I am a student currently working on my final project. Our project is focusing on new type network coding research. Now my task is to do a real-time video transmission to test the network coding. I have learned something of ffmepg and opencv and have finished a c++ program which can divide the video into frames and send it frame by frame. However, by this way, the transmission data (the frames)size are quite much more than the original video file size. My prof advise me try to find the keyframe and inter frame diff of the video (mjpeg format), so that transmit the keyframe and interframe diff only instead of all the frames with large amount of redundancy, and therefore reduce the transmission data. I have no idea in how to do this in c++ and ffmpeg or opencv. Can any one give any advice?
For my old program, please refer to here. C++ Video streaming and transimisson
I would recommend against using ffmpeg/libav* at all. I would recommend using libx264 directly. By using x264 you can have greater control of NALU slice sizes as well as lower encoder latency by utilizing callbacks.
Two questions which already may help yourself:
How are you interfacing from c++ to ffmpeg? ffmpeg generally refers to the command line tool, from c++ you generally use the individual libs which are part of ffmpeg. You should use libavcodec to encode your frames and possibly libavformat to packetize them into a container format.
Which codec do you use?
Related
Iam stuck with a project in which iam required to write a program in C++ that gets every frame of a raw .yuv video file and calculates the Signal to Noise ratio.
Iam stuck in this and can't find where to start from .. any guide to a tutorial or anything written on how to do this ? how to read a video and get the frames of the videos in c++?
Check out the ffmpeg libraries https://www.ffmpeg.org/about.html for extracting frames from a video stream.
There are other libraries, like OpenCV, which may also help with the image analysis part, and Windows-specific APIs.
For measuring signal:noise, you'll need a mathematical model for noise detection, like autocorrelation.
We're currently developing some functionality for our program that needs OpenCV. One of the ideas being tossed at the table is the use of a "buffer" which saves a minute of video data to the memory and then we need to extract like a 13-second video file from that buffer for every event trigger.
Currently we don't have enough experience with OpenCV so we don't know if it is possible or not. Looking at the documentation the only allowable function to write in memory are imencode and imdecode, but those are images. If we can find a way to write sequences of images to a video file that would be neat, but for now our idea is to use a video buffer.
We're also using OpenCV version 2 specifications.
TL;DR We want to know if it is possible to write a portion of a video to memory.
In OpenCV, every video is treated as a collection of frames(images). Depending on your cameras' FPS you can capture frames periodically and fill the buffer with them. Meanwhile you can destroy the oldest frame(taken 1 min before). So a FIFO data structure can be implemented to achieve your goal. Getting a 13 second sample is easy, just jump to a random frame and write 13*FPS frames sequentially to a video file.
But there will be some sync and timing problems AFAIK and as far as I've used OpenCV.
Here is the link of OpenCV documentation about video i/o. Especially the last chunk of code is what you will use for writing.
TL;DR : There is no video, there are sequential images with little differences. So you need to treat them as such.
I am looking for a fast way to load in a video file and to create images from them at certain intervals ( every second, every minute, every hour, etc.).
I tried using DirectShow, but it just ran too slow for me to start the video file and move to a certain location to get data and to save it out to an image. Even if I disabled the reference clock. Tried OpenCV, but it has trouble opening the AVI file unless I know the exact codec information. So if I know a way to get the codec information out from OpenCV I may give it another shot. I tried to use FFMPEG, but I don't have as much control over it as well as I would wish.
Any advice would be greatly appreciated. This is being developed on a Windows box since it has to be hosted on a Windows box.
MPEG-4 format is not an intra-coded format, so you can't just jump to a random frame and decode it on its own, as most frames only encode the differences from one or more other frames. I suspect your decoding is slow because when you land on a frame for which several other dependent frames to be decoded first.
One way to improve performance would be to determine which frames are keyframes (or sometimes also called 'sync' points) and limit your decoding to those frames, since these can be decoded on their own.
I'm not very familiar with DirectShow capabilities, but I would expect it has some API to expose sync points.
Also, I should mention that the QuickTime SDK on Windows is possibly another good option that you have for decoding frames from movies. You should first test that your AVI movies are played correctly in the QuickTime Player. And the QT SDK does expose sync points, see the section Finding Interesting Times in the QT SDK documentation.
ffmpeg's libavformat might work for ya...
Is this possible? Someone tried to do on-line recording of audio and video(of the screen) with ffmpeg? I read everything google can find about ffmpeg in the net. The variant of recording I deed load CPU to 100%, but it still can't convert frames with appr. speed relevant to how fast frames are recording, audio go good, but video lost frames..
Recording audio/video of the screen is possible with ffmpeg. People do this for the purposes of screen casting. Performance of this depends on the hardware in use, the codecs used and various other factors.
See this post (or this one) for some further advice and command line use.
This pretty much depends on the codec used, the frame size/complexity and obviously the capabilities of the computer doing the compression. You can try a low complexity codec like MJPEG, which might improve your experience.
I want to read in an .avi video file for a program that I am making. I have the file location saved as a string. Is there any good tutorials on using .avi files in c++ or does anyone know who to read one in? Is it the same as normal files?
I have a previously asked SO question that goes into better detail but here is what I want to do:
I am making a program that will detect faces (though OpenCV) As of now I have been given a video processor program that will detect each face on a frame, and return the frame as a image and the CvRec of the faces. I want to take these faces and test them to validate that they are all actually faces.
After I have all the faces (tested) I want to then take the images and test them together. I test the faces on each frame for size and distance changes. If the faces pass this for a frame length of two seconds, then I want to crop the face and make it the subject of each frame.
After each frame is cropped I then want to save the new video file for the user.
Hopefully that helps. If anyone needs a better explanation please let me know.
First of all, a little background.
What is AVI?
AVI stands for Audio Video Interleave. It is a special case of the RIFF (Resource Interchange File Format). AVI is defined by Microsoft and it is the most common format for audio/video data.
I assume you would want to read a avi file and decode the compressed video frames. AVI file is just like any other normal file and you can use fread()(in C) or iostream(in C++) to open an avi file and read it contents. But the contents of an avi file are video frames in a compressed format. The compression allows video content of bigger sizes to be efficiently packed in less memory space.To make any sense of this compressed data you would have to decode the encoded data format.You will have to study the standard which describes how AVI encoding is done and then extract and decode the frames. this raw video data now when fed to a video device will be displayed in video format.
It seems you are staying within OpenCV so things are easy. If OpenCV is compiled properly it is capable of delegating io/coding/decoding to other libraries. Quicktime and others for example, but best is to use ffmpeg. You open, read and decode everything using the OpenCV API which gives you the video frame by frame.
Make sure your OpenCV is compiled with ffmpeg support and then read the OpenCV tutorial on how to read/write AVI files. It's really easy.
Getting OpenCV to be built with ffmpeg support might be hard though. You might want to switch to an older version of OpenCV if you can't get ffmpeg running with the current one.
Personally i would not spent time trying to read the video by yourself and delegate the task to OpenCV. That's how it is supposed to be used.