First, I don't understand why the compiler can't seem to resolve the offending code (wrapped by the ENABLE_OFFENDER macro). The two get() methods have very different call signatures. So, perhaps a c++ language lawyer could help explain why I'm getting the error.
Second, is there a way to provide more guidance to the compiler as to which get() it should use?
#include <iostream>
//switch offending code in/out
#define ENABLE_OFFENDER
/// Forward declare
template <typename T> class TableEntry;
/// Non-template base class
class TableEntryBase {
protected:
// prevent instantiation
TableEntryBase() { }
public:
virtual ~TableEntryBase() { }
template <typename T>
void set(const T& rvalue){
TableEntry<T>* entry = dynamic_cast<TableEntry<T> *>(this);
if(0 != entry){
entry->setValue(rvalue);
}
}
template <typename T>
T get(T& lvalue){
TableEntry<T>* entry = dynamic_cast<TableEntry<T> *>(this);
if(0 != entry){
return entry->getValue(lvalue);
} else {
return T();
}
}
template <typename T>
T get(){
TableEntry<T>* entry = dynamic_cast<TableEntry<T> *>(this);
if(0 != entry){
return entry->getValue();
} else {
return T();
}
}
};
template <typename T>
class TableEntry : public TableEntryBase {
private:
T m_value;
public:
TableEntry():TableEntryBase() { }
~TableEntry() { }
void setValue(const T& rvalue){
m_value = rvalue;
}
T getValue(T& lvalue){
lvalue = m_value;
return m_value;
}
T getValue(){
return m_value;
}
};
template <int N>
class Table {
private:
TableEntryBase* m_tableEntries[N];
int m_tableEntriesIndex;
public:
Table():m_tableEntriesIndex(0){}
virtual ~Table() { }
void addEntry(TableEntryBase* entry){
if(0 != entry)
m_tableEntries[m_tableEntriesIndex++] = entry;
}
template <typename T>
void setEntry(int entryIndex, const T& rvalue){
// I'm not sure why it's not set<T>(rvalue)
m_tableEntries[entryIndex]->set(rvalue);
}
template <typename T>
T getEntry(int entryIndex, T& lvalue){
return m_tableEntries[entryIndex]->get(lvalue);
}
#ifdef ENABLE_OFFENDER
template <typename T>
T getEntry(int entryIndex){
return m_tableEntries[entryIndex]->get();
}
#endif
};
int main(){
TableEntry<int> entry1;
// setting the value using base class set
entry1.set<int>(5);
TableEntry<double> entry2;
entry2.set<double>(3.14);
std::cout << "entry1 value = " << entry1.getValue() << std::endl;
std::cout << "entry2 value = " << entry2.getValue() << std::endl;
std::cout << "entry1 value = " << entry1.get<int>() << std::endl;
std::cout << "entry2 value = " << entry2.get<double>() << std::endl;
TableEntryBase* entry_ptr = &entry1;
std::cout << "entry1 value = " << entry_ptr->get<int>() << std::endl;
Table<2> table;
table.addEntry(&entry1);
table.addEntry(&entry2);
table.setEntry<int>(0, 10);
std::cout << "entry1 value = " << entry1.get<int>() << std::endl;
std::cout << "entry2 value = " << entry2.get<double>() << std::endl;
int val3 = 0;
int val4 = 0;
val4 = table.getEntry<int>(0, val3);
int val5 = 0;
#ifdef ENABLE_OFFENDER
val5 = table.getEntry<int>(0);
#endif
std::cout << "val3 = " << val3 << ", val4 = " << val4 << ", val5 = " << val5 << std::endl;
return 0;
}
/* GCC error
main.cpp:129:30: instantiated from here
main.cpp:96:95: error: no matching function for call to ‘TableEntryBase::get()’
main.cpp:96:95: note: candidates are:
main.cpp:26:4: note: template<class T> T TableEntryBase::get(T&)
main.cpp:36:4: note: template<class T> T TableEntryBase::get()
*/
I got the code to work on my older compilers by changing the offending code as such.
#ifdef ENABLE_OFFENDER
template <typename T>
T getEntry(int entryIndex){
// Error: expected primary-expression before ‘>’ token
//return m_tableEntries[entryIndex]->get<T>();
// Error: couldn't deduce template parameter ‘T’
//return m_tableEntries[entryIndex]->get();
TableEntryBase* entry = m_tableEntries[entryIndex];
return entry->get<T>();
}
#endif
Related
I'm experimenting with C++ templates, and a kind of heterogenous type-safe map. Keys go with specific types. An example use would be something like a CSS stylesheet. I've got it to where I can things write:
styles.set<StyleKey::fontFamily>("Helvetica");
styles.set<StyleKey::fontSize>(23.0);
That type checks as desired; it won't compile calls where the key does not match it's intended value type.
But I'm wondering if there's also a way to write it like this:
styles.set(StyleKey::fontFamily, "Helvetica");
styles.set(StyleKey::fontSize, 23.0);
... and have it deduce the same thing, because the first argument is a constant.
Here's my flailing attempt, pasted below and on godbolt. The set2 template does not work.
#include <iostream>
#include <string>
using namespace std;
struct color {
float r,g,b;
};
ostream &operator <<(ostream &out, const color &c) {
return out << "[" << c.r << ',' << c.g << ',' << c.b << "]";
}
// Gives something that would have types: string, float, color, bool
enum class StyleKey {
fontFamily = 1, fontSize, fontColor, visible
};
template <StyleKey key>
struct KeyValueType {
};
struct StyleMap;
template <>
struct KeyValueType<StyleKey::fontFamily> {
typedef string value_type;
static void set(StyleMap *sm, value_type value);
};
template <>
struct KeyValueType<StyleKey::fontSize> {
typedef float value_type;
static void set(StyleMap *sm, value_type value);
};
struct StyleMap {
string fontFamily = "";
float fontSize = 14;
color fontColor = color{0,0,0};
bool visible = true;
template <StyleKey key>
void set(typename KeyValueType<key>::value_type value) {
cout << "set " << (int)key << " value: " << value << endl;
KeyValueType<key>::set(this, value);
}
template <StyleKey key>
void set2(StyleKey key2, typename KeyValueType<key>::value_type value) {
static_assert(key == key2);
cout << "set " << (int)key << " value: " << value << endl;
}
};
void KeyValueType<StyleKey::fontFamily>::set(StyleMap *sm, string str) {
sm->fontFamily = str;
}
void KeyValueType<StyleKey::fontSize>::set(StyleMap *sm, float sz) {
sm->fontSize = sz;
}
void print(const StyleMap &sm) {
cout << "font family : " << sm.fontFamily << endl;
cout << "font size : " << sm.fontSize << endl;
cout << "color : " << sm.fontColor << endl;
cout << "visible : " << sm.visible << endl;
}
int main() {
// Goal:
//
// StyleMap styles;
// styles[fontFamily] = "Helvetica";
// styles[fontSize] = 15.0;
// string fam = styles[fontFamily]
// float sz = styles[fontSize];
StyleMap styles;
// This works!
styles.set<StyleKey::fontFamily>("Helvetica");
styles.set<StyleKey::fontSize>(23.0);
// This won't compile, as desired
// styles.set<StyleKey::fontFamily>(20);
// But can we write it like this?
// styles.set2(StyleKey::fontFamily, "Helvetica");
// styles.set2(StyleKey::fontSize, 23.0);
print(styles);
}
You can't do SFINAE or specialization on function parameters, only template parameters. That means this can't work using your current approach.
What you could do is change your StyleKeys from being enum values to being empty tag structs with different types. Then you could specialize KeyValueType on each of those types and pass an object of one of those types to StyleMap::set. It can then use the type of that object to deduce the correct KeyValueType specialization to dispatch to.
namespace StyleKey {
static constexpr inline struct FontFamily {} fontFamily;
static constexpr inline struct FontSize {} fontSize;
};
template <typename KeyType>
struct KeyValueType {};
struct StyleMap;
template <>
struct KeyValueType<StyleKey::FontFamily> {
using value_type = std::string;
static void set(StyleMap *sm, value_type value);
};
template <>
struct KeyValueType<StyleKey::FontSize> {
using value_type = float;
static void set(StyleMap *sm, value_type value);
};
struct StyleMap {
std::string fontFamily = "";
float fontSize = 14;
template <auto key>
void set(typename KeyValueType<std::remove_const_t<decltype(key)>>::value_type value) {
KeyValueType<std::remove_const_t<decltype(key)>>::set(this, value);
}
template <typename KeyType>
void set2(KeyType key, typename KeyValueType<KeyType>::value_type value) {
KeyValueType<KeyType>::set(this, value);
}
};
void KeyValueType<StyleKey::FontFamily>::set(StyleMap *sm, std::string str) {
sm->fontFamily = str;
}
void KeyValueType<StyleKey::FontSize>::set(StyleMap *sm, float sz) {
sm->fontSize = sz;
}
Demo
Note: This approach will also work for the goal mentioned in the comment in your main function. Example.
template <typename T> using Map = std::map<std::string, T>;
class object_index {
public:
object_index(){};
int cntr = 0;
Map<int> MapInt;
Map<bool> MapBool;
Map<std::string> MapStr;
Map<double> MapDouble;
template <typename V> void insert2Map(V lhs) {
if (std::is_same<V, int>::value) {
std::cout << "INT: ";
std::string key = std::to_string(cntr);
MapInt[key] = lhs; // ERROR
/* incompatible pointer to integer conversion assigning to
'std::map<std::basic_string<char>, int>::mapped_type'
(aka 'int') from 'const char *' */
}
if (std::is_same<V, const char *>::value) {
std::cout << "STR: ";
}
if (std::is_same<V, bool>::value) {
std::cout << "BOOL: ";
}
if (std::is_same<V, double>::value) {
std::cout << "DOUBLE: ";
}
std::cout << lhs << std::endl;
}
template <typename Ob> object_index &operator,(Ob obj) {
insert2Map(obj);
++cntr;
return *this;
}
// o1[values 1.3, 2, 4, "hello"];
};
class object {
public:
void operator[](object_index index) { item = index; }
private:
object_index item;
};
#define values object_index(),
int main(void) {
object o1 = object();
o1[values 1.3, 2, true, "hello"];
return 0;
}
DISCLAIMER:: I know there is no reason to use this weird syntax , its for a Uni project that asks for this.
It should never get an argument of an incompatible type , I check for it before using it. How can i get past this? Or is the compiler right? How can I achieve this correctly?
This might sound basic but:
WORD wSong = 0;
CArchive ar;
...
ar >> wSong;
m_sPublicTalkInfo.iSongStart = static_cast<int>(wSong);
At the moment I read the WORD into a specific variable and the cast it.
Can I read it in and cast at the same time?
Please note I can't serialize a int. It must be a WORD and cast to int.
Or
ar >> wSong;
m_sPublicTalkInfo.iSongStart = static_cast<int>(wSong);
I don't think there is a direct way. You could implement a helper function:
template <typename T, typename U>
T readAndCast (CArchive& ar) {
U x;
ar >> x;
return static_cast<T> (x);
}
m_sPublicTalkInfo.iSongStart = readAndCast<int, WORD>(ar);
It might be better to use the fixed-width integer types in your program, i.e. perhaps int_least16_t instead of int to be sure the type has the right size. WORD is fixed to 16bit, but int isn't. Also, WORD is unsigned and int isn't, so there could be an overflow during casting.
This is a example of how you could create a wrapper if you want the serialize syntax to remain consistent. It's designed to work with integrals and MFC unsigned types only.
#include <iostream>
#include <cstdint>
#include <sstream>
#include <type_traits>
// Fake the MFC types
using BYTE = std::uint8_t;
using WORD = std::uint16_t;
using DWORD = std::uint32_t;
using QWORD = std::uint64_t;
template<typename T>
struct is_valid_save_type : std::bool_constant<
std::is_same_v<BYTE, T> ||
std::is_same_v<WORD, T> ||
std::is_same_v<DWORD, T> ||
std::is_same_v<QWORD, T>
> {};
template<typename T>
struct is_valid_load_type : is_valid_save_type<T> {};
// Saves type T as a SaveType
template<typename T, typename SaveType>
struct save_as_type
{
explicit save_as_type(T value) : value(value) {}
explicit operator SaveType() const
{
return static_cast<SaveType>(value);
}
private:
T value;
// This class only works with integrals
static_assert(std::is_integral_v<T>);
// SaveType should be BYTE/WORD/DWORD/QWORD only
static_assert(is_valid_save_type<SaveType>::value);
};
// Loads type T as a LoadType
template<typename T, typename LoadType>
struct load_as_type
{
explicit load_as_type(T& value) : value_(value) {}
load_as_type& operator=(LoadType rhs)
{
value_ = rhs;
return *this;
}
private:
T& value_;
// T should be an integral
static_assert(std::is_integral_v<T>);
// T must be non-constant
static_assert(!std::is_const_v<T>);
// LoadType should be BYTE/WORD/DWORD/QWORD only
static_assert(is_valid_load_type<LoadType>::value);
};
class CArchive;
// Make the above types serializable
template<typename T, typename SaveType>
CArchive& operator<<(CArchive& ar, save_as_type<T, SaveType> const& s)
{
ar << static_cast<SaveType>(s);
}
template<typename T, typename LoadType>
CArchive& operator>>(CArchive& ar, load_as_type<T, LoadType> l)
{
LoadType t{};
ar >> t;
l = t;
}
// Use the following two functions in your code
template<typename SaveType, typename T>
save_as_type<T, SaveType> save_as(T const& t)
{
return save_as_type<T, SaveType>{ t };
}
template<typename LoadType, typename T>
load_as_type<T, LoadType> load_as(T& t)
{
return load_as_type<T, LoadType>{ t };
}
// Prevent loading into temporaries; i.e. load_as<BYTE>(11);
template<typename T, typename LoadType>
load_as_type<T, LoadType> load_as(const T&& t) = delete;
// Fake MFC Archive
class CArchive
{
public:
CArchive& operator<<(int i)
{
std::cout << "Saving " << i << " as an int\n";
return *this;
}
CArchive& operator<<(BYTE b)
{
std::cout << "Saving " << (int)b << " as a BYTE\n";
return *this;
}
CArchive& operator<<(WORD w)
{
std::cout << "Saving " << (int)w << " as a WORD\n";
return *this;
}
CArchive& operator<<(DWORD d)
{
std::cout << "Saving " << (int)d << " as a DWORD\n";
return *this;
}
CArchive& operator>>(int& i)
{
std::cout << "Loading as an int\n";
return *this;
}
CArchive& operator>>(BYTE& b)
{
std::cout << "Loading as a BYTE\n";
return *this;
}
CArchive& operator>>(WORD& w)
{
std::cout << "Loading as a WORD\n";
return *this;
}
CArchive& operator>>(DWORD& d)
{
std::cout << "Loading as a DWORD\n";
return *this;
}
};
int main()
{
CArchive ar;
int out_1 = 1;
int out_2 = 2;
int out_3 = 3;
int out_4 = 4;
ar << out_1 <<
save_as<BYTE>(out_2) <<
save_as<WORD>(out_3) <<
save_as<DWORD>(out_4);
std::cout << "\n";
int in_1 = 0;
int in_2 = 0;
int in_3 = 0;
int in_4 = 0;
ar >> in_1 >>
load_as<BYTE>(in_2) >>
load_as<WORD>(in_3) >>
load_as<DWORD>(in_4);
return 0;
}
Output:
Saving 1 as an int
Saving 2 as a BYTE
Saving 3 as a WORD
Saving 4 as a DWORD
Loading as an int
Loading as a BYTE
Loading as a WORD
Loading as a DWORD
following from this question, I have been trying to create a template function that calls all same-named methods of its mixins. This has been done and verified in the previous question.
Now I am attempting to get the return value of SensorType::
Analytically:
#include<iostream>
#include <string>
struct EdgeSensor
{
void update(int i) { std::cout << "EdgeSensor::update " << i << std::endl; }
void updat2(const int i ) { std::cout << "EdgeSensor::updat2" << i << std::endl; }
std::string printStats() { std::cout << "EdgeSensor::printStats" << std::endl;
return std::string("EdgeSensor::printStats"); }
};
struct TrendSensor
{
void update(int i ) { std::cout << "TrendSensor::update" << i << std::endl; }
void updat2(const int i ) { std::cout << "TrendSensor::updat2" << i << std::endl; }
std::string printStats() { std::cout << "TrendSensor::printStats" << std::endl;
return std::string("TrendSensor::printStats"); }
};
template <class T, void (T::*)(const int)>
struct Method { };
template<typename ... SensorType>
class BaseSensor : public SensorType ... //to my BaseSensor class
{
template <class T, void(T::*M)(const int)>
int runSingle(Method<T, M> , const int i) {
(this->*M)(i);
return 0;
}
template <class... Ts>
void runAll(const int i) {
int run[sizeof...(Ts)] = { runSingle(Ts{},i)... };
(void)run;
}
public:
void update() {
runAll<Method<SensorType, &SensorType::update>...>(2);
}
void updat2() {
const int k = 3;
runAll<Method<SensorType, &SensorType::updat2>...>(k);
}
void printStats() {
// runAll<Method<SensorType, &SensorType::printStats>...>();
}
};
int main() {
{
BaseSensor<EdgeSensor,TrendSensor> ets;
ets.update();
ets.updat2();
ets.printStats();
}
{
BaseSensor<EdgeSensor> ets;
ets.update();
ets.updat2();
ets.printStats();
}
}
The above compiles and runs fine. The problem is: how can I gather the return values (std::strings) from running the mixin SensorType::printStats() methods in BaseSensor::printStats() ?
If I try to create a 2ndary version of the run* functions and the Method template, I fail to make it compile. Say I did:
template <class T, void (T::*)()>
struct Method2 { };
template <class T, void(T::*M)()>
int runSingle2(Method2<T, M>) {
(this->*M)();
return 0;
}
template <class... Ts>
void runAll2() {
std::string s;
int run[sizeof...(Ts)] = { s = runSingle2(Ts{})... };
(void)run;
std::cout << "s=" << s << std::endl;
}
public:
void update() {
int k = 4;
runAll<Method<SensorType, &SensorType::update>...>(k);
}
void printStats() {
runAll2<Method2<SensorType, &SensorType::printStats>...>();
}
};
This does not compile saying
g++ -Wall -Wextra -g -std=c++11 -c -o "obj_dbg/main.opp" "main.cpp"
main.cpp: In instantiation of ‘void BaseSensor<SensorType>::printStats() [with SensorType = EdgeSensor, TrendSensor]’:
main.cpp:65:20: required from here
main.cpp:58:8: error: could not convert template argument ‘&EdgeSensor::printStats’ to ‘void (EdgeSensor::*)()’
make: *** [obj_dbg/main.opp] Error 1
So HOW can I grab the return values from SensorType::printStats()?
Not sure if you can use c++11, if so, then I think this is the easiest?
#include <iostream>
#include <string>
struct EdgeSensor
{
void update(int i) { std::cout << "EdgeSensor::update " << i << std::endl; }
void updat2(const int i ) { std::cout << "EdgeSensor::updat2" << i << std::endl; }
std::string printStats() { std::cout << "EdgeSensor::printStats" << std::endl;
return std::string("EdgeSensor::printStats"); }
};
struct TrendSensor
{
void update(int i ) { std::cout << "TrendSensor::update" << i << std::endl; }
void updat2(const int i ) { std::cout << "TrendSensor::updat2" << i << std::endl; }
std::string printStats() { std::cout << "TrendSensor::printStats" << std::endl;
return std::string("TrendSensor::printStats"); }
};
template<typename ... SensorType>
class BaseSensor : public SensorType ... //to my BaseSensor class
{
public:
void update() {
auto v = { (static_cast<SensorType*>(this)->update(1), 0)... }; // *
(void) v;
}
void updat2() {
const int k = 3;
auto v = { (static_cast<SensorType*>(this)->updat2(k), 0)... }; // *
(void) v;
}
void printStats() {
auto v = { static_cast<SensorType*>(this)->printStats()... };
for (auto s : v) {
std::cout << s << std::endl;
}
}
};
int main() {
{
BaseSensor<EdgeSensor,TrendSensor> ets;
ets.update();
ets.updat2();
ets.printStats();
}
{
BaseSensor<EdgeSensor> ets;
ets.update();
ets.updat2();
ets.printStats();
}
}
NOTE: I am using a gcc extension here, but I think you are using gcc, so it should be okay
Here is you code reviewed so as it works as requested:
#include<iostream>
#include <string>
#include <vector>
struct EdgeSensor
{
void update(int i) { std::cout << "EdgeSensor::update " << i << std::endl; }
void updat2(const int i ) { std::cout << "EdgeSensor::updat2" << i << std::endl; }
std::string printStats() { std::cout << "EdgeSensor::printStats" << std::endl;
return std::string("EdgeSensor::printStats"); }
};
struct TrendSensor
{
void update(int i ) { std::cout << "TrendSensor::update" << i << std::endl; }
void updat2(const int i ) { std::cout << "TrendSensor::updat2" << i << std::endl; }
std::string printStats() { std::cout << "TrendSensor::printStats" << std::endl;
return std::string("TrendSensor::printStats"); }
};
template<typename ... SensorType>
class BaseSensor : public SensorType ... {
template<typename F>
struct Invoke;
template<typename R, typename... A>
struct Invoke<R(A...)> {
template <R(SensorType::* ...M)(A...), typename T>
static std::vector<R> run(T *t, A... args) {
std::vector<R> vec;
int arr[] = { (vec.push_back((t->*M)(args...)), 0)... };
(void)arr;
return vec;
}
};
template<typename... A>
struct Invoke<void(A...)> {
template <void(SensorType::* ...M)(A...), typename T>
static void run(T *t, A... args) {
int arr[] = { ((t->*M)(args...), 0)... };
(void)arr;
}
};
public:
void update() {
Invoke<void(int)>::template run<&SensorType::update...>(this, 2);
}
void updat2() {
const int k = 3;
Invoke<void(int)>::template run<&SensorType::updat2...>(this, k);
}
void printStats() {
auto vec = Invoke<std::string(void)>::template run<&SensorType::printStats...>(this);
for(auto &&v: vec) {
std::cout << "--->" << v << std::endl;
}
}
};
int main() {
{
BaseSensor<EdgeSensor,TrendSensor> ets;
ets.update();
ets.updat2();
ets.printStats();
}
{
BaseSensor<EdgeSensor> ets;
ets.update();
ets.updat2();
ets.printStats();
}
}
I refactored a bit the code, for there was no need for the Method class. This works as intended and the strings returned by the printStats methods are now collected in a std::vector and returned to the caller.
To extend the solution to any type of member function you could do (and actually a bit simplify it still having in mind c++11 restriction). The approach resolves type of member function to be able to infer its result type. It also uses InferOwnerType to infer mixin type and avoid direct passing of statically casted this pointer. Depending on the result of the member function now we can store it into an array or use the trick with int array just to be sure each member function is invoked.
#include <iostream> // std::cout std::endl
#include <string> // std::string
#include <utility> // std::declval
struct EdgeSensor //a mixin
{
void update(int a){ std::cout << "EdgeSensor::update" << a << std::endl; }
std::string updat2(int const v) { return "EdgeSensor::printStats"; }
};
struct TrendSensor //another mixin
{
void update(int a){ std::cout << "TrendSensor::update" << std::endl; }
std::string updat2(int const v) { return "TrendSensor::printStats"; }
};
template <class Res, class This, class... Args>
This InferOwnerType(Res (This::*foo)(Args...)) { }
template<typename ... SensorType>
class BaseSensor : public SensorType ... //to my BaseSensor class
{
template <class M, class... Args>
auto run(M m, Args... args)
-> decltype((std::declval<decltype(InferOwnerType(m))*>()->*m)(args...)) {
return (static_cast<decltype(InferOwnerType(m))*>(this)->*m)(args...);
}
public:
template <class... Args>
void update(Args... args) {
int arr[] = {(run(&SensorType::update, args...), 0)...};
(void)arr;
}
template <class... Args>
void updat2(Args... args) {
std::string s[] = {run(&SensorType::updat2, args...)...};
for (int i = 0; i < sizeof...(SensorType); i++)
std::cout << s[i] << std::endl;
}
};
int main() {
BaseSensor<EdgeSensor, TrendSensor> bs;
bs.update(4);
bs.updat2(0);
BaseSensor<EdgeSensor> bs2;
bs2.update(1);
bs2.updat2(0);
}
I found this https://gist.github.com/2945472 but I need an implementation that does not depend on c++11. I tried my hand at converting it to use only boost, but I'm having some trouble.
Here is what I came up with:
#include <boost/any.hpp>
#include <boost/function.hpp>
#include <boost/bind.hpp>
#include <boost/lambda/lambda.hpp>
#include <boost/unordered_map.hpp>
struct type_info_hash {
std::size_t operator()(std::type_info const & t) const {
return t.hash_code();
}
};
struct equal_ref {
template <typename T> bool operator()(boost::reference_wrapper<T> a,boost::reference_wrapper<T> b) const {
return a.get() == b.get();
}
};
struct any_visitor {
boost::unordered_map<boost::reference_wrapper<std::type_info const>, boost::function<void(boost::any&)>, type_info_hash, equal_ref> fs;
template <typename T> void insert_visitor(boost::function<void(T)> f) {
try {
fs.insert(std::make_pair(boost::ref(typeid(T)), boost::bind(f, boost::any_cast<T>(boost::lambda::_1))));
} catch (boost::bad_any_cast& e) {
std::cout << e.what() << std::endl;
}
}
bool operator()(boost::any & x) {
boost::unordered_map<boost::reference_wrapper<std::type_info const>, boost::function<void(boost::any&)>, type_info_hash, equal_ref>::iterator it = fs.find(boost::ref(x.type()));
if (it != fs.end()) {
it->second(x);
return true;
} else {
return false;
}
}
};
struct abc {};
void fa(int i) { std::cout << "fa(" << i << ")" << std::endl; }
void fb(abc) { std::cout << "fb(abc())" << std::endl; }
int main() {
any_visitor f;
f.insert_visitor<int>(fa);
f.insert_visitor<abc>(fb);
std::vector<boost::any> xs;
xs.push_back(1);
xs.push_back(abc());
xs.push_back(1.5);
for (auto & x : xs) {
if (!f(x)) std::cout << "no visitor registered" << std::endl;
}
}
I'm getting a bad_any_cast when inserting into the map. Shouldn't any_cast only be called by it->second(x) ? What am I doing wrong?
You can't cast _1 to T (at the time of the bind expression).
You need a lazy cast. Perhaps define a function and use a nested bind expression, or use Boost Phoenix with a custom any_cast actor.
Here's the nested bind approach:
#include <boost/any.hpp>
#include <boost/function.hpp>
#include <boost/bind.hpp>
#include <boost/lambda/lambda.hpp>
#include <boost/unordered_map.hpp>
struct type_info_hash {
std::size_t operator()(std::type_info const & t) const {
return 42; // t.hash_code();
}
};
struct equal_ref {
template <typename T> bool operator()(boost::reference_wrapper<T> a,boost::reference_wrapper<T> b) const {
return a.get() == b.get();
}
};
struct any_visitor {
boost::unordered_map<boost::reference_wrapper<std::type_info const>, boost::function<void(boost::any&)>, type_info_hash, equal_ref> fs;
template <typename T> static T any_cast_f(boost::any& any) { return boost::any_cast<T>(any); }
template <typename T> void insert_visitor(boost::function<void(T)> f) {
try {
fs.insert(std::make_pair(boost::ref(typeid(T)), boost::bind(f, boost::bind(any_cast_f<T>, boost::lambda::_1))));
} catch (boost::bad_any_cast& e) {
std::cout << e.what() << std::endl;
}
}
bool operator()(boost::any & x) {
boost::unordered_map<boost::reference_wrapper<std::type_info const>, boost::function<void(boost::any&)>, type_info_hash, equal_ref>::iterator it = fs.find(boost::ref(x.type()));
if (it != fs.end()) {
it->second(x);
return true;
} else {
return false;
}
}
};
struct abc {};
void fa(int i) { std::cout << "fa(" << i << ")" << std::endl; }
void fb(abc) { std::cout << "fb(abc())" << std::endl; }
int main() {
any_visitor f;
f.insert_visitor<int>(fa);
f.insert_visitor<abc>(fb);
std::vector<boost::any> xs;
xs.push_back(1);
xs.push_back(abc());
xs.push_back(1.5);
for (auto it=xs.begin(); it!=xs.end(); ++it)
if (!f(*it)) std::cout << "no visitor registered" << std::endl;
}
Prints output:
fa(1)
fb(abc())
no visitor registered
Try to use extendable any
https://sourceforge.net/projects/extendableany/?source=directory.
struct f_method
{
typedef void (boost::mpl::_1::* signature) () const;
template <typename T>
struct wrapper
: public T
{
void f() const
{
return this->call(f_method());
}
};
struct implementation
{
void operator() (int i) const
{
std::cout << "fa(" << i << ")" << std::endl;
}
void operator() (abc) const
{
std::cout << "fb(abc())" << std::endl;
}
template <typename T>
void operator() (const T& t) const
{
std::cout << "Errr" << std::endl;
}
};
};
typedef xany<boost::mpl::list<f_method> > any;
int main() {
std::vector<any> xs;
xs.push_back(1);
xs.push_back(abc());
xs.push_back(1.5);
for (auto it=xs.begin(); it!=xs.end(); ++it)
(*it).f();
}