler is free to add padding and reorganize the struct how it sees fit. Especially in C++ you can add (virtual) functions and then chances are that the virtual table is hidden before that. But of course that are implementation details.
For C this assumption is valid.
For C, it's largely implementation-specific, but in practice the rule (in the absence of #pragma pack or something likewise) is:
Struct members are stored in the order they are declared. (This is required by the C99 standard, as mentioned here earlier.)
If necessary, padding is added before each struct member, to ensure correct alignment.
So given a struct like
struct test{
char ch;
int i;
}
will have ch at offset 0, then a padding byte to align, i at offset 2 and then at the end, padding bytes are added to make the struct size a multiple of 8 bytes.(on a 64-bit machine, 4 byte alignment may be permitted in 32 bit machines)
So at least in this case, for C, I think you can assume that the struct pointer will point to the first array.
I was reading this question here about deciding endianness and the first answer baffled me somewhat.
The code used to decide big endianness is as follows:
int is_big_endian(void)
{
union {
uint32_t i;
char c[4];
} bint = {0x01020304};
return bint.c[0] == 1;
}
My question is how does the compiler here decide what type to use for that array of hex digits? Because technically it fits equally well in both that uint32_t or that char[4].
Why not just store it in the char[4] and skip the union?
Is there some advantage of a union here that I don't see? I know this is called type-punning, but I fail to see its advantage here.
My question is how does the compiler here decide what type to use for that array of hex digits?
As with arrays and aggregate classes, the first initialiser initialises the first member; in this case i. (Of course, unlike those things, it doesn't make sense to have more than one initialiser).
Why not just store it in the char[4] and skip the union? Is there some advantage of a union here that I don't see?
The purpose of this is to initialise the 4-byte integer, then use the char array to examine the individual bytes to determine the memory order. If the most significant byte (0x01) is stored in the first byte, then the system is "big-endian"; otherwise it's "little-endian" (or perhaps something stranger).
The original C standard allowed only to assign a value to the first element of an union. This means: 0x1020304 is assigned to "i", not to "c".
The latest C standard allows assigning to any member like this:
union { ... } bint = { .c = {1,2,3,4} };
union { ... } bint2 = { .i = 0x1020304 };
However - as said - if no name is given then the value is assigned to "i".
Because you want to store 0x01020304 as the unsigned 32-bit integer uint32_t i and then read the first byte char c[0].
Once again, I'm questioning a longstanding belief.
Until today, I believed that the alignment of the following struct would normally be 4 and the size would normally be 5...
struct example
{
int m_Assume_32_Bits;
char m_Assume_8_Bit_Bytes;
};
Because of this assumption, I have data structure code that uses offsetof to determine the distance in bytes between two adjacent items in an array. Today, I spotted some old code that was using sizeof where it shouldn't, couldn't understand why I hadn't had bugs from it, coded up a unit test - and the test surprised me by passing.
A bit of investigation showed that the sizeof the type I used for the test (similar to the struct above) was an exact multiple of the alignment - ie 8 bytes. It had padding after the final member. Here is an example of why I never expected this...
struct example2
{
example m_Example;
char m_Why_Cant_This_Be_At_Offset_6_Bytes;
};
A bit of Googling showed examples that make it clear that this padding after the final member is allowed - for example http://en.wikipedia.org/wiki/Data_structure_alignment#Data_structure_padding (the "or at the end of the structure" bit).
This is a bit embarrassing, as I recently posted this comment - Use of struct padding (my first comment to that answer).
What I can't seem to determine is whether this padding to an exact multiple of the alignment is guaranteed by the C++ standard, or whether it is just something that is permitted and that some (but maybe not all) compilers do.
So - is the size of a struct required to be an exact multiple of the alignment of that struct according to the C++ standard?
If the C standard makes different guarantees, I'm interested in that too, but the focus is on C++.
5.3.3/2
When applied to a class, the result [of sizeof] is the number of bytes in an object of that class, including any padding required for placing objects of that type in an array.
So yes, object size is a multiple of its alignment.
One definition of alignment size:
The alignment size of a struct is the offset from one element to the next element when you have an array of that struct.
By its nature, if you have an array of a struct with two elements, then both need to have aligned members, so that means that yes, the size has to be a multiple of the alignment. (I'm not sure if any standard explicitly enforce this, but because the size and alignment of a struct don't depend on whether the struct is alone or inside an array, the same rules apply to both, so it can't really be any other way.)
The standard says (section [dcl.array]:
An object of array type contains a contiguously allocated non-empty set of N subobjects of type T.
Therefore there is no padding between array elements.
Padding inside structures is not required by the standard, but the standard doesn't permit any other way of aligning array elements.
I am unsure if this is in the actual C/C++ standard, and I am inclined to say that it is up to the compiler (just to be on the safe side). However, I had a "fun" time figuring that out a few months ago, where I had to send dynamically generated C structs as byte arrays across a network as part of a protocol, to communicate with a chip. The alignment and size of all the structs had to be consistent with the structs in the code running on the chip, which was compiled with a variant of GCC for the MIPS architecture. I'll attempt to give the algorithm, and it should apply to all variants of gcc (and hopefully most other compilers).
All base types, like char, short and int align to their size, and they align to the next available position, regardless of the alignment of the parent. And to answer the original question, yes the total size is a multiple of the alignment.
// size 8
struct {
char A; //byte 0
char B; //byte 1
int C; //byte 4
};
Even though the alignment of the struct is 4 bytes, the chars are still packed as close as possible.
The alignment of a struct is equal to the largest alignment of its members.
Example:
//size 4, but alignment is 2!
struct foo {
char A; //byte 0
char B; //byte 1
short C; //byte 3
}
//size 6
struct bar {
char A; //byte 0
struct foo B; //byte 2
}
This also applies to unions, and in a curious way. The size of a union can be larger than any of the sizes of its members, simply due to alignment:
//size 3, alignment 1
struct foo {
char A; //byte 0
char B; //byte 1
char C; //byte 2
};
//size 2, alignment 2
struct bar {
short A; //byte 0
};
//size 4! alignment 2
union foobar {
struct foo A;
struct bar B;
}
Using these simple rules, you should be able to figure out the alignment/size of any horribly nested union/struct you come across. This is all from memory, so if I have missed a corner case that can't be decided from these rules please let me know!
C++ doesn't explicitly says so, but it is a consequence of two other requirements:
First, all objects must be well-aligned.
3.8/1 says
The lifetime of an object of type T begins when [...] storage with the proper alignment and size for type T is obtained
and 3.9/5:
Object types have *alignnment requirements (3.9.1, 3.9.2). The alignment of a complete object type is an implementation-defined integer value representing a number of bytes; an object is allocated at an address that meets the alignment requirements of its object type.
So every object must be aligned according to its alignment requirements.
The other requirement is that objects in an array are allocated contigulously:
8.3.4/1:
An object of array type contains a contiguously allocated non-empty set of N subobjects of type T.
For the objects in an array to be contiguously allocated, there can be no padding between them. But for every object in the array to be properly aligned, each individual object must be padded so that the byte immediately after the end of the object is also well aligned. In other words, the size of the object must be a multiple of its alignment.
So to split your question up into two:
1. Is it legal?
[5.3.3.2] When applied to a class, the result [of the sizeof() operator] is the number of bytes in an object of that class including any padding required for placing objects of that type in an array.
So, no, it's not.
2. Well, why isn't it?
Here, I cna only speculate.
2.1. Pointer arithmetics get weirder
If alignment would be "between array elements" but would not affect the size, zthigns would get needlessly complicated, e.g.
(char *)(X+1) != ((char *)X) + sizeof(X)
(I have a hunch that this is required implicitely by the standard even without above statement, but I can't put it to proof)
2.2 Simplicity
If alignment affects size, alignment and size can be decided by looking at a single type. Consider this:
struct A { int x; char y; }
struct B { A left, right; }
With the current standard, I just need to know sizeof(A) to determine size and layout of B.
With the alternate you suggest I need to know the internals of A. Similar to your example2: for a "better packing", sizeof(example) is not enough, you need to consider the internals of example.
It is possible to produce a C or C++ typedef whose alignment is not a multiple of its size. This came up recently in this bindgen bug. Here's a minimal example, which I'll call test.c below:
#include <stdio.h>
#include <stdalign.h>
__attribute__ ((aligned(4))) typedef struct {
char x[3];
} WeirdType;
int main() {
printf("sizeof(WeirdType) = %ld\n", sizeof(WeirdType));
printf("alignof(WeirdType) = %ld\n", alignof(WeirdType));
return 0;
}
On my Arch Linux x86_64 machine, gcc -dumpversion && gcc test.c && ./a.out prints:
9.3.0
sizeof(WeirdType) = 3
alignof(WeirdType) = 4
Similarly clang -dumpversion && clang test.c && ./a.out prints:
9.0.1
sizeof(WeirdType) = 3
alignof(WeirdType) = 4
Saving the file as test.cc and using g++/clang++ gives the same result. (Update from a couple years later: I get the same results from GCC 11.1.0 and Clang 13.0.0.)
Notably however, MSVC on Windows does not seem to reproduce any behavior like this.
The standard says very little about padding and alignment. Very little is guaranteed. About the only thing you can bet on is that the first element is at the beginning of the structure. After that...alignment and padding can be anything.
Seems the C++03 standard didn't say (or I didn't find) whether the alignment padding bytes should be included in the object representation.
And the C99 standard says the "sizeof" a struct type or union type includes internal and trailing padding, but I'm not sure if all alignment padding is included in that "trailing padding".
Now back to your example. There is really no confusion. sizeof(example) == 8 means the structure does take 8 bytes to represent itself, including the tailing 3 padding bytes. If the char in the second structure has an offset of 6, it will overwrite the space used by m_Example. The layout of a certain type is implementation-defined, and should be kept stable in the whole implementation.
Still, whether p+1 equals (T*)((char*)p + sizeof(T)) is unsure. And I'm hoping to find the answer.