While trying to create my own physics engine (don't try persuading me not to), I decided to create a class for each pixel, called Particle, this system has an x and a y, and a x and y velocity, as shown below. Unfortunately, the code for calculateGravitationalVelocity doesn't abide by the laws of physics in certain situations. For example, if the x of the particle and the x of the other particle is the same, the particle will fall towards the object realistically, but when the particle gets too close, it pings off towards the positive x. I am only going to include the class source code, but I can include the source code of the other file, though it is partly written in SFML
Particle.cpp:
#include <iostream>
#include <string>
#include <math.h>
class Particle
{
private:
//Coords:
double x, y;
//Velocities:
double xVelocity = 0;
double yVelocity = 0;
//Material:
std::string material = "Generic";
//Mass:
double mass = 0;
public:
//Coords:
void setCoords(double, double);
float getCoords(char);
//Velocities:
void giveVelocity(char, float);
void setVelocity(char, float);
float getVelocity(char);
//Gravitational Velocity:
void calculateGravitationalVelocity(Particle);
//Material:
void setMaterial(std::string);
std::string getMaterial();
//Mass:
void setMass(double);
double getMass();
//Update:
void update();
};
//Coords:
void Particle::setCoords(double newX, double newY)
{
x = newX;
y = newY;
}
float Particle::getCoords(char axis)
{
if (axis == 'x')
{
//return floor(x);
return x;
}
else if (axis == 'y')
{
//return floor(y);
return y;
}
}
//Velocities:
void Particle::giveVelocity(char axis, float addedVelocity)
{
if (axis == 'x') {xVelocity = xVelocity + addedVelocity;}
else if (axis == 'y') {yVelocity = yVelocity + addedVelocity;}
}
void Particle::setVelocity(char axis, float newVelocity)
{
if (axis == 'x') {xVelocity = newVelocity;}
else if (axis == 'y') {yVelocity = newVelocity;}
}
float Particle::getVelocity(char axis)
{
if (axis == 'x') {return xVelocity;}//floor(xVelocity);}
else if (axis == 'y') {return xVelocity;}//floor(yVelocity);}
}
//Gravitational Velocity (Where the problems probably are):
void Particle::calculateGravitationalVelocity(Particle distantParticle)
{
//Physics constants:
const double pi = 3.14159265359; //Pi
const double G = 0.00000000006673; //Gravitational Constant (or Big G)
//Big Triangle Trigonometry:
//Get coords of moving particle:
double x1 = x;
double y1 = y;
//Get coords of particle with gravity:
double x2 = distantParticle.getCoords('x');
double y2 = distantParticle.getCoords('y');
if (x1 != x2)
{
//Work out the angle:
double A = atan((y2 - y1) / (x2 - x1)) * 180 / pi;
//Remove the minus sign:
A = fabs(A);
//Small Triangle Trigonometry:
//Work out the hypotenuse of the big triangle:
double hyp = sqrt(pow(x2 - x1, 2) + pow(y2 - y1, 2));
//Work out the gravitational field (hyp of small triangle):
long double gravitationalField = G * (distantParticle.getMass() / pow(hyp, 2));
//For testing purposes:
//std::cout << "X: " << (cos(A) * gravitationalField) / 1000 << std::endl;
//std::cout << "Y: " << (sin(A) * gravitationalField) / 1000 << std::endl;
//Work out the X velocity:
xVelocity = xVelocity + (cos(A) * gravitationalField) / 1000;
//Work out the Y velocity:
yVelocity = yVelocity + (sin(A) * gravitationalField) / 1000;
}
else
{
//Work out the hypotenuse of the big triangle:
double hyp = sqrt(pow(x2 - x1, 2) + pow(y2 - y1, 2));
//Work out the gravitational field (hyp of small triangle):
long double gravitationalField = G * (distantParticle.getMass() / pow(hyp, 2));
yVelocity = yVelocity + gravitationalField / 1000;
}
}
//Material:
void Particle::setMaterial(std::string newMaterialType)
{
material = newMaterialType;
}
std::string Particle::getMaterial()
{
return material;
}
//Mass:
void Particle::setMass(double newMass)
{
mass = newMass;
}
double Particle::getMass()
{
return mass;
}
//Update:
void Particle::update()
{
x = x + xVelocity;
y = y + yVelocity;
}
I am sorry for the very open question, and it probably goes against the rules somewhere, but I couldn't find it. The code for working out mostly uses a two triangles to make a x and y velocity. Here is an image of what I was hoping the code would do as a triangle (sorry it doesn't look great, but I like using a whiteboard):
You don't need to perform any trigonometric calculation.
...
//Get coords of particle with gravity:
double x2 = distantParticle.getCoords('x');
double y2 = distantParticle.getCoords('y');
// Get difference vector
double rx = x1 - x2;
double ry = y1 - y2;
// square of distance
double r2 = rx * rx + ry * ry;
// distance
double r = sqrt (r2);
if (r != 0) {
// normalize difference vector
double ux = rx / r;
double uy = ry / r;
// acceleration of gravity
double a = - G * distantParticle.getMass() / r2;
xVelocity += a * ux / 1000;
yVelocity += a * uy / 1000;
}
}
Related
When the ellipse is not rotated with this formula 1. If value = 1 - point on the ellipse, if value > 1 - outside, if value < 1 - inside. The program works correctly.
Code:
int checkPointNoAngle(int x0, int y0, int x, int y, int a, int b)
{
int value = (pow((x - x0), 2) / pow(a, 2)) + (pow((y - y0), 2) / pow(b, 2));
return value;
}
I need to work with a rotated ellipse, so I used formula 2.
Now the program incorrectly determines the position of the point.
int checkPoint(int x0, int y0, int x, int y, int a, int b)
{
int angle = 90;
int value = (pow(cos(angle * M_PI / 180)*((x - x0)+sin(angle * M_PI / 180)*(y-y0)), 2) / pow(a, 2)) + (pow(sin(angle * M_PI / 180) * ((x - x0) - cos(angle * M_PI / 180) * (y - y0)), 2) / pow(b, 2));
return value;
}
I drawing an ellipse using this code:
for (int t = 0; t < 360; t++)
{
int x = a * cos(t);
int y = b * sin(t);
int x1 = x * cos(angle * M_PI / 180) + y * sin(angle * M_PI / 180);
int y1 = -x * sin(angle * M_PI / 180) + y * cos(angle * M_PI / 180);
SDL_RenderDrawPoint(ren, x1 + centerX, y1 + centerY);
}
The program draws the ellipse correctly, but determines the position of the point incorrectly.
Examples of work:
3,4,5,6.
Example 4 and 5 works correctly with the checkPointNoAngle method.
I need to rotate the ellipse, so I created checkPoint method.
Example 6 indicates a bug.
The code was confusing a little bit. I tried to simplify the code corresponding to rotation and inverse rotation. The following code seems to work.
#include <iostream>
#include <vector>
#include <cmath>
struct Pt {int x, y;};
double checkPoint(int x0, int y0, int x, int y, int a, int b, int angle) {
double ang = (angle * M_PI)/180;
x = x - x0;
y = y - y0;
double xp = cos(ang)*x + sin(ang)*y;
double yp = -sin(ang)*x + cos(ang)*y;
double value = (xp*xp) / (a*a) + (yp*yp) / (b*b);
return value;
}
std::vector<Pt> gene_ellipse (int centerX, int centerY, int angle, int a, int b) {
std::vector<Pt> v;
double c = cos (angle * M_PI/180);
double s = sin (angle * M_PI/180);
for (int t = 0; t < 360; t++) {
double tt = M_PI * t / 180.0;
double x = a * cos(tt);
double y = b * sin(tt);
int x1 = x * c - y * s;
int y1 = x * s + y * c;
v.push_back (Pt{x1 + centerX, y1 + centerY});
}
return v;
}
int main () {
int centerX = 320;
int centerY = 240;
int angle = 120; // in degrees
int a = 200;
int b = 100;
int index = 25;
auto v = gene_ellipse (centerX, centerY, angle, a, b);
double check = checkPoint (centerX, centerY, v[index].x, v[index].y, a, b, angle);
std::cout << "check = " << check << "\n";
}
I'm trying to make a quadcopter drone. I'm using an mpu6050 to get acceleration & angular speed and then convert them to Roll / pitch / yaw
With the acceleration, i'm also trying to get the speed & position by integration. However , i need them to be in absolute coordinate system, because the mpu6050 gives you the values in its relative coordinates system.
the origin of the new coordinate system is the starting position of the drone, and the direction is "where the drone is looking" , we assume Yaw = 0 at the beginning, and we get yaw using the gyrometer's data.
I tried to rotate the vectors using the Roll / pitch values, but that doesn't seem to work very well.
I tried with this being the gravity vector for example : (-2, -2, -1)
If i convert it to the absolute coordinate system, i should get : (0,0, 3)
#include <iostream>
using namespace std;
#include <math.h>
// Vector class, to handle all the vector operations for us
// Thanks to : https://stackoverflow.com/questions/14607640/rotating-a-vector-in-3d-space
class cVector
{
public:
float x;
float y;
float z;
// Constructor
cVector();
cVector(float x1, float y1, float z1);
// returns the vector's magnitude
float Magnitude();
// Normalize ( change length to 1, while keeping the same direction)
void Normalize();
// Rotate around the Axis
void RotateX(float angle);
void RotateY(float angle);
void RotateZ(float angle);
// TODO : Add operators for Addition & Substraction
// Addition
cVector operator+(cVector const& v1) const
{
return cVector(x + v1.x,
y + v1.y,
z + v1.z);
}
void operator+=(cVector const& v1)
{
x += v1.x;
y += v1.y;
z += v1.z;
}
// Substraction
cVector operator-(cVector const& v1) const
{
return cVector(x - v1.x,
y - v1.y,
z - v1.z);
}
void operator-=(cVector const& v1)
{
x -= v1.x;
y -= v1.y;
z -= v1.z;
}
// Multiplication
void operator*=(const float scalar)
{
x *= scalar;
y *= scalar;
z *= scalar;
}
cVector operator*(const float scalar) const
{
return cVector(x * scalar,
y * scalar,
z * scalar);
}
// Division
void operator/=(const float scalar)
{
x /= scalar;
y /= scalar;
z /= scalar;
}
cVector operator/(const float scalar) const
{
return cVector(x / scalar,
y / scalar,
z / scalar);
}
};
// Constructor
cVector::cVector()
{
}
cVector::cVector(float x1, float y1, float z1)
{
x = x1;
y = y1;
z = z1;
}
// returns the vector's magnitude
float cVector::Magnitude()
{
return sqrt((x * x) + (y * y) + (z * z));
}
// Normalize ( change length to 1, while keeping the same direction)
void cVector::Normalize()
{
float flMagnitude = Magnitude();
// We devide the coordinates by the magnitude
x /= flMagnitude;
y /= flMagnitude;
z /= flMagnitude;
}
// Rotate around the Axis
void cVector::RotateX(float angle)
{
// Calculate the sinus and cosinus
float flCos = static_cast<float>(cos(angle));
float flSin = static_cast<float>(sin(angle));
// We save the current values temporarily
float _y = y;
float _z = z;
y = _y * flCos - _z * flSin;
z = _y * flSin + _z * flCos;
}
void cVector::RotateY(float angle)
{
// Calculate the sinus and cosinus
float flCos = static_cast<float>(cos(angle));
float flSin = static_cast<float>(sin(angle));
// We save the current values temporarily
float _x = x;
float _z = z;
x = _x * flCos + _z * flSin;
z = - _x * flSin + _z * flCos;
}
void cVector::RotateZ(float angle)
{
// Calculate the sinus and cosinus
float flCos = static_cast<float>(cos(angle));
float flSin = static_cast<float>(sin(angle));
// We save the current values temporarily
float _x = x;
float _y = y;
x = _x * flCos - _y * flSin;
y = _x * flSin + _y * flCos;
}
void PrintVector(cVector vec)
{
cout << "X : " << vec.x << " Y : " << vec.y << " Z : " << vec.z << endl;
}
// TODO : Add operators for Addition & Substraction
int main()
{
cVector vec(-2, -2, -1);
// Calculate pitch / roll
float pitch = static_cast<float>(atan2( vec.y , sqrt( pow(vec.x,2) + pow(vec.z,2) ) ));
float roll = static_cast<float>(atan2(-1 * vec.x , sqrt( pow(vec.y,2) + pow(vec.z,2) ) ));
// vec.RotateY(1.570796f);
vec.RotateX(roll);
vec.RotateY(pitch);
PrintVector(vec);
cin.get();
return 0;
}
expected result ( 0, 0, 3 )
Actual results : (-0.104919 , -0.824045, -2.8827 )
When I run this code the double pendulum shows for a split second and then disappears. It seems most of the variables in the formula, num1, num2, etc., start returning nan after that split second when the pendulum disappears. Can anyone see why? I thought it had to do with converting degrees to radians at 180 degrees so I added the if statement in my convert function.
Here is the link to the Double Pendulum motion formula. I broke down the formula into pieces for simplicity's sake. https://www.myphysicslab.com/pendulum/double-pendulum-en.html
This idea came from Coding Train's Double Pendulum video: https://www.youtube.com/watch?v=uWzPe_S-RVE
#undef __STRICT_ANSI__
#include "window.h"
#include <SFML/Graphics.hpp>
#include <GL/glew.h>
#include <cmath>
#include <iostream>
namespace Window
{
sf::ContextSettings settings;
sf::RenderWindow window(sf::VideoMode(600, 600), "Window", sf::Style::Close | sf::Style::Titlebar, settings);
void init()
{
settings.depthBits = 24;
settings.majorVersion = 4;
settings.minorVersion = 6; //OpenGL 4.6
glewInit();
glViewport(0,0, 600, 600);
}
void close()
{
window.close();
}
void update()
{
window.display();
}
void checkForClose()
{
sf::Event windowEvent;
while (window.pollEvent(windowEvent))
{
if (windowEvent.type == sf::Event::Closed)
{
close();
}
}
}
bool isOpen()
{
return window.isOpen();
}
double convDeg(double deg)
{
if (deg == 180.0)
{
return 0.0;
}
else
{
return deg * M_PI / 180.0;
}
}
void runLoop()
{
double r1 = 100;
double m1 = 40;
double a1 = 90;
double a1_v = 0;
double r2 = 100;
double m2 = 40;
double a2 = 30;
double a2_v = 0;
double x1 = 0;
double x2 = 0;
double y1 = 0;
double y2 = 0;
double g = 0.005;
double num1 = 0;
double num2 = 0;
double num3 = 0;
double num4 = 0;
double den = 0;
double a1_a = 0;
double a2_a = 0;
while (window.isOpen())
{
num1 = -g * (2 * m1 + m2) * std::sin(convDeg(a1));
num2 = -m2 * g * std::sin(convDeg(a1-2*a2));
num3 = -2*std::sin(convDeg(a1-a2))*m2;
num4 = a2_v*a2_v*r2+a1_v*a1_v*r1*std::cos(convDeg(a1-a2));
den = r1 * (2*m1+m2-m2*cos(convDeg(2*a1-2*a2)));
a1_a = (num1 + num2 + num3*num4) / den;
num1 = 2 * std::sin(convDeg(a1-a2));
num2 = (a1_v*a1_v*r1*(m1+m2));
num3 = g * (m1 + m2) * std::cos(convDeg(a1));
num4 = a2_v*a2_v*r2*m2*std::cos(convDeg(a1-a2));
den = r2 * (2*m1+m2-m2*std::cos(convDeg(2*a1-2*a2)));
a2_a = (num1*(num2+num3+num4)) / den;
x1 = 300 + (r1 * std::sin((convDeg(a1))));
y1 = 300 + (r1 * std::cos((convDeg(a1))));
x2 = x1 + (r2 * std::sin((convDeg(a2))));
y2 = y1 + (r2 * std::cos((convDeg(a2))));
a1_v += a1_a;
a2_v += a2_a;
a1 += a1_v;
a2 += a2_v;
sf::Vertex pOne[] =
{
sf::Vertex(sf::Vector2f(300,300)),
sf::Vertex(sf::Vector2f(x1,y1)),
};
sf::Vertex pTwo[] =
{
sf::Vertex(sf::Vector2f(x1,y1)),
sf::Vertex(sf::Vector2f(x2,y2)),
};
window.clear();
window.draw(pOne, 2, sf::Lines);
window.draw(pTwo, 2, sf::Lines);
update();
checkForClose();
std::cout << std::sin(convDeg(a1)) << "\n";
}
}
}
List of problems:
convDeg: 180 and 0 degrees are not equivalent.
Angular variables: acceleration / velocity a1_a, a1_v etc are in radians, whereas your angle variables a1, a2 etc are in degrees. Every time the loop runs, your code wrongly converts degrees into radians. Do the conversion before the main loop.
(Speculation based on a previous answer - I could be wrong) The formulas on MyPhysicsLab seem to contradict those from other sources, e.g. here and here; a quick calculation using Lagrangian mechanics agrees with these two sources and not MPL.
This question already has answers here:
Calling a function in main
(4 answers)
Closed 4 years ago.
So I'm trying to make a simple pool ball simulation, and when trying to check the collision between balls, my bounce function is being skipped in the loop. There should be a display on the console with the random letters in the function bounce in the PoolTable.cpp file, but its skipped and doesn't process the hits or output the text to the console. Not sure why its not running the function. No warnings. No errors. compiles fine. Im on windows machine, using code blocks, and the GLUT library/project.
Walkthrough
So I initialize and place the balls with the constructor. Then I draw the balls on the screen with the drawBalls function. After drawing the balls, i update their positions and move them with moveBalls function. After moving each ball, while still in the moveball function, I check for collisions with checkCollisions function. checkCollisions then starts two for loops, but never runs the bounce function, as the balls don't bounce off eachother, and the cout isn't printed in the terminal. for some reason it is skipped.
PoolTable.cpp
#include "PoolTable.h"
#include "poolball.h"
#include "Graphics.h"
#include <iostream>
using namespace std;
#include <cmath>
PoolTable::PoolTable( int x){
placeBalls( x );
}
void PoolTable::placeBalls( int x ){
number_of_balls = x;
for( int i = 0; i < x; i++){
balls[i].setX( balls[i].getRadius() + i * 20 );
balls[i].setY( balls[i].getRadius() + i * 30 );
}
}
double find_angle(double vx, double vy) {
// determine the angle between poolballs when they collide
double t; double PI = acos(-1.0);
if(vx < 0) // vertical collision
t = PI + atan(vy/vx);
else if(vx > 0.0 && vy >= 0.0) // 1st quardant collision
t = atan(vy/vx);
else if(vx > 0.0 && vy < 0.0) //
t = 2.0*PI + atan(vy/vx);
else if( vx == 0.0 && vy == 0.0)
t = 0.0;
else if(vx == 0 && vy >= 0.0)
t = PI/2.0;
else
t = 1.5 * PI;
return t;
}
void PoolTable::bounce(int i, int j) {
cout << "klasdjflkadsjflkasjfsadk" << endl;
double PI = acos(-1.0);
double x1 = balls[i].getX();
double y1 = balls[i].getY();
double x2 = balls[j].getX();
double y2 = balls[j].getY();
double dx = x2 - x1;
double dy = y2 - y1;
double dist = sqrt(dx*dx+dy*dy);
// did a collision occur
if(dist <= 2 * balls[i].getRadius()) {
double phi; // angle between the two ball centers
if(dx == 0.0)
phi = PI/2.0;
else
phi = atan2 (dy, dx);
// now compute the total velocities of the two balls
double vx1 = balls[i].xSpeed;
double vy1 = balls[i].getYSpeed();
double v1total = sqrt(vx1*vx1 + vy1*vy1);
double vx2 = balls[j].getXSpeed();
double vy2 = balls[j].getYSpeed();
double v2total = sqrt(vx2*vx2 + vy2*vy2);
// find the angle of each ball's velocity
double ang1 = find_angle(vx1,vy1);
double ang2 = find_angle(vx2,vy2);
// transform velocities into normal.tangential components
double v1xr = v1total * cos(ang1 - phi);
double v1yr = v1total * sin(ang1 - phi);
double v2xr = v2total * cos(ang2 - phi);
double v2yr = v2total * sin(ang2 - phi);
// now find the final velocities (assuming equal mass)
double v1fxr = v2xr;
double v2fxr = v1xr;
double v1fyr = v1yr;
double v2fyr = v2yr;
// reset the velocities
balls[i].setXSpeed(cos(phi)*v1fxr + cos(phi+PI/2)*v1fyr);
balls[i].setYSpeed(sin(phi)*v1fxr + sin(phi+PI/2)*v1fyr);
balls[j].setXSpeed(cos(phi)*v2fxr + cos(phi+PI/2)*v2fyr);
balls[j].setYSpeed(sin(phi)*v2fxr + sin(phi+PI/2)*v2fyr);
}
}
void PoolTable::checkCollisions(void){
for( int i = 0; i < number_of_balls; i++){
for( int j = i + 1; j < number_of_balls; j++){
bounce(i, j);
}
}
}
void PoolTable::moveBalls(void){
for( int i = 0; i < number_of_balls; i++){
balls[i].move();
void checkCollisions();
}
}
void PoolTable::drawBalls(void){
for( int i = 0; i < number_of_balls; i++){
balls[i].draw();
}
}
void checkCollisions(); (in moveBalls) is a function prototype, not a function call. Remove the void.
What i want is that, I have info of 2 points, the starting x,y and mid point x,y and i need to find end line like until some kind of border, like window
here is what I do:
//function for calculating the end point from one location, to specific end location
//like a bullet moving forward in a line
//x,y start location(mouse), x2,y2(rect point location one of the 4) mid point, qx,qy end point(shadow or triangle draw location)
void screenEnd(int x, int y, int x2, int y2, int*qx,int*qy)
{
x = x2-x;
y = y2-y;
float tx = x2,ty = y2;
float result = atan2((float)y,(float)x) * 180 / PI;
float tempx = cos ( result * PI / 180.0 );
float tempy = sin ( result * PI / 180.0 );
bool check = true;
//this part needs optimization
while(check)
{
if(tx < 0|| ty < 0|| tx > 1280 || ty > 720)
{
check = false;
}
else
{
tx += tempx;
ty += tempy;
}
}
*qx = tx;
*qy = ty;
}
what I do is just increase point until it reaches the end.
Is there any way faster?
A classic window clipping task.
Consider a parametric equation where p is the point (x,y).
p(0) = x, y
p(0.5) = x2, y2
p(1) = x+2*(x2-x), y + 2*(y2-y)
p(t) = p(0) + t*(p(1) - p(0))
clip window = 0,0 to 720, 1280 (suspect you really want 719,1279)
The segment to draw initially ranges from t=0.0 to t=1.0. The segment is tested against each of the 4 sides of the bounding box, potentially reducing the t range. Maybe even eliminating all together.
Follows is some old code, enough to get you going.
#include <math.h>
int cliptest(int dz, int z, double *t0, double *t1) {
if (dz < 0) {
double t = ((double) z) / dz;
if (t > *t1)
return 0;
if (t > *t0)
*t0 = t;
} else if (dz > 0) {
double t = ((double) z) / dz;
if (t < *t0)
return 0;
if (t < *t1)
*t1 = t;
} else {
if (z < 0)
return 0;
}
return 1;
}
int clipper(int *px0, int *py0, int *px1, int *py1, int minx, int miny,
int maxx, int maxy) {
double t0, t1;
int dx, dy;
t0 = 0.0;
t1 = 1.0;
dy = *py1 - *py0;
dx = *px1 - *px0;
if (cliptest(-dx, *px0 - minx, &t0, &t1)
&& cliptest(dx, maxx - *px0, &t0, &t1)
&& cliptest(-dy, *py0 - miny, &t0, &t1)
&& cliptest(dy, maxy - *py0, &t0, &t1)) {
if (t1 < 1.0) {
*px1 = round(*px0 + t1*dx);
*py1 = round(*py0 + t1*dy);
}
if (t0 > 0.0) {
*px0 = round(*px0 + t0*dx);
*py0 = round(*py0 + t0*dy);
}
return 1;
}
return 0;
}
int x0 = x;
int y0 = y;
int x1 = x + 2*(x2-x); // Form end point
int y1 = x + 2*(y2-y);
if (clipper(&x0, &y0, &x1, &y1, 0, 0, 720, 1280))
Draw(x0, y0, x1, y2);
else
Handle_LineTotallyClippedOut();