How to make this code shorter to do faster - c++

I am new c++ learner.I logged in Codeforces site and it is 11A question:
A sequence a0, a1, ..., at - 1 is called increasing if ai - 1 < ai for each i: 0 < i < t.
You are given a sequence b0, b1, ..., bn - 1 and a positive integer d. In each move you may choose one element of the given sequence and add d to it. What is the least number of moves required to make the given sequence increasing?
Input
The first line of the input contains two integer numbers n and d (2 ≤ n ≤ 2000, 1 ≤ d ≤ 106). The second line contains space separated sequence b0, b1, ..., bn - 1 (1 ≤ bi ≤ 106).
Output the minimal number of moves needed to make the sequence increasing.
I write this code for this question:
#include <iostream>
using namespace std;
int main()
{
long long int n,d,ci,i,s;
s=0;
cin>>n>>d;
int a[n];
for(ci=0;ci<n;ci++)
{
cin>>a[ci];
}
for(i=0;i<(n-1);i++)
{
while(a[i]>=a[i+1])
{
a[i+1]+=d;
s+=1;
}
}
cout<<s;
return 0;
}
It work good.But In a test codeforces server enter 2000 number.Time limit is 1 second.But it calculate up to 1 second.
How to make this code shorter to calculate faster?

One improvement that can be made is to use
std::ios_base::sync_with_stdio(false);
By default, cin/cout waste time synchronizing themselves with the C library’s stdio buffers, so that you can freely intermix calls to scanf/printf with operations on cin/cout. By turning this off using the above call the input and output operations in the above program should take less time since it no longer initialises the sync for input and output.
This is know to have helped in previous code challenges that require code to be completed in a certain time scale and which the c++ input/output was causing some bottleneck in the speed.

You can get rid of the while loop. Your program should run faster without
#include <iostream>
using namespace std;
int main()
{
long int n,d,ci,i,s;
s=0;
cin>>n>>d;
int a[n];
for(ci=0;ci<n;ci++)
{
cin>>a[ci];
}
for(i=0;i<(n-1);i++)
{
if(a[i]>=a[i+1])
{
int x = ((a[i] - a[i+1])/d) + 1;
s+=x;
a[i+1]+=x*d;
}
}
cout<<s;
return 0;
}

This is not a complete answer, but a hint.
Suppose our seqence is {1000000, 1} and d is 2.
To make an increasing sequence, we need to make the second element 1,000,001 or greater.
We could do it your way, by repeatedly adding 2 until we get past 1,000,000
1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + ...
which would take a while, or we could say
Our goal is 1,000,001
We have 1
The difference is 1,000,000
So we need to to do 1,000,000 / 2 = 500,000 additions
So the answer is 500,000.
Which is quite a bit faster, because we only did 1 addition (1,000,000 + 1), one subtraction (1,000,001 - 1) and one division (1,000,000 / 2) instead of doing half a million additions.

Just as #molbdnilo said, Use math to get rid of the loop, and it's simple.
Here is my code, accepted on Codeforces.
#include <iostream>
using namespace std;
int main()
{
int n = 0 , b = 0;
int a[2001];
cin >> n >> b;
for(int i = 0 ; i < n ; i++){
cin >> a[i];
}
int sum = 0;
for(int i = 0 ; i < n - 1 ; i++){
if(a[i] >= a[i + 1]){
int minus = a[i] - a[i+1];
int diff = minus / b + 1;
a[i+1] += diff * b;
sum += diff;
}
}
cout << sum << endl;
return 0;
}

I suggest you profile your code to see where the bottlenecks are.
One of the popular areas of time wasting is with input. The fewer input requests, the faster your program will be.
So, you could speed up your program by reading from cin using read() into a buffer and then parse the buffer using istringstream.
Other techniques include loop unrolling and optimizing for data cache. Reducing the number of branches or if statements will also speed up your programs. Processor prefer crunching data and moving data around to jumping to different areas in the code.

Related

How to make my CodeChef solution code faster?

I am a beginner currently in first semester. I have been practising on Code Chef and am stuck at this problem. They are asking to reduce the execution time of my code. The problem goes as follows:
Meliodas and Ban are fighting over chocolates. Meliodas has X chocolates, while Ban has Y. Whoever has lesser number of chocolates eats as many chocolates as he has from the other's collection. This eatfest war continues till either they have the same number of chocolates, or at least one of them is left with no chocolates.
Can you help Elizabeth predict the total no of chocolates they'll be left with at the end of their war?
Input:
First line will contain T, number of testcases. Then the testcases follow.
Each testcase contains of a single line of input, which contains two integers X,Y, the no of chocolates Meliodas and Ban have, respectively.
Output:
For each testcase, output in a single line the no of chocolates that remain after Ban and Meliodas stop fighting.
Sample Input:
3
5 3
10 10
4 8
Sample Output:
2
20
8
My code is as follows:
#include <iostream>
using namespace std;
int main()
{
unsigned int t,B,M;
cin>>t;
while(t--)
{
cin>>M>>B;
if(B==M)
{
cout<<B+M<<endl;
}
else
{
for(int i=1;B!=M;i++)
{
if(B>M)
B=B-M;
else
M=M-B;
}
cout<<M+B<<endl;
}
}
return 0;
}
Assuming that Band Mare different from 0, this algorithm corresponds to one version of the Euclidean algorithm. Therefore, you can simply:
std::cout << 2 * std::gcd(B, M) << "\n";
If at least one of the quantity is equal to 0, then just print B + M.
After realizing that your code was correct, I wondered where could be any algorithmic improvement. And I realized that eating as many chocolate from the peer as one has was in fact close to a modulo operation. If both number are close, a minus operation could be slightly faster than a modulo one, but if one number is high, while the other is 1, you immediately get it instead of looping a great number of times...
The key to prevent stupid errors is to realize that if a modulo is 0, that means that the high number is a multiple of the small one and we must stop immediately writing twice the lower value.
And care should be taken that if one of the initial counts are 0, the total number will never change.
So the outer loop should become:
if(B==M || B == 0 || M == 0)
{
cout<<B+M<<"\0";
}
else {
for (;;) {
if (M < B) {
B = B % M;
if (B == 0) {
cout << M * 2 << '\n';
break;
}
}
else {
M = M % B;
if (M == 0) {
cout << B * 2 << '\n';
break;
}
}
}
}
...
Note: no infinite loop is possible here because a modulo ensures that for example is M > B > 0' after M = M % Byou will haveB > M >= 0and as the case== 0` is explicitely handled the number of loops cannot be higher than the lower number.

pigeon hole / multiple numbers

input : integer ( i'll call it N ) and (1 <= N <= 5,000,000 )
output : integer, multiple of N and only contains 0,7
Ex.
Q1 input : 1 -> output : 7 ( 7 mod 1 == 0 )
Q2 input : 2 -> output : 70 ( 70 mod 2 == 0 )
#include <string>
#include <iostream>
using namespace std;
typedef long long ll;
int remaind(string num, ll m)
{
ll mod = 0;
for (int i = 0; i < num.size(); i++) {
int digit = num[i] - '0';
mod = mod * 10 + digit;
mod = mod % m;
}
return mod;
}
int main()
{
int n;
string ans;
cin >> n;
ans.append(n, '7');
for (int i = ans.length() - 1; i >= 0; i--)
{
if (remaind(ans, n) == 0)
{
cout << ans;
return 0;
}
ans.at(i) = '0';
}
return 0;
}
is there a way to lessen the time complexity?
i just tried very hard and it takes little bit more time to run while n is more than 1000000
ps. changed code
ps2. changed code again because of wrong code
ps3. optimize code again
ps4. rewrite post
Your approach is wrong, let's say you divide "70" by 5. Then you result will be 2 which is not right (just analyze your code to see why that happens).
You can really base your search upon numbers like 77777770000000, but think more about that - which numbers you need to add zeros and which numbers you do not.
Next, do not use strings! Think of reminder for a * b if you know reminder of a and reminder of b. When you program it, be careful with integer size, use 64 bit integers.
Now, what about a + b?
Finally, find reminders for numbers 10, 100, 1000, 10000, etc (once again, do not use strings and still try to find reminder for any power of 10).
Well, if you do all that, you'll be able to easily solve the whole problem.
May I recommend any of the boost::bignum integer classes?
I suspect uint1024_t (or whatever... they also have 128, 256, and 512, bit ints already typedefed, and you can declare your own easily enough) will meet your needs, allowing you to perform a single %, rather than one per iteration. This may outweigh the performance lost when using bignum vs c++'s built-in ints.
2^1024 ~= 1.8e+308. Enough to represent any 308 digit number. That's probably excessive.
2^512 ~= 1.34e+154. Good for any 154 digit number.
etc.
I suspect you should first write a loop that went through n = 4e+6 -> 5e+6 and wrote out which string got the longest, then size your uint*_t appropriately. If that longest string length is more than 308 characters, you could just whip up your own:
typedef number<cpp_int_backend<LENGTH, LENGTH, unsigned_magnitude, unchecked, void> > myReallyUnsignedBigInt;
The modulo operator is probably the most expensive operation in that inner loop. Performing once per iteration on the outer loop rather than at the inner loop (O(n) vs O(n^2)) should save you quite a bit of time.
Will that plus the whole "not going to and from strings" thing pay for bignum's overhead? You'll have to try it and see.

Multiply numbers which are divisible by 3 and less than 10 with a while loop in c++?

In C++, I should write a program where the app detects which numbers are divisible by 3 from 1 till 10 and then multiply all of them and print the result. That means that I should multiply 3,6,9 and print only the result, which is 162, but I should do it by using a "While" loop, not just multiplying the 3 numbers with each other. How should I write the code of this? I attached my attempt to code the problem below. Thanks
#include <iostream>
using namespace std;
int main() {
int x, r;
int l;
x = 1;
r = 0;
while (x < 10 && x%3==0) {
r = (3 * x) + 3;
cout << r;
}
cin >> l;
}
Firstly your checking the condition x%3 == 0 brings you out of your while - loop right in the first iteration where x is 1. You need to check the condition inside the loop.
Since you wish to store your answer in variable r you must initialize it to 1 since the product of anything with 0 would give you 0.
Another important thing is you need to increment the value of x at each iteration i.e. to check if each number in the range of 1 to 10 is divisible by 3 or not .
int main()
{
int x, r;
int l;
x = 1;
r = 1;
while (x < 10)
{
if(x%3 == 0)
r = r*x ;
x = x + 1; //incrementing the value of x
}
cout<<r;
}
Lastly I have no idea why you have written the last cin>>l statement . Omit it if not required.
Ok so here are a few hints that hopefully help you solving this:
Your approach with two variables (x and r) outside the loop is a good starting point for this.
Like I wrote in the comments you should use *= instead of your formula (I still don't understand how it is related to the problem)
Don't check if x is dividable by 3 inside the while-check because it would lead to an too early breaking of the loop
You can delete your l variable because it has no affect at the moment ;)
Your output should also happen outside the loop, else it is done everytime the loop runs (in your case this would be 10 times)
I hope I can help ;)
EDIT: Forget about No.4. I didn't saw your comment about the non-closing console.
int main()
{
int result = 1; // "result" is better than "r"
for (int x=1; x < 10; ++x)
{
if (x%3 == 0)
result = result * x;
}
cout << result;
}
or the loop in short with some additional knowledge:
for (int x=3; x < 10; x += 3) // i know that 3 is dividable
result *= x;
or, as it is c++, and for learning purposes, you could do:
vector<int> values; // a container holding integers that will get the multiples of 3
for (int x=1; x < 10; ++x) // as usual
if ( ! x%3 ) // same as x%3 == 0
values.push_back(x); // put the newly found number in the container
// now use a function that multiplies all numbers of the container (1 is start value)
result = std::accumulate(values.begin(), values.end(), 1, multiplies<int>());
// so much fun, also get the sum (0 is the start value, no function needed as add is standard)
int sum = std::accumulate(values.begin(), values.end(), 0);
It's important to remember the difference between = and ==. = sets something to a value while == compares something to a value. You're on the right track with incrementing x and using x as a condition to check your range of numbers. When writing code I usually try and write a "pseudocode" in English to organize my steps and get my logic down. It's also wise to consider using variables that tell you what they are as opposed to just random letters. Imagine if you were coding a game and you just had letters as variables; it would be impossible to remember what is what. When you are first learning to code this really helps a lot. So with that in mind:
/*
- While x is less than 10
- check value to see if it's mod 3
- if it's mod 3 add it to a sum
- if not's mod 3 bump a counter
- After my condition is met
- print to screen pause screen
*/
Now if we flesh out that pseudocode a little more we'll get a skeletal structure.
int main()
{
int x=1//value we'll use as a counter
int sum=0//value we'll use as a sum to print out at the end
while(x<10)//condition we'll check against
{
if (x mod 3 is zero)
{
sum=x*1;
increment x
}
else
{
increment x
}
}
//screen output the sum the sum
//system pause or cin.get() use whatever your teacher gave you.
I've given you a lot to work with here you should be able to figure out what you need from this. Computer Science and programming is hard and will require a lot of work. It's important to develop good coding habits and form now as it will help you in the future. Coding is a skill like welding; the more you do it the better you'll get. I often refer to it as the "Blue Collar Science" because it's really a skillset and not just raw knowledge. It's not like studying history or Biology (minus Biology labs) because those require you to learn things and loosely apply them whereas programming requires you to actually build something. It's like welding or plumbing in my opinion.
Additionally when you come to sites like these try and read up how things should be posted and try and seek the "logic" behind the answer and come up with it on your own as opposed to asking for the answer. People will be more inclined to help you if they think you're working for something instead of asking for a handout (not saying you are, just some advice). Additionally take the attitude these guys give you with a grain of salt, Computer Scientists aren't known to be the worlds most personable people. =) Good luck.

SIGSEGV Error on Dynamic Programming - CodeChef

Hope you all are having a great day!
I love programming, but these past days I am having sleepless nights, with CodeChef always returning SIGSEGV errors on my Dynamic Programming solutions.
I am solving this question right now. Here's the question -
In Byteland they have a very strange monetary system. Each Bytelandian
gold coin has an integer number written on it. A coin n can be
exchanged in a bank into three coins: n/2, n/3 and n/4. But these
numbers are all rounded down (the banks have to make a profit). You
can also sell Bytelandian coins for American dollars. The exchange
rate is 1:1. But you can not buy Bytelandian coins. You have one gold
coin. What is the maximum amount of American dollars you can get for
it?
Input
The input will contain several test cases (not more than 10). Each
testcase is a single line with a number n, 0 <= n <= 1 000 000 000. It
is the number written on your coin. Output
For each test case output a single line, containing the maximum amount
of American dollars you can make. Example
Input: 12 2
Output: 13 2 You can change 12 into 6, 4 and 3, and then change these
into $6+$4+$3 = $13. If you try changing the coin 2 into 3 smaller
coins, you will get 1, 0 and 0, and later you can get no more than $1
out of them. It is better just to change the 2 coin directly into $2.
Now I know that it's very easy. And I did get stuck initially when I was declaring a big 10^9 integer long array (Over 1GB of memory..whoo!), but coming back to my senses - I decided to do memoization till 10001, and after that simple recursion. But still - I am making a mistake, and it's giving SIGSEGV error.
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
long long n[100001];
long long calc(long long x) {
if (x < 10001) {
if(n[x] != 0) return n[x];
n[x] = max(x, calc(x/2) + calc(x/3) + calc(x/4));
return n[x];
}
else return max(x, calc(x/2) + calc(x/3) + calc(x/4));
}
int main() {
memset(n, 0, sizeof(n));
n[1] = 1;
n[2] = 2;
n[3] = 3;
n[4] = 4;
n[5] = 5;
n[6] = 6;
for (int i = 7; i < 10001; i++)
n[i] = calc(i);
int t = 10;
while (t--) {
long long c;
scanf("%lld", &c);
printf("%lld\n", calc(c));
}
return 0;
}
I have solved some previous questions too - and all of them gave me this error once or twice. I know this error means that I am trying to access memory that hasn't been allocated, but what is wrong in my approach that I always get this error?
The problem is with the corner case n=0.
calc(0) recurses indefinitely because 0<10001 and n[0]=0. You need to add the terminating condition that calc(0)=0.
Takeaways:
Always check your programming competition solutions on corner cases.
Always ensure that your recursion does not result in an infinite loop.

Time Limit Exceeded - Simple Program - Divisibility Test

Input
The input begins with two positive integers n k (n, k<=10^7). The next n lines of input contain one positive integer ti, not greater than 10^9, each.
Output
Write a single integer to output, denoting how many integers ti are divisible by k.
Example
Input:
7 3
1
51
966369
7
9
999996
11
Output:
4
My Code:
#include <iostream>
using namespace std;
int main()
{
long long n,k, i;
cin>>n;
cin>>k;
int count=0;
for(i=0;i<n;i++)
{
int z;
cin>>z;
if(z%k == 0) count++;
}
cout<<count;
return 0;
}
Now this code produces the correct output. However, its not being accepted by CodeChef(http://www.codechef.com/problems/INTEST) for the following reason: Time Limit Exceeded. How can this be further optimized?
As said by caleb the problem is labeled "Enormous Input Test" so it requires you to use some better/faster I/O methods
just replacing cout with printf and cin with scanf will give you an AC but to improve your execution time you need to use some faster IO method for example reading character by character using getchar_unlocked() will give you a better execution time
so you can read the values by using a function like this , for a better execution time.
inline int read(){
char c=getchar_unlocked();
int n=0;
while(!(c>='0' && c<='9'))
c=getchar_unlocked();
while(c>='0' && c<='9'){
n=n*10 + (c-'0');
c=getchar_unlocked();
}
return n;
}
The linked problem contains the following description:
The purpose of this problem is to verify whether the method you are
using to read input data is sufficiently fast to handle problems
branded with the enormous Input/Output warning. You are expected to be
able to process at least 2.5MB of input data per second at runtime.
Considering that, reading values from input a few bytes at a time using iostreams isn't going to cut it. I googled around a bit and found a drop-in replacement for cin and cout described on CodeChef. Some other approaches you could try include using a memory-mapped file and using stdio.
It might also help to look for ways to optimize the calculation. For example, if ti < k, then you know that k is not a factor of ti. Depending on the magnitude of k and the distribution of ti values, that observation alone could save a lot of time.
Remember: the fact that your code is short doesn't mean that it's fast.