C++ , string in a function has always the same length - c++

What is wrong with this code? input has always the length of 4 in my function test, no matter if my string is actually longer or shorter.
#include <iostream>
#include <string>
using namespace std;
void test(char arr[]){
string input;
input = arr[0];
for (int i=1; i<sizeof(arr)/sizeof(char); i++){input=input+arr[i];}
cout << input << endl;
cout << "length: " << input.length() << endl;
}
int main(){
string input;
cout << "String: " << endl;
getline(cin, input);
char arr[input.length()];
for(int i=0; i<input.length(); i++) {arr[i] = input[i];}
test(arr);
}

Arrays decays to pointers while passing to function
sizeof(arr) will give you size of char*

Don't use arrays; instead prefer std::vector. When you think you're passing an array to a function, you're actually passing a pointer, and on your architecture pointers are 4 bytes wide. char arr[] is a weird way of spelling char* arr in function parameters. This is known as “pointer decay”.
If you really have to use raw pointers, pass in the length as an additional parameter:
void test(size_t length, char* arr) {
...
}
test(input.length(), arr);

You are taking the size of the pointer when you do sizeof(arr) in the function. Passing an array to a function like you did is a syntactic sugar, effectively it is passing a pointer to the array and you are just taking the size of the pointer (which happens to be 4bytes on the machine you are using). You need to pass the size of the array to the function in another parameter or use a convenient STL container.
Also take a look at this question for more details.

Related

Using sizeof() to determine ArraySize [duplicate]

I am writing a simple function that returns the largest integer in an array. The problem I am having is finding the number of elements in the array.
Here is the function header:
int largest(int *list, int highest_index)
How can I get the number of integers in the array 'list'.
I have tried the following methods:
int i = sizeof list/sizeof(int); //returns incorrect value
int i = list.size(); // does not compile
Any help will be greatly appreciated!
C++ is based on C and inherits many features from it. In relation to this question, it inherits something called "array/pointer equivalence" which is a rule that allows an array to decay to a pointer, especially when being passed as a function argument. It doesn't mean that an array is a pointer, it just means that it can decay to one.
void func(int* ptr);
int array[5];
int* ptr = array; // valid, equivalent to 'ptr = &array[0]'
func(array); // equivalent to func(&array[0]);
This last part is the most relevant to your question. You are not passing the array, you are passing the address of the 0th element.
In order for your function to know how big the incoming array is, you will need to send that information as an argument.
static const size_t ArraySize = 5;
int array[ArraySize];
func(array, ArraySize);
Because the pointer contains no size information, you can't use sizeof.
void func(int* array) {
std::cout << sizeof(array) << "\n";
}
This will output the size of "int*" - which is 4 or 8 bytes depending on 32 vs 64 bits.
Instead you need to accept the size parameters
void func(int* array, size_t arraySize);
static const size_t ArraySize = 5;
int array[ArraySize];
func(array, ArraySize);
Even if you try to pass a fixed-sized array, it turns out this is syntactic sugar:
void func(int array[5]);
http://ideone.com/gaSl6J
Remember how I said that an array is NOT a pointer, just equivalent?
int array[5];
int* ptr = array;
std::cout << "array size " << sizeof(array) << std::endl;
std::cout << "ptr size " << sizeof(ptr) << str::endl;
array size will be 5 * sizeof(int) = 20
ptr size will be sizeof(int *) which will be either 4 or 8 bytes.
sizeof returns the size of the type being supplied, if you supply an object then it deduces the type and returns the size of that
If you want to know how many elements of an array are in the array, when you have the array and not a pointer, you can write
sizeof(array) / sizeof(array[0])
or
sizeof(array) / sizeof(*array)
There's no way to do that. This is one good reason (among many) to use vectors instead of arrays. But if you must use an array then you must pass the size of the array as a parameter to your function
int largest(int *list, int list_size, int highest_index)
Arrays in C++ are quite poor, the sooner you learn to use vectors the easier you will find things.
Pointers do not have information about the number of elements they refer to. If you are speaking about the first argument of the function call then if list is an array you can indeed use the syntax
sizeof( list ) / sizeof( int )
I would like to append that there are three approaches. The first one is to use arrays passed by reference. The second one is to use pointer to the first element and the number of elements. And the third one is to use two pointers - the start pointer and the last pointer as standard algorithms usually are defined. Character arrays have an additional possibility to process them.
The simple answer is you cannot. You need to store it in a variable. The great advantage with C++ is it has STL and you can use vector. size() method gives the size of the vector at that instant.
#include<iostream>
#include<vector>
using namespace std;
int main () {
vector<int> v;
for(int i = 0; i < 10; i++) {
v.push_back(i);
}
cout << v.size() << endl;
for(int i = 0; i < 10; i++) {
v.push_back(i);
}
cout << v.size() << endl;
return 0;
}
output:
10
20
Not tested. But, should work. ;)
You need to remember in a variable array size, there is no possibility to retrieve array size from pointer.
const int SIZE = 10;
int list[SIZE];
// or
int* list = new int[SIZE]; // do not forget to delete[]
My answer uses a char array instead of an integer array but I do hope it helps.
You can use a counter until you reach the end of the array. Char arrays always end with a '\0' and you can use that to check the end of the array is reached.
char array[] = "hello world";
char *arrPtr = array;
char endOfString = '\0';
int stringLength = 0;
while (arrPtr[stringLength] != endOfString) {
stringLength++;
}
stringLength++;
cout << stringLength << endl;
Now you have the length of the char array.
I tried the counting the number of integers in array using this method. Apparently, '\0' doesn't apply here obviously but the -1 index of the array is 0. So assuming that there is no 0, in the array that you are using. You can replace the '\0' with 0 in the code and change the code to use int pointers and arrays.

How to get size of an array through pointer? [duplicate]

I am writing a simple function that returns the largest integer in an array. The problem I am having is finding the number of elements in the array.
Here is the function header:
int largest(int *list, int highest_index)
How can I get the number of integers in the array 'list'.
I have tried the following methods:
int i = sizeof list/sizeof(int); //returns incorrect value
int i = list.size(); // does not compile
Any help will be greatly appreciated!
C++ is based on C and inherits many features from it. In relation to this question, it inherits something called "array/pointer equivalence" which is a rule that allows an array to decay to a pointer, especially when being passed as a function argument. It doesn't mean that an array is a pointer, it just means that it can decay to one.
void func(int* ptr);
int array[5];
int* ptr = array; // valid, equivalent to 'ptr = &array[0]'
func(array); // equivalent to func(&array[0]);
This last part is the most relevant to your question. You are not passing the array, you are passing the address of the 0th element.
In order for your function to know how big the incoming array is, you will need to send that information as an argument.
static const size_t ArraySize = 5;
int array[ArraySize];
func(array, ArraySize);
Because the pointer contains no size information, you can't use sizeof.
void func(int* array) {
std::cout << sizeof(array) << "\n";
}
This will output the size of "int*" - which is 4 or 8 bytes depending on 32 vs 64 bits.
Instead you need to accept the size parameters
void func(int* array, size_t arraySize);
static const size_t ArraySize = 5;
int array[ArraySize];
func(array, ArraySize);
Even if you try to pass a fixed-sized array, it turns out this is syntactic sugar:
void func(int array[5]);
http://ideone.com/gaSl6J
Remember how I said that an array is NOT a pointer, just equivalent?
int array[5];
int* ptr = array;
std::cout << "array size " << sizeof(array) << std::endl;
std::cout << "ptr size " << sizeof(ptr) << str::endl;
array size will be 5 * sizeof(int) = 20
ptr size will be sizeof(int *) which will be either 4 or 8 bytes.
sizeof returns the size of the type being supplied, if you supply an object then it deduces the type and returns the size of that
If you want to know how many elements of an array are in the array, when you have the array and not a pointer, you can write
sizeof(array) / sizeof(array[0])
or
sizeof(array) / sizeof(*array)
There's no way to do that. This is one good reason (among many) to use vectors instead of arrays. But if you must use an array then you must pass the size of the array as a parameter to your function
int largest(int *list, int list_size, int highest_index)
Arrays in C++ are quite poor, the sooner you learn to use vectors the easier you will find things.
Pointers do not have information about the number of elements they refer to. If you are speaking about the first argument of the function call then if list is an array you can indeed use the syntax
sizeof( list ) / sizeof( int )
I would like to append that there are three approaches. The first one is to use arrays passed by reference. The second one is to use pointer to the first element and the number of elements. And the third one is to use two pointers - the start pointer and the last pointer as standard algorithms usually are defined. Character arrays have an additional possibility to process them.
The simple answer is you cannot. You need to store it in a variable. The great advantage with C++ is it has STL and you can use vector. size() method gives the size of the vector at that instant.
#include<iostream>
#include<vector>
using namespace std;
int main () {
vector<int> v;
for(int i = 0; i < 10; i++) {
v.push_back(i);
}
cout << v.size() << endl;
for(int i = 0; i < 10; i++) {
v.push_back(i);
}
cout << v.size() << endl;
return 0;
}
output:
10
20
Not tested. But, should work. ;)
You need to remember in a variable array size, there is no possibility to retrieve array size from pointer.
const int SIZE = 10;
int list[SIZE];
// or
int* list = new int[SIZE]; // do not forget to delete[]
My answer uses a char array instead of an integer array but I do hope it helps.
You can use a counter until you reach the end of the array. Char arrays always end with a '\0' and you can use that to check the end of the array is reached.
char array[] = "hello world";
char *arrPtr = array;
char endOfString = '\0';
int stringLength = 0;
while (arrPtr[stringLength] != endOfString) {
stringLength++;
}
stringLength++;
cout << stringLength << endl;
Now you have the length of the char array.
I tried the counting the number of integers in array using this method. Apparently, '\0' doesn't apply here obviously but the -1 index of the array is 0. So assuming that there is no 0, in the array that you are using. You can replace the '\0' with 0 in the code and change the code to use int pointers and arrays.

Find length of variable in the template class [duplicate]

I am writing a simple function that returns the largest integer in an array. The problem I am having is finding the number of elements in the array.
Here is the function header:
int largest(int *list, int highest_index)
How can I get the number of integers in the array 'list'.
I have tried the following methods:
int i = sizeof list/sizeof(int); //returns incorrect value
int i = list.size(); // does not compile
Any help will be greatly appreciated!
C++ is based on C and inherits many features from it. In relation to this question, it inherits something called "array/pointer equivalence" which is a rule that allows an array to decay to a pointer, especially when being passed as a function argument. It doesn't mean that an array is a pointer, it just means that it can decay to one.
void func(int* ptr);
int array[5];
int* ptr = array; // valid, equivalent to 'ptr = &array[0]'
func(array); // equivalent to func(&array[0]);
This last part is the most relevant to your question. You are not passing the array, you are passing the address of the 0th element.
In order for your function to know how big the incoming array is, you will need to send that information as an argument.
static const size_t ArraySize = 5;
int array[ArraySize];
func(array, ArraySize);
Because the pointer contains no size information, you can't use sizeof.
void func(int* array) {
std::cout << sizeof(array) << "\n";
}
This will output the size of "int*" - which is 4 or 8 bytes depending on 32 vs 64 bits.
Instead you need to accept the size parameters
void func(int* array, size_t arraySize);
static const size_t ArraySize = 5;
int array[ArraySize];
func(array, ArraySize);
Even if you try to pass a fixed-sized array, it turns out this is syntactic sugar:
void func(int array[5]);
http://ideone.com/gaSl6J
Remember how I said that an array is NOT a pointer, just equivalent?
int array[5];
int* ptr = array;
std::cout << "array size " << sizeof(array) << std::endl;
std::cout << "ptr size " << sizeof(ptr) << str::endl;
array size will be 5 * sizeof(int) = 20
ptr size will be sizeof(int *) which will be either 4 or 8 bytes.
sizeof returns the size of the type being supplied, if you supply an object then it deduces the type and returns the size of that
If you want to know how many elements of an array are in the array, when you have the array and not a pointer, you can write
sizeof(array) / sizeof(array[0])
or
sizeof(array) / sizeof(*array)
There's no way to do that. This is one good reason (among many) to use vectors instead of arrays. But if you must use an array then you must pass the size of the array as a parameter to your function
int largest(int *list, int list_size, int highest_index)
Arrays in C++ are quite poor, the sooner you learn to use vectors the easier you will find things.
Pointers do not have information about the number of elements they refer to. If you are speaking about the first argument of the function call then if list is an array you can indeed use the syntax
sizeof( list ) / sizeof( int )
I would like to append that there are three approaches. The first one is to use arrays passed by reference. The second one is to use pointer to the first element and the number of elements. And the third one is to use two pointers - the start pointer and the last pointer as standard algorithms usually are defined. Character arrays have an additional possibility to process them.
The simple answer is you cannot. You need to store it in a variable. The great advantage with C++ is it has STL and you can use vector. size() method gives the size of the vector at that instant.
#include<iostream>
#include<vector>
using namespace std;
int main () {
vector<int> v;
for(int i = 0; i < 10; i++) {
v.push_back(i);
}
cout << v.size() << endl;
for(int i = 0; i < 10; i++) {
v.push_back(i);
}
cout << v.size() << endl;
return 0;
}
output:
10
20
Not tested. But, should work. ;)
You need to remember in a variable array size, there is no possibility to retrieve array size from pointer.
const int SIZE = 10;
int list[SIZE];
// or
int* list = new int[SIZE]; // do not forget to delete[]
My answer uses a char array instead of an integer array but I do hope it helps.
You can use a counter until you reach the end of the array. Char arrays always end with a '\0' and you can use that to check the end of the array is reached.
char array[] = "hello world";
char *arrPtr = array;
char endOfString = '\0';
int stringLength = 0;
while (arrPtr[stringLength] != endOfString) {
stringLength++;
}
stringLength++;
cout << stringLength << endl;
Now you have the length of the char array.
I tried the counting the number of integers in array using this method. Apparently, '\0' doesn't apply here obviously but the -1 index of the array is 0. So assuming that there is no 0, in the array that you are using. You can replace the '\0' with 0 in the code and change the code to use int pointers and arrays.

Getting size of string in function arguments

I am trying to pass string to function.
I am getting:
Data:abcdefghijk
<br>size of Data:4
My Code:
#include <iostream>
#include <conio.h>
using namespace std;
void trying (char *Data)
{
cout << "Data:" << Data;
cout << "\nsize of Data:" << sizeof(Data);
}
main()
{
char DaTa[] = "abcdefghijk";
trying(DaTa);
return 0;
}
Although other members are being a bit obtuse in not inferring your intent, it would have been helpful if you had said you were seeking to obtain the size of the passed array.
Anyhoo ....
Within trying(), sizeof(Data) computes the size of a pointer, not the size of the array passed by the caller.
Given only a pointer, there is no way trying() can access the size of the array, because the pointer does not carry that information (it can point to one element or the first in an array, and there is no way to tell). If you want trying() to access the number of elements in the array, you need to pass it separately (e.g. as a separate argument).

Arrays as address constants in functions

I'm teaching myself C++ and had some questions about arrays and pointers. My understanding is that arrays are really just pointers, however, arrays are address constants which cannot be changed.
If this is the case, I was wondering why in my function show2() I was able to change the address of the pointer list. Unlike variables, I thought arrays are passed by reference so I was expecting a compiler error when calling function show2() since I incremented the address of list. But the code works just fine. Can someone please explain?
Thank you!
#include<iostream>
#include<iomanip>
using namespace std;
void show1(double *list, int SIZE)
{
for(int i=0; i < SIZE; i++)
{
cout << setw(5) << *(list+i);
}
cout << endl;
return;
}
void show2(double *list, int SIZE)
{
double *ptr = list;
for(int i=0; i < SIZE; i++)
cout << setw(5) << *list++;
cout << endl;
return;
}
int main()
{
double rates[] = {6.5, 7.2, 7.5, 8.3, 8.6,
9.4, 9.6, 9.8, 10.0};
const int SIZE = sizeof(rates) / sizeof(double);
show1(rates, SIZE);
show2(rates, SIZE);
return 0;
}
My understanding is that arrays are really just pointers
Let's get that out of the way. No, arrays are not pointers. Arrays are a series of objects, all of the same type, contiguous in memory.
Arrays can be passed by reference, but that is not what is usually done. What is usually done, which is what you are doing, is passing a pointer to the first element of the array. Arrays can and will "decay" to a pointer to their first element upon demand. And that's what is happening when you pass rates to show1 and show2.
Inside show1 and show2, list starts out as a pointer to rates[0]. You're free to modify this pointer to point at any other double.
If you wanted to pass an array by reference, it would look like this:
void show3(double (&list)[9]) { ... }
Or the more versatile:
template<size_t SIZE>
void show3(double (&list)[SIZE]) { ... }
Note that what you can't do is pass an array by value (unless it is contained within another object). If you write a function which looks like it is taking an array by value, e.g.
void show4(double list[9]) { ... }
It is actually a pointer, and that number 9 is meaningless. Native arrays suck.
First, arrays are converted to a pointer to the first element when passed as the function argument. BTW, arrays are not pointers, as one example, sizeof(rates) in your code isn't the size of a pointer.
Second, arrays are passed by value since you are not using references.
So in the function show2, you are modifying a pointer, which is fine.
Arrays are not pointers. C++ has inherited "Array-Pointer Equivalence" from C which means that a well-known array variable can decay to a pointer, primarily for the purpose of offset math and for avoiding passing arrays by value:
int array[64];
int* a = array; // equivalent to a = &array[0];
Array's aren't pointers. If you use an array variable name in a pointer context, it will "decay" to a pointer - that is, lose the extended attributes available from an array object.
int array[64];
int* a = array;
std::cout << "array size = " << sizeof(array) << "\n";
std::cout << "a size = " << sizeof(a) << "\n";
std::cout << "(int*)(array) size = " << sizeof((int*)array)) << "\n";
"Array size" will be 256 (int is 4 bytes, 64 of them = 256 bytes), "a size" will be 4 or 8 bytes depending on 32/64 bits, and "(int*)(array)" size will be the same size as the pointer.
People often think that arrays are passed by value. This is not true: http://ideone.com/hAeH18
#include <iostream>
void bump(int arr[3]) {
for (size_t i = 0; i < 3; ++i)
arr[i]++;
}
int main() {
int array[] = { 1, 2, 3 };
bump(array);
for (size_t i = 0; i < 3; ++i)
std::cout << array[i] << "\n";
return 0;
}
This outputs "2, 3, 4" not "1, 2, 3".
This occurs because arrays decay to pointers when passed as function arguments. But to support the syntax for receiving arrays as arrays, C has to be able to treat pointers like arrays in some contexts:
void f1(int* a) { a[0]++; }
void f2(int* a) { (*a)++; }
void f3(int a[]) { a[0]++; }
void f4(int a[]) { (*a)++; }
void f5(int a[1]) { a[0]++; }
void f6(int a[1]) { (*a)++; }
All of these functions produce the same code.
In C, this originated from the fact that array information is lost at compile time. So this function:
void f(int array[])
has no way to tell how large the array it is receiving is. They wanted programmers to be conscious of this and be careful about how/if they passed size information - e.g. in the case of char arrays, instead of size, we have the nul terminator byte.
Unfortunately they didn't choose to make it obvious by diasllowing the representation that makes it look like you are receiving an array with size information intact :(