Can I get a more overall/general description of this?
I've been trying to research these things all week, but I only come into super technical explanations or examples.
Could somebody explain the overall process or goal of these VAO's? Maybe outline a bit of a "step-by-step" flowchart for setting up a VAO in OpenGL?
I've never been someone who learns by examples... so all the things I've found online have been really unhelpful so far.
Your Vertex Buffer Objects (VBOs) contain the vertex data. You set up attribute pointers which specify how that data should be accessed and interpreted in order to draw a vertex - how many components are there to each vertex, how are they stored (GL_FLOAT for example) etc.
The Vertex Array Object (VAO) saves all these attributes. Their purpose is to allow you to set up these attributes once and then restore them with one state change whenever you need to use them.
The advantage of this is you can easily set up multiple states and restore them - if I want to draw a cube and a triangle these are two different states - I create a VAO for each and the VAO saves the state for each of them. When I want to draw the cube, I restore the state for the cube only.
Setup
Setup has four steps:
Create the VAO
Bind the VAO
Set up the state
Unbind the VAO
Creating a VAO is very simple:
GLuint vao_name;
glGenVertexArrays(1, &vao_name);
This will generate one vertex array, and store it's name in vao_name.
Once your VAO is created you need to bind it:
glBindVertexArray(vao_name);
Now, any changes you make to the attribute pointers or bindings to the element array buffer will be saved. This is a call to any of the following:
glVertexAttribPointer(...)
glEnableVertexAttribArray(...)
glDisableVertexAttribArray(...)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ...)
Whenever you make one of these calls, the corresponding state is saved in the currently bound VAO. And when you later bind the VAO again, the state is restored.
Once you have set up the state you can unbind the VAO. Do this by binding VAO 0:
glBindVertexArrays(0);
You could also bind a different VAO and set up a different state for that. When this happens it is safe to make changes to the attribute pointers without disrupting your previous state.
Drawing
When you want to draw something all you have to do is restore the VAO:
glBindVertexArray(cube_vao)
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(triangle_vao);
glDrawArrays(GL_TRIANGLES, 0, 3);
glBindVertexArray(0); //Unbind the VAO
Edit:
These are some answers that helped me when I was trying to understand VAOs:
glVertexAttribPointer overwrite, glVertexAttribPointer clarification, When should glVertexAttribPointer be called?
Also, the OpenGL specification explains it well once you've got your head around the basics: https://www.opengl.org/registry/
The VAO holds all information about how to read the attributes from the VBOs.
This includes for each attribute, which VBO it is in; the offset, the stride, how it is encoded (int, float, normalized or not), how many values per attribute. In other words the parameters of glVertexAttribPointer (and the bound GL_ARRAY_BUFFER at the time of the call.
It also holds the element array buffer that holds the indexes.
For what VAO's are, see #ratchet-freak's answer.
As for the goal of VAO's, it's a matter of improving performance by allowing one single state change to setup all vertex attributes bindings, which not only means fewer function calls but also more opportunity for the OpenGL implementation to optimize for this state as a whole.
For VAO, an understanding of VBOs and Shader is a pre-requisite. VAOs provide a way to “pre-define” vertex data and its attributes.
One way to understand is to draw with VBOs and then draw the same with VAOs. You will notice that it is similar to drawing with VBOs, except that it is first "saved" in a VAO for later use. Subsequently, the VAO is made active to actually draw the saved state.
See VBO, Shader, VAO for a fairly good example.
Related
I have a Sphere class that generate the VBO for creating given input radius and some more parameters.
Each Sphere VBO share the same memory layout (let's say vertex indice 0 = vertices, 1 = colors).
I may getting wrong, but if a understand correctly, state is what VAO store. But I don't know if VAO reminds which VBO was bound or use the currently bound VBO. But I think it use the VBO bound when modifying it (so it imply that reconfiguring the VAO for each Sphere render)
Question #1
Is it possible to store on VAO for all of the spheres? Sharing one VAO for multiple VBO.
Question #2
Can we set up the VAO independently from the VBO ? I wanna say, before even creating the VBO and without VBO bound, for example in a static function before even creating Spheres.
Question #3
This question may have non sens and be case-specific, but should I use one VAO and one VBO for each Sphere or share one VAO for all the Spheres (if it's possible) ?
Using the separate attribute format API, it is easy to set up a VAO independently from any particular set of source buffer objects. The vertex format information (component type, count, etc) can all be established via glVertexAttribFormat without a buffer object. You can even set up the relationship between attribute indices and buffer binding points, so that you can read interleaved attributes from a single buffer binding. All without ever binding a buffer object.
Now at the end of the data, you will have to attach buffer objects to the VAO when it comes time to render (via glBindVertexBuffer(s)). And the VAO will store the buffers it was last set with. But you should essentially ignore this. Treat a VAO as if it were just the vertex format state, with buffer binding being something that you do right before you render with it.
And yes, having one VAO and multiple potential buffers that get read with that vertex format (or better yet, just one buffer with multiple mesh data in it that all share the same vertex format, with mesh selection being done via the baseVertex parameter of glDrawElementsBaseVertex) is the right way to go.
All that being said, you also should remember that all spheres are the same mesh. They may appear in different locations with different sizes, but that's just a matter of providing a different transform of a unit sphere. The only reason to use more than one sphere mesh is if you need different resolutions of spheres (more polygons vs. fewer).
I believe I misunderstood the limits of VAO's.
I have 3 VAO's, one for each vertex spec. format.
Focusing on the VAO intended for menus/quads rendering in homogeneous screen coordinates, how many buffers can I have connected to the same array index of a single VAO ?
Due to results in my program I am inclined to believe every separate instance rendered should have it's own VAO. However, I am still able to draw two instances using one VAO, although with incorrect results. (Cursor takes up fullscreen and position doesn't change, rendered overtop fullscreen TitleMenu).
I'm fairly certain I already know the answer is have a VAO for each instance with differing array buffer data, would just like confirmation I have rationalized this correctly.
Also, are the buffers bound to the VAO copied to the VAO and can be deleted?
Does a glVertexAttribPointer() need to be called again to update the information in a VAO ? Or is buffering data to the original buffer sufficient ?
rather than post lots of code, I will phrase this question intuitively. I hope you understand what I am getting at.
I am making a game and in the code I have a model class that loads a model and sets up the VBO for it.
In the loading function, it generates a new VBO ID and loads the vertex data from a file into that buffer by binding it etc. (This works fine)
At the beginning of the program I make one model object and load a .obj file.
In the render function, I simply call the DrawArrays() function (with the neccessary extra stuff) and as I said, everything works fine as the model appears on the screen with no problems.
The problem however, is when I make two model objects at the beginning of the program and load a different .obj file into each one.
The issue is that when I play, only the second model is drawn on screen.
The problem is because I don't properly understand how VBO's work.
This is how I "think" VBO's work.
You can generate as many VBO ID's as you want.
You can bind each ID to make it the active buffer.
You can load vertex data into that buffer.
You now effectively have many different ID's each referring to a "set of vertex data".
By calling the DrawArray function it draws every buffer you have generated (effectively displaying all your models on screen)
Now I know this is wrong because in my limited understanding I can't see how I could turn models on/off. But no matter how many tutorials I look at I can't answer this question because they all focus on displaying that ONE FIRST VBO, which incidentally I can do.
So... if that made sense, could anyone enlighten me?
You're doing it mostly right, but the drawing command does not draw every buffer you have generated. If you want to draw 2 objects with data in different buffers, you'll have to issue 2 drawing commands.
Let me explain, based on how I do it:
You create buffers using glGenBuffers. Before you can use a buffer, you have to "bind" it, that is, make it active using glBindBuffer. When a buffer is active, you can do stuff with it (populate with data for example). Note that there are different bind targets, so you can, for example, have one active array buffer (for vertex data) and one active element array buffer (for index data).
When you want to draw stuff, you have to specify what exactly you want to draw (I'll assume now that you're using your own shader) Usually you specify at least your vertex data and index data. To do this, you first bind your buffer with your vertex data (as an array buffer), then call glVertexAttribPointer with you attribute id. This tells OpenGL that the bound buffer is now the source for the current attribute. Then, you bind your index buffer as the element array buffer and call glDrawElements (not sure how glDrawArrays would work here).
You cannot use multiple VBOs at once for the same attribute - the call to bind another buffer just overwrites the previous call and makes the second buffer active, which, I assume, is why only your second object gets drawn.
You can also use VAOs to simplify the drawing - basically you assign an id to binding commands, then you can execute them with one line (think display lists).
So, my loading (of one object) looks like this:
Create buffers (let's say buffer 1 is for vertex data, buffer 2 for index data).
Bind buffer 1 as an array buffer.
Fill buffer with vertex data.
Repeat 2 and 3 for buffer 2 as element array buffer and index data, respectively.
And my drawing (again, of one object):
Bind buffer 1 as an array buffer.
Use glVertexAttribPointer to specify that this buffer goes to a specific attribute.
Bind buffer 2 as an element array buffer.
Call DrawElements
For the second object, you have to repeat everything.
Follow these steps to render your models, assuming model1 vertices are stored in vertexBuffer and model2 vertices in vertexBuffer2:
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
glVertexAttribPointer(posAttrib, 3, GL_FLOAT, GL_FALSE, 0, 0);
glDrawArrays(GL_TRIANGLES, 0, <no. of vert>);
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer2);
glVertexAttribPointer(posAttrib, 3, GL_FLOAT, GL_FALSE, 0, 0);
glDrawArrays(GL_TRIANGLES, 0, <no. of vert>);
//swap buffers depending on your windowing toolkit
Make sure to not perform glClear in the middle of the two model renders.
All the best!
what you want to do is set the vertexArrayAttribute back to the first object data before each call to drawArrays
the draw arrays function uses the bindings stored in the VAO to find the data needed to render everything
so to render 2 models you create a second VAO bind it and call glVertexAttribPointer as needed. for drawing you bind the VAO and call drawArrays for each model
I'm rendering my scene by constructing or modifying a buffer that I give to glBufferData. My understanding of Vertex Array Objects is that they allow me to skip the manual binding of all of the VBOs I am using. Is this still the case when I update my buffer all the time?
Can I bind my VAO, call glBufferData to update the vertices and indices (the only two VBOs I have at the moment), and then render?
Can I use memory mapping with the VBO's? Then I could bind VAO, modify buffer, then render?
What exactly does the VAO do? Is its function simply that of a shortcut which stores and automates the binding of vertex attributes to my VBO's? Does it take ownership of either the data or the bindings?
You would probably have to test this, but from my understanding VBOs are given IDs when generated and a VAO only references each vertex attrib along with the VBO ID it's using. You should be able to call glBufferData or glBufferSubData. I'm not sure if memory mapping just before the draw call would work, but you could certainly do things between binding the VAO and drawing. A VAO doesn't lock the VBOs or restrict access to them.
In general, a VAO just stores attributes and all their settings (bound VBO, stride, offset, etc.) and automatically binds the attributes when bound. Until you call glBindVertexArray(0);, all vertex attributes are tied to the bound VAO.
Just want to make sure I understand this correctly (I'd ask on SO Chat, but it's dead in there!):
We've got a Vertex Array, which we make "current" by binding it
then we've got a Buffer, which we bind to a Target
then we fill that Target via glBufferData
which essentially populates whatever was bound to that target, i.e. our Buffer
and then we call glVertexAttribPointer which describes how the data is laid out -- the data being whatever is bound to GL_ARRAY_BUFFER
and this descriptor is saved to our original Vertex Array
(1) Is my understanding correct?
The documentation is a little sparse about how everything correlates.
(2) Is there some kind of default Vertex Array? Because I forgot/omitted glGenVertexArrays and glBindVertexArray and my program worked fine without it.
Edit: I missed a step... glEnableVertexAttribArray.
(3) Is the Vertex Attrib tied to the Vertex Array at the time glVertexAttribPointer is called, and then we can enable/disable that attrib via glEnableVertexAttribArray at any time, regardless of which Vertex Array is currently bound?
Or (3b) Is the Vertex Attrib tied to the Vertex Array at the time glEnableVertexAttribArray is called, and thus we can add the same Vertex Attrib to multiple Vertex Arrays by calling glEnableVertexAttribArray at different times, when different Vertex Arrays are bound?
Some of the terminology is a bit off:
A Vertex Array is just an array (typically a float[]) that contains vertex data. It doesn't need to be bound to anything. Not to be confused with a Vertex Array Object or VAO, which I will go over later
A Buffer Object, commonly referred to as a Vertex Buffer Object when storing vertices, or VBO for short, is what you're calling just a Buffer.
Nothing gets saved back to the vertex array, glVertexAttribPointer works exactly like glVertexPointer or glTexCoordPointer work, just instead of named attributes, you get to provide a number that specifies your own attribute. You pass this value as index. All your glVertexAttribPointer calls get queued up for the next time you call glDrawArrays or glDrawElements. If you have a VAO bound, the VAO will store the settings for all your attributes.
The main issue here is that you're confusing vertex attributes with VAOs. Vertex attributes are just the new way of defining vertices, texcoords, normals, etc. for drawing. VAOs store state. I'm first going to explain how drawing works with vertex attributes, then explain how you can cut down the number of method calls with VAOs:
You must enable an attribute before you can use it in a shader. For example, if you want to send vertices over to a shader, you're most likely going to send it as the first attribute, 0. So before you render, you need to enable it with glEnableVertexAttribArray(0);.
Now that an attribute is enabled, you need to define the data it's going to use. In order to do so you need to bind your VBO - glBindBuffer(GL_ARRAY_BUFFER, myBuffer);.
And now we can define the attribute - glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);. In order of parameter: 0 is the attribute you're defining, 3 is the size of each vertex, GL_FLOAT is the type, GL_FALSE means to not normalize each vertex, the last 2 zeros mean that there's no stride or offset on the vertices.
Draw something with it - glDrawArrays(GL_TRIANGLES, 0, 6);
The next thing you draw may not use attribute 0 (realistically it will, but this is an example), so we can disable it - glDisableVertexAttribArray(0);
Wrap that in glUseProgram() calls and you have a rendering system that works with shaders properly. But let's say you have 5 different attributes, vertices, texcoords, normals, color, and lightmap coordinates. First of all, you would be making a single glVertexAttribPointer call for each of these attributes, and you'd have to enable all the attributes beforehand. Let's say you define the attributes 0-4 as I have them listed. You would enable all of them like so:
for (int i = 0; i < 5; i++)
glEnableVertexAttribArray(i);
And then you would have to bind different VBOs for each attribute (unless you store them all in one VBO and use offsets/stride), then you need to make 5 different glVertexAttribPointer calls, from glVertexAttribPointer(0,...); to glVertexAttribPointer(4,...); for vertices to lightmap coordinates respectively.
Hopefully that system alone makes sense. Now I'm going to move on to VAOs to explain how to use them to cut down on the number of method calls when doing this type of rendering. Note that using a VAO is not necessary.
A Vertex Array Object or VAO is used to store the state of all the glVertexAttribPointer calls and the VBOs that were targeted when each of the glVertexAttribPointer calls were made.
You generate one with a call to glGenVertexArrays. To store everything you need in a VAO, bind it with glBindVertexArray, then do a full draw call. All the draw bind calls get intercepted and stored by the VAO. You can unbind the VAO with glBindVertexArray(0);
Now when you want to draw the object, you don't need to re-call all the VBO binds or the glVertexAttribPointer calls, you just need to bind the VAO with glBindVertexArray then call glDrawArrays or glDrawElements and you'll be drawing the exact same thing as though you were making all those method calls. You probably want to unbind the VAO afterwards too.
Once you unbind the VAO, all the state returns to how it was before you bound the VAO. I'm not sure if any changes you make while the VAO is bound is kept, but that can easily be figured out with a test program. I guess you can think of glBindVertexArray(0); as binding to the "default" VAO...
Update: Someone brought to my attention the need for the actual draw call. As it turns out, you don't actually need to do a FULL draw call when setting up the VAO, just all the binding stuff. Don't know why I thought it was necessary earlier, but it's fixed now.
The terminology and sequence of APIs to be called is quite confusing indeed. What's even more confusing is how the various aspects - buffer, generic vertex attribute and shader attribute variable get associated. See OpenGL-Terminology for a pretty good explanation.
Further, the link OpenGL-VBO,shader,VAO shows a simple example with the necessary API calls. It's particularly good for those transitioning from immediate mode to the programmable pipeline.
Hope it helps.
Edit: As you can see from the comments below, people can make assumptions and jump to conclusions. The reality is that it's quite confusing for beginners.