"smaller" keyword(?) in OCaml - ocaml

In the solutions for the tutorials for OCaml form here, the one regarding eliminating consecutive duplicates of list elements, the code is written as such:
let rec compress = function
| a :: (b :: _ as t) -> if a = b then compress t else a :: compress t
| smaller -> smaller;;
I've never seen the keyword(?) "smaller" before, I looked up online but failed to find it. Although in this case, I understand its meaning, I still wonder if anyone can explain more about it. Thanks!

smaller is not a keyword, it's an identifier, just like a, b and t are on the line before.
The pattern smaller simply matches any possible value (that has not been matched by any previous pattern) and gives it the name smaller.

You may want to read the chapter Lists and Patterns in the book Real World OCaml.

Related

How can I calculate the length of a list containing lists in OCAML

i am a beginner in ocaml and I am stuck in my project.
I would like to count the number of elements of a list contained in a list.
Then test if the list contains odd or even lists.
let listoflists = [[1;2] ; [3;4;5;6] ; [7;8;9]]
output
l1 = even
l2 = even
l3 = odd
The problem is that :
List.tl listoflists
Gives the length of the rest of the list
so 2
-> how can I calculate the length of the lists one by one ?
-> Or how could I get the lists and put them one by one in a variable ?
for the odd/even function, I have already done it !
Tell me if I'm not clear
and thank you for your help .
Unfortunately it's not really possible to help you very much because your question is unclear. Since this is obviously a homework problem I'll just make a few comments.
Since you talk about putting values in variables you seem to have some programming experience. But you should know that OCaml code tends to work with immutable variables and values, which means you have to look at things differently. You can have variables, but they will usually be represented as function parameters (which indeed take different values at different times).
If you have no experience at all with OCaml it is probably worth working through a tutorial. The OCaml.org website recommends the first 6 chapters of the OCaml manual here. In the long run this will probably get you up to speed faster than asking questions here.
You ask how to do a calculation on each list in a list of lists. But you don't say what the answer is supposed to look like. If you want separate answers, one for each sublist, the function to use is List.map. If instead you want one cumulative answer calculated from all the sublists, you want a fold function (like List.fold_left).
You say that List.tl calculates the length of a list, or at least that's what you seem to be saying. But of course that's not the case, List.tl returns all but the first element of a list. The length of a list is calculated by List.length.
If you give a clearer definition of your problem and particularly the desired output you will get better help here.
Use List.iter f xs to apply function f to each element of the list xs.
Use List.length to compute the length of each list.
Even numbers are integrally divisible by two, so if you divide an even number by two the remainder will be zero. Use the mod operator to get the remainder of the division. Alternatively, you can rely on the fact that in the binary representation the odd numbers always end with 1 so you can use land (logical and) to test the least significant bit.
If you need to refer to the position of the list element, use List.iteri f xs. The List.iteri function will apply f to two arguments, the first will be the position of the element (starting from 0) and the second will be the element itself.

Haskell - Why is Alternative implemented for List

I have read some of this post Meaning of Alternative (it's long)
What lead me to that post was learning about Alternative in general. The post gives a good answer to why it is implemented the way it is for List.
My question is:
Why is Alternative implemented for List at all?
Is there perhaps an algorithm that uses Alternative and a List might be passed to it so define it to hold generality?
I thought because Alternative by default defines some and many, that may be part of it but What are some and many useful for contains the comment:
To clarify, the definitions of some and many for the most basic types such as [] and Maybe just loop. So although the definition of some and many for them is valid, it has no meaning.
In the "What are some and many useful for" link above, Will gives an answer to the OP that may contain the answer to my question, but at this point in my Haskelling, the forest is a bit thick to see the trees.
Thanks
There's something of a convention in the Haskell library ecology that if a thing can be an instance of a class, then it should be an instance of the class. I suspect the honest answer to "why is [] an Alternative?" is "because it can be".
...okay, but why does that convention exist? The short answer there is that instances are sort of the one part of Haskell that succumbs only to whole-program analysis. They are global, and if there are two parts of the program that both try to make a particular class/type pairing, that conflict prevents the program from working right. To deal with that, there's a rule of thumb that any instance you write should live in the same module either as the class it's associated with or as the type it's associated with.
Since instances are expected to live in specific modules, it's polite to define those instances whenever you can -- since it's not really reasonable for another library to try to fix up the fact that you haven't provided the instance.
Alternative is useful when viewing [] as the nondeterminism-monad. In that case, <|> represents a choice between two programs and empty represents "no valid choice". This is the same interpretation as for e.g. parsers.
some and many does indeed not make sense for lists, since they try iterating through all possible lists of elements from the given options greedily, starting from the infinite list of just the first option. The list monad isn't lazy enough to do even that, since it might always need to abort if it was given an empty list. There is however one case when both terminates: When given an empty list.
Prelude Control.Applicative> many []
[[]]
Prelude Control.Applicative> some []
[]
If some and many were defined as lazy (in the regex sense), meaning they prefer short lists, you would get out results, but not very useful, since it starts by generating all the infinite number of lists with just the first option:
Prelude Control.Applicative> some' v = liftA2 (:) v (many' v); many' v = pure [] <|> some' v
Prelude Control.Applicative> take 100 . show $ (some' [1,2])
"[[1],[1,1],[1,1,1],[1,1,1,1],[1,1,1,1,1],[1,1,1,1,1,1],[1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,"
Edit: I believe the some and many functions corresponds to a star-semiring while <|> and empty corresponds to plus and zero in a semiring. So mathematically (I think), it would make sense to split those operations out into a separate typeclass, but it would also be kind of silly, since they can be implemented in terms of the other operators in Alternative.
Consider a function like this:
fallback :: Alternative f => a -> (a -> f b) -> (a -> f e) -> f (Either e b)
fallback x f g = (Right <$> f x) <|> (Left <$> g x)
Not spectacularly meaningful, but you can imagine it being used in, say, a parser: try one thing, falling back to another if that doesn't work.
Does this function have a meaning when f ~ []? Sure, why not. If you think of a list's "effects" as being a search through some space, this function seems to represent some kind of biased choice, where you prefer the first option to the second, and while you're willing to try either, you also tag which way you went.
Could a function like this be part of some algorithm which is polymorphic in the Alternative it computes in? Again I don't see why not. It doesn't seem unreasonable for [] to have an Alternative instance, since there is an implementation that satisfies the Alternative laws.
As to the answer linked to by Will Ness that you pointed out: it covers that some and many don't "just loop" for lists. They loop for non-empty lists. For empty lists, they immediately return a value. How useful is this? Probably not very, I must admit. But that functionality comes along with (<|>) and empty, which can be useful.

A list check before and after concatenation with different results

I have an assignment and the code is really simple to understand but I cant find a possible solution. Thats the code:
lucky:: [Integer] -> Bool
lucky (xs) = all (/=13) xs
catenate as [] = as
catenate as (b:bs) = b : (catenate as bs)
test_luck1 as bs = lucky as && lucky bs
test_luck2 as bs = lucky (catenate as bs)
So the question is: For which input(the same for both functions) are the boolean values of both functions different, for example the first one true and the second one false or vice versa. So the first function tests both lists individually and the second tests the concatenation of the lists. I have been thinking all day yesterday and have absolutely no idea. Could you guys help me with finding the trick that should be used to solve the question?
For infinite "lucky" bs and "unlucky" as, test_luck1 will terminate, while test_luck2 will not.
The functions test the values in different order, due to the (somewhat weird) implementation of catenate, which prepends bs to as. Thus, test_luck1 tests as first, then bs, whereas test_luck2 tests bs first, and then as.
P.S. This can be seen as a boundary case, as per #Mark Seemann's remark -- sorry for the spoiler ;)
Looking at this some more, I think I was too quick on the trigger with my comments. Apart from shinobi's answer, I don't see any way in which the two functions would return different results.
Not that this proves anything, but I wrote a QuickCheck property to verify the hypothesis that test_luck1 will always return the same result as test_luck2:
prop :: [Integer] -> [Integer] -> Bool
prop as bs =
test_luck1 as bs == test_luck2 as bs
I've been running this property with 1,000,000 tests, and they all pass, so I don't think that there's any 'normal' values of as and bs that will cause the output of test_luck1 to be different from the output of test_luck2.

How does pattern matching works with lists

I just start learning haskell and pattern matching. I just don't understand how it implemented, is the [] and (x:_) evaluates to the different type and the function implementations for this pattern recognized because of polymorphism, or I just wrong and there is another technique used.
head' :: [a] -> a
head' [] = error "Can't call head on an empty list, dummy!"
head' (x:_) = x
Or lets consider this pattern matching function:
tell :: (Show a) => [a] -> String
tell [] = "The list is empty"
tell (x:[]) = "The list has one element: " ++ show x
tell (x:y:[]) = "The list has two elements: " ++ show x ++ " and " ++ show y
tell (x:y:_) = "This list is long. The first two elements are: " ++ show x ++ " and " ++ show y
I think I wrong because each list with different number of elements can't have deferent type. Can you explain me how haskell knows which pattern is correct for some function implementation? I understand how it works logically but not deep. Explain it to me please.
There's a bit of a level of indirection between the syntax in Haskell and the implementation at runtime. The list syntax that you see in most source is actually a bit of sugar for what is actually a fairly regular data type. The following two lines are equivalent:
data List a = Nil | Cons a (List a)
data [a] = [] | a : [a] -- pseudocode
So when you type in [a,b,c] this translates into the internal representation as (a : (b : (c : []))).
The pattern matching you'll see at the top level bindings in are also a bit of syntactic sugar ( sans some minor details ) for case statements which deconstruct the data types onto the right hand side of the case of the pattern match. The _ symbol is a builtin for the wildcard pattern which matches any expression ( so long as the pattern is well-typed ) but does add a variable to the RHS scope.
head :: [a] -> a
head x = case x of
(a : _) -> a
I think I wrong because each list with different number of elements can't have deferent type. Can you explain me how haskell knows which pattern is correct for some function implementation?
So to answer your question [] and (x:_) are both of the same type (namely [a] or List a in our example above). The list datatype is also recursive so all recursive combinations of Cons'ing values of type a have the same type, namely [a].
When the compiler typechecks the case statement it runs along each of the LHS columns and ensures that all the types are equivalent or can be made equivalent using a process called unification. The same is done on the right hand side of the cases.
Haskell "knows" which pattern is correct by trying each branch sequentially and unpacking the matched value to see if it has the same number of cons elements as the pattern and then proceeding to the branch which does, or failing with a pattern match error if none match. The same process is done for any pattern matching on data types, not just lists.
There are two separate sets of checks:
in compile time (before the program is run) the compiler simply checks that the types of the cases conform to the function's signature and that the calls to the function conform to the function's signature.
In runtime, when we have access to the actual input, a similar, but different, set of checks is executed: these checks take the * actual* input (not its type) at hand and determine which of the cases matches it.
So, to answer your question: the decision is made in compile time where we have not only the type but also the actual value.

How to split a list into a list of lists by removing a specific separation(Haskell)

I'm a newbie to Haskell, I have a problem. I need to write a function that splits a list into a list of lists everywhere a 'separation' appears.
I will try to help you develop the understanding of how to develop functions that work on lists via recursion. It is helpful to learn how to do it first in a 'low-level' way so you can understand better what's happening in the 'high-level' ways that are more common in real code.
First, you must think about the nature of the type of data that you want to work with. The list is in some sense the canonical example of a recursively-defined type in Haskell: a list is either the empty list [] or it is some list element a combined with a list via a : list. Those are the only two possibilities. We call the empty list the base case because it is the one that does not refer to itself in its definition. If there were no base case, recursion would never "bottom out" and would continue indefinitely!
The fact that there are two cases in the definition of a list means that you must consider two cases in the definition of a function that works with lists. The canonical way to consider multiple cases in Haskell is pattern matching. Haskell syntax provides a number of ways to do pattern matching, but I'll just use the basic case expression for now:
case xs of
[] -> ...
x:xs' -> ...
Those are the two cases one must consider for a list. The first matches the literal empty list constructor; the second matches the element-adding constructor : and also binds two variables, x and xs', to the first element in the list and the sublist containing the rest of the elements.
If your function was passed a list that matches the first case, then you know that either the initial list was empty or that you have completed the recursion on the list all the way past its last element. Either way, there is no more list to process; you are either finished (if your calls were tail-recursive) or you need to pass the basic element of your answer construction back to the function that called this one (by returning it). In the case that your answer will be a list, the basic element will usually be the empty list again [].
If your function was passed a list that matches the second case, then you know that it was passed a non-empty list, and furthermore you have a couple of new variables bound to useful values. Based on these variables, you need to decide two things:
How do I do one step of my algorithm on that one element, assuming I have the correct answer from performing it on the rest of the list?
How do I combine the results of that one step with the results of performing it on the rest of the list?
Once you've figured the answers to those questions, you need to construct an expression that combines them; getting the answer for the rest of the list is just a matter of invoking the recursive call on the rest of the list, and then you need to perform the step for the first element and the combining.
Here's a simple example that finds the length of a list
listLength :: [a] -> Int
listLength as =
case as of
[] -> 0 -- The empty list has a length of 0
a:as' -> 1 + listlength as' -- If not empty, the length is one more than the
-- length of the rest of the list
Here's another example that removes matching elements from a list
listFilter :: Int -> [Int] -> Int
listFilter x ns =
case ns of
[] -> [] -- base element to build the answer on
n:ns' -> if n == x
then listFilter x ns' -- don't include n in the result list
else n : (listFilter x ns') -- include n in the result list
Now, the question you asked is a little bit more difficult, as it involves a secondary 'list matching' recursion to identify the separator within the basic recursion on the list. It is sometimes helpful to add extra parameters to your recursive function in order to hold extra information about where you are at in the problem. It's also possible to pattern match on two parameters at the same time by putting them in a tuple:
case (xs, ys) of
([] , [] ) -> ...
(x:xs', [] ) -> ...
([] , y:ys') -> ...
(x:xs', y:ys') -> ...
Hopefully these hints will help you to make some progress on your problem!
Let's see if the problem can be reduced in a obvious way.
Suppose splitList is called with xs to split and ys as the separator. If xs is empty, the problem is the smallest, so what's the answer to that problem? It is important to have the right answer here, because the inductive solution depends on this decision. But we can make this decision later.
Ok, so for problem to be reducable, the list xs is not empty. So, it has at least a head element h and the smaller problem t, the tail of the list: you can match xs#(h:t). How to obtain the solution to the smaller problem? Well, splitList can solve that problem by the definition of the function. So now the trick is to figure out how to build the solution for bigger problem (h:t), when we know the solution to the smaller problem zs=splitList t ys. Here we know that zs is the list of lists, [[a]], and because t may have been the smallest problem, zs may well be the solution to the smallest problem. So, whatever you do with zs, it must be valid even for the solution to the smallest problem.
splitList [] ys = ... -- some constant is the solution to the smallest problem
splitList xs#(h:t) ys = let zs = splitList t ys
in ... -- build a solution to (h:t) from solution to t
I don't know how to test it. Anybody tells me how to write a function to a .hs file and use winGHCi to run this function?
WinGHCi automatically associates with .hs files so just double-click on the file and ghci should start up. After making some changes to the file using your favourite editor you can write use the :r command in ghci to reload the file.
To test the program after fixing typos, type-errors, and ensuring correct indentation, try calling functions you have defined with different inputs (or use QuickCheck). Note Maybe is defined as Just x or Nothing. You can use fromMaybe to extract x (and provide default value for the Nothing case).
Also try to make sure that pattern matching is exhaustive.