I am looking for an elegant way to declare a 5-dimensional array in C++.
Each nested vectors have known sizes so I started doing :
std::vector<std::vector<std::vector<std::vector<double>>>> myDblVec;
Then assuming I know all dimension sizes :
myDblVec.resize(dim1);
for (int d1 = 0; d1 != dim1; d1++) {
myDblVec[d1].resize[dim2];
for (int d2 = 0; d2 != dim2; d2++) {
myDblVec[d1][d2].resize(dim3)
for (int d3 = 0; d3 != dim3; d3++) {
myDblVec[d1][d2][d3].resize(dim4);
}
}
}
I am looking for a 1-liner or something less 'heavy' to declare this array.
If you get the dimensions run-time, like
myDblVec = std::vector<std::vector<std::vector<std::vector<double>>>>(dim1,
std::vector<std::vector<std::vector<double>>>(dim2,
std::vector<std::vector<double>>(dim3,
std::vector<double>>(dim4, 0.0))));
You could use std::array, assuming the sizes are known at compile time:
std::array<std::array<std::array<std::array<double, dim4>, dim3>, dim2>, dim1> myDblArray;
If you aren't too attached to pre-C++11, you could write a simple variadic template :
template <typename T, size_t... N> struct NestedArray;
template <typename T, size_t N> struct NestedArray<T, N> {
using type = array<T, N>;
};
template <typename T, size_t N, size_t... Rest>
struct NestedArray<T, N, Rest...> {
using type = array<typename NestedArray<T, Rest...>::type, N>;
};
Now, you can define your array as NestedArray<double, dim1, dim2, dim3, dim4>::type.
std::vector<T> takes the size as first constructor argument. You could take advantage of that and use somethign along the lines of
make_vector_t<double, 5> myDblVec(init_vector<double, 5>(dim1, dim2, dim3, dim4, dim5));
That'll rquire a bit of infrastructure to create the types and initialize the elements. Of course, this infrastructure is reasonable straight forward (although I haven't compiled it - currently I'm just using a mobile device, i.e., there is almost certainly a typo somewheter but the overall approach should owrk):
template <typename T, int Dim> struct make_vector;
template <typename T, int Dim>
using make_vector_t = typename make_vector<T, Dim>::type;
template <typename T>
struct make_vector<T, 0> { using type = T; }
template <typename T, int Dim>
struct make_vector { using type = std::vector<make_vector_t<T, Dim-1>>; }
template <typename T, int Dim, typename Arg, typename... Args>
auto init_vector(Arg size, Args... sizes) -> make_vector_t<T, Dim-1> {
return make_vector_t<T, Dim>(size, init_vector<T, Dim-1>(sizes...);
}
If you are in heavy need for multidimensional arrays, consider moving the stuff that has to deal with them into a separate source file that uses C instead of C++. You can interface quite easily between the languages, and allocating a 5D array of dynamical size in C is as simple as
double (*fiveDArray)[dim2][dim3][dim4][dim5] = malloc(dim1 * sizeof(*fiveDArray));
Usage is virtually the same as with your nested std::vector<>s, all you need to remember is the call to free() when you are done with your array. If you need a zero initialized array, replace malloc() by calloc(). As an added bonus, the contiguous nature of a C multidimensional array is nicer on the CPU caches than use of std::vector<>, and indexing is quicker since there is only one pointer to chase.
C++ does not allow this, because this language restricts array dimensions to be compile time constants. C, on the other hand, has lifted this restriction in the C99 standard, and even allows dynamic array sizes in a typedef:
void foo(size_t dim1, size_t dim2, size_t dim3, size_t dim4, size_t dim5) {
typedef double FourDSlice[dim2][dim3][dim4][dim5];
FourDSlice *fiveDArray = malloc(dim1 * sizeof(*fiveDArray));
...
}
is perfectly legal C99, and impossible to do in C++.
well... vector<vector> is it really a good thing? are you thinking to a matrix whose rows can have independent length? If the answer is "no", then consider the idea that all you need is a plain vector, whose size is the product of the 5 dimensions, and whose elements are located at
size_t at(size_t a, size_t b, size_t c, size_t d, size_t e, size_t A, size_t B, size_t C, size_t D, size_t E)
{ return e+d*E+c*D*E+b*C*D*E+a*B*C*D*E; }
(note: capital letters are the sizes).
You can easily generalize this to whatever number of dimensions by using varadics:
template<class... I>
size_t at(size_t r, size_t R, size_t c, size_t C, I... i)
{ return size_at(r*C+c,i...); }
size_t at(size_t c, size_t C)
{ return c; }
And you can also embed all this into a recurring class
template<class T, size_t Rank>
class grid
{
grid<T,Rank-1> m; size_t C;
public:
template<class... I>
grid(size_t r, size_t c, I... i) :m(r*c,i...) :C(c) {}
template<class... I>
T& operator()(size_t r, size_t c, I... i)
{ return m(r*C+c,i...); }
template<class... I>
const T& operator()(size_t r, size_t c, I... i) const
{ return m(r*C+c,i...); }
};
template<class T>
class grid<T,1>
{
std::vector<T> m;
public:
explicit grid(size_t n) :m(n) {}
T& operator()(size_t i) { return m[i]; }
const T& operator()(size_t i) const { return m[i]; }
};
You can just declare a grid<5> a(3,2,4,5,3);
and access its elements as a(x,y,z,w,t); whatever x in 0..2, y in 0..1, z in 0..3 w in 0..4 and t in 0..2;
Related
If I have a class template which contains an array with another class as type with undefined amount of fields (the amount is a template parameter), how do I run their constructors (if they take parameters)?
Here some example code:
class ArrayClass
{
public:
ArrayClass() = delete;
ArrayClass(int anyParameter) {}
};
template <const int amountOfFields>
class ContainingClass
{
ArrayClass myArray[amountOfFields];
public:
ContainingClass();
};
template <const int amountOfFields>
ContainingClass<amountOfFields>::ContainingClass()
:
myArray(5) // doesn't work of cause
{}
Is it possible to give every ArrayClass, no matter how many there are, the same parameter (or different ones)? (I don't essentially need it but it would make things easier for me)
There’s nothing in the C++ standard libraries for this case
If you’re compiling with GCC, it has a proprietary extension called ranged initialization. With GCC, you can write something like this (untested):
template<size_t amountOfFields>
ContainingClass<amountOfFields>::ContainingClass():
myArray( { [0 ... (amountOfFields-1)] = 5} )
{ }
If you’re using any other compiler, you have following options.
As said by the commenters, replace array with std::vector, it has the constructor you need. However this will change RAM layout, i.e. if you have lots of containers with small number of elements each, arrays (both C arrays, and C++ std::array) will be faster because one less pointer to chase.
Remove “=delete” from the default constructor of your ArrayClass, use std::fill or std::fill_n in the ContainingClass constructor to set initial values after they’re already constructed. However this might bring some small runtime cost.
If you don’t have too many elements, technically you can use some template metaprogramming to implement statically-constructed arrays the way you want. However, IMO that’ll be substantial amount of very hard to debug C++ code (there’s no compile-time debugger).
If you have small number of different template arguments in your code, you can write a function like
template<size_t N>
constexpr std::array<ArrayClass,N> fill_array(int val)
specialize it for different values of amountOfFields temple arguments you have, and call the function in the constructor of ContainingClass.
Other solutions are possible, like external tools, macros, boost, etc… But I think 2 & 4 are the most reasonable workarounds.
This work for me with GCC 8.1 / Clang 6.0 and C++14, though I am definitely not sure whether it is Standard compliant:
class E {
public:
E() = delete;
E(int i) : i_(i) { }
operator int() const { return i_; }
private:
int i_;
};
template <typename T>
T dummy(T val, /* [[maybe_unused]] */ size_t I) { return val; }
template <typename T, size_t... I, typename U>
constexpr auto make_array_impl(U val, std::index_sequence<I...> is) {
return std::array<T, is.size()>{dummy(val, I)...};
}
template <typename T, size_t N, typename U>
constexpr auto make_array(U val) {
return make_array_impl<T>(val, std::make_index_sequence<N>{});
}
template <typename T, size_t N>
class A {
public:
A(T val) : a_{make_array<T, N>(val)} { }
void print() { for (auto e : a_) std::cout << e << std::endl; }
private:
std::array<T, N> a_;
};
int main() {
A<E, 5> a(-1);
a.print();
}
Live demo: https://wandbox.org/permlink/Db9Zpf6gUMvg4MER
Updated more generic solution:
template <typename T, size_t... I, typename... Args>
constexpr auto make_array_impl(std::index_sequence<I...> is, Args&&... args) {
return std::array<T, is.size()>{ (I, T(std::forward<Args>(args)...))... };
}
template <typename T, size_t N, typename... Args>
constexpr auto make_array(Args&&... args) {
return make_array_impl<T>(std::make_index_sequence<N>{}, std::forward<Args>(args)...);
}
This question was kind of asked before, but I'm not sure a satisfactory response was really offered. For me, I'm not interested in landing in a std::vector of std::string, per se, but rather a std::tuple.
For instance, if I've got std::vector<A>, std::vector<B>, and std::vector<C>, then I expect perhaps std::vector<std::tuple<A, B, C>>. Or, even std::set<std::tuple<A, B, C>>, if that was more appropriate.
Now, I could encode nested for loops, however, I'd like to do this via functions, template functions if possible, then I suppose variadic would be necessary to accomplish the task.
There are no guarantees that A, B, or C have anything to do with each other, much less conversion to std::string, as were proposed in a couple of the responses.
I want to say there could be a variadic solution to that, but I'm not exactly sure how to compose the std::vector<T> or std::vector<T>::value_type definitions.
If you want to compute the Cartesian product of heterogeneous vectors, you may do something like:
template <std::size_t N>
bool increase(const std::array<std::size_t, N>& sizes, std::array<std::size_t, N>& it)
{
for (std::size_t i = 0; i != N; ++i) {
const std::size_t index = N - 1 - i;
++it[index];
if (it[index] >= sizes[index]) {
it[index] = 0;
} else {
return true;
}
}
return false;
}
template <typename F, std::size_t ... Is, std::size_t N, typename Tuple>
void apply_impl(F&& f,
std::index_sequence<Is...>,
const std::array<std::size_t, N>& it,
const Tuple& tuple)
{
f(std::get<Is>(tuple)[it[Is]]...);
}
template <typename F, typename ... Ts>
void iterate(F&& f, const std::vector<Ts>&... vs)
{
constexpr std::size_t N = sizeof...(Ts);
std::array<std::size_t, N> sizes{{vs.size()...}};
std::array<std::size_t, N> it{{(vs.size(), 0u)...}};
do {
apply_impl(f, std::index_sequence_for<Ts...>(), it, std::tie(vs...));
} while (increase(sizes, it));
}
Demo
Consider following piece of code:
static constexpr size_t Num {2};
struct S {
std::array<size_t, Num> get () { return {1, 2}; }
};
struct S1 : S {};
struct S2 : S {};
struct M {
template <typename T>
typename std::enable_if<std::is_same<T, S1>::value, S1>::type get () const {
return S1 {};
}
template <typename T>
typename std::enable_if<std::is_same<T, S2>::value, S2>::type get () const {
return S2 {};
}
};
I want to have a function which merges two or more std::arrays making one std::array.
So far I ended with something like this:
template <typename Mode, typename... Rs, size_t... Ns>
std::array<size_t, sizeof... (Rs)*Num> get_array (const Mode& mode, Sequence::Sequence<Ns...>) {
return {std::get<Ns> (mode.template get<Rs...> ().get ())...};
}
I want to have that the following code
M m;
auto x = get_array<M, S1, S2> (m, Sequence::Make<2> {});
produces std::array<size_t, 4> filled with {1, 2, 1, 2}.
Where Sequence::Sequence and Sequence::Make are described here.
I know that placing ... of Rs is incorrect in this context (If sizeof... (Rs) is 1 then it is fine, std::array<size_t, 2> with {1, 2} is returned) but I have no idea where to put it to make expansion which looks like this:
std::get<0> (mode.template get<Rs[0]> ().get ()),
std::get<1> (mode.template get<Rs[0]> ().get ()),
std::get<0> (mode.template get<Rs[1]> ().get ()),
std::get<1> (mode.template get<Rs[1]> ().get ());
Of course Rs[0] I mean first type from parameter pack.
Is it even possible?
Assuming that we're using Xeo's index sequence implementation, we can do something like this:
First create a function for concatenating two arrays. It receives the arrays, plus an index sequence for each one (detail::seq is the index_sequence type)
template<class T, size_t N, size_t M, size_t... I, size_t... J>
std::array<T, N + M> concat(const std::array<T, N>& arr1, const std::array<T, M>& arr2, detail::seq<I...>, detail::seq<J...>)
{
return {arr1[I]..., arr2[J]...};
}
Next, call this function from your get_array function, except we're going to double the seq that we received from the call in main:
template<class MODE, class... T, size_t... I>
auto get_array(MODE m, detail::seq<I...>) ->decltype(concat(m.template get<T>().get()..., detail::seq<I...>{}, detail::seq<I...>{})){
return concat(m.template get<T>().get()..., detail::seq<I...>{}, detail::seq<I...>{});
}
The call in main looks just like it did in your code:
M m;
auto x = get_array<M, S1, S2>(m, detail::gen_seq<2>{});
Where detail::gen_seq is the implementation of make_index_sequence that Xeo had.
Live Demo
Note that I replaced unsigned with size_t in Xeo's index sequence impl.
In C++14 we don't need to implement seq or gen_seq, and we also wouldn't need a trailing -> decltype() after our function.
In C++17 it would be even easier to generalize our concatenation for an arbitrary number of arrays, using fold expressions.
Yes, this can be done, with the standard index_sequence tricks:
template <class T, std::size_t N1, std::size_t N2, std::size_t ... Is, std::size_t ... Js>
std::array<T, N1 + N2> merge_impl(const std::array<T, N1>& a1,
const std::array<T, N2>& a2,
std::index_sequence<Is...>,
std::index_sequence<Js...>) {
return {a1[Is]..., a2[Js]...};
}
template <class T, std::size_t N1, std::size_t N2>
std::array<T, N1 + N2> merge(const std::array<T, N1>& a1, const std::array<T, N2>& a2) {
return merge_impl(a1, a2,
std::make_index_sequence<N1>{},
std::make_index_sequence<N2>{});
}
index_sequence is only in the 14 standard, but can be easily implemented in 11; there are many resources (including on SO) that describe how to do so (edit: it's basically equivalent to your Sequence stuff, may as well get used to the standard names for them). Live example: http://coliru.stacked-crooked.com/a/54dce4a695357359.
To start with, this is basically asking to concatenate an arbitrary number of arrays. Which is very similar to concatenate an arbitrary number of tuples, for which there is a standard library function, even in C++11: std::tuple_cat(). That gets us almost there:
template <class... Ts, class M>
auto get_array(M m) -> decltype(std::tuple_cat(m.template get<Ts>()...)) {
return std::tuple_cat(m.template get<Ts>()...);
}
Note that I flipped the template parameters, so this is just get_array<T1, T2>(m) instead of having to write get_array<M, T1, T2>(m).
Now the question is, how do we write array_cat? We'll just use tuple_cat and convert the resulting tuple to an array. Assume an implementation of index_sequence is available (which is something you'll want in your collection anyway):
template <class T, class... Ts, size_t... Is>
std::array<T, sizeof...(Ts)+1> to_array_impl(std::tuple<T, Ts...>&& tup,
std::index_sequence<Is...> ) {
return {{std::get<Is>(std::move(tup))...}};
}
template <class T, class... Ts>
std::array<T, sizeof...(Ts)+1> to_array(std::tuple<T, Ts...>&& tup) {
return to_array_impl(std::move(tup), std::index_sequence_for<T, Ts...>());
}
template <class... Tuples>
auto array_cat(Tuples&&... tuples) -> decltype(to_array(std::tuple_cat(std::forward<Tuples>(tuples)...))) {
return to_array(std::tuple_cat(std::forward<Tuples>(tuples)...));
}
And that gives you:
template <class... Ts, class M>
auto get_array(M m) -> decltype(array_cat(m.template get<Ts>()...)) {
return array_cat(m.template get<Ts>()...);
}
which handles arbitrarily many types.
So here's for an arbitrary number of same-type arrays. We are basically implementing a highly restrictive version of tuple_cat, made substantially easier because the number of elements in the arrays is the same. I make use of a couple C++14 and 17 library features that are all readily implementable in C++11.
template<class, size_t> struct div_sequence;
template<size_t...Is, size_t Divisor>
struct div_sequence<std::index_sequence<Is...>, Divisor>
{
using quot = std::index_sequence<Is / Divisor...>;
using rem = std::index_sequence<Is % Divisor...>;
};
template<class T, size_t...Ns, size_t...Is, class ToA>
std::array<T, sizeof...(Ns)> array_cat_impl(std::index_sequence<Ns...>,
std::index_sequence<Is...>,
ToA&& t)
{
// NB: get gives you perfect forwarding; [] doesn't.
return {std::get<Is>(std::get<Ns>(std::forward<ToA>(t)))... };
}
template<class Array, class... Arrays,
class VT = typename std::decay_t<Array>::value_type,
size_t S = std::tuple_size<std::decay_t<Array>>::value,
size_t N = S * (1 + sizeof...(Arrays))>
std::array<VT, N> array_cat(Array&& a1, Arrays&&... as)
{
static_assert(std::conjunction_v<std::is_same<std::decay_t<Array>,
std::decay_t<Arrays>>...
>, "Array type mismatch");
using ind_seq = typename div_sequence<std::make_index_sequence<N>, S>::rem;
using arr_seq = typename div_sequence<std::make_index_sequence<N>, S>::quot;
return array_cat_impl<VT>(arr_seq(), ind_seq(),
std::forward_as_tuple(std::forward<Array>(a1),
std::forward<Arrays>(as)...)
);
}
We can also reuse the tuple_cat machinery, as in #Barry's answer. To sidestep potential QoI issues, avoid depending on extensions and also extra moves, we don't want to tuple_cat std::arrays directly. Instead, we transform the array into a tuple of references first.
template<class TupleLike, size_t... Is>
auto as_tuple_ref(TupleLike&& t, std::index_sequence<Is...>)
-> decltype(std::forward_as_tuple(std::get<Is>(std::forward<TupleLike>(t))...))
{
return std::forward_as_tuple(std::get<Is>(std::forward<TupleLike>(t))...);
}
template<class TupleLike,
size_t S = std::tuple_size<std::decay_t<TupleLike>>::value >
auto as_tuple_ref(TupleLike&& t)
-> decltype(as_tuple_ref(std::forward<TupleLike>(t), std::make_index_sequence<S>()))
{
return as_tuple_ref(std::forward<TupleLike>(t), std::make_index_sequence<S>());
}
We can then transform the tuple_cat'd references back into an array:
template <class R1, class...Rs, size_t... Is>
std::array<std::decay_t<R1>, sizeof...(Is)>
to_array(std::tuple<R1, Rs...> t, std::index_sequence<Is...>)
{
return { std::get<Is>(std::move(t))... };
}
template <class R1, class...Rs>
std::array<std::decay_t<R1>, sizeof...(Rs) + 1> to_array(std::tuple<R1, Rs...> t)
{
static_assert(std::conjunction_v<std::is_same<std::decay_t<R1>, std::decay_t<Rs>>...>,
"Array element type mismatch");
return to_array(t, std::make_index_sequence<sizeof...(Rs) + 1>());
}
Finally, array_cat itself is just
template <class... Arrays>
auto array_cat(Arrays&&... arrays)
-> decltype(to_array(std::tuple_cat(as_tuple_ref(std::forward<Arrays>(arrays))...)))
{
return to_array(std::tuple_cat(as_tuple_ref(std::forward<Arrays>(arrays))...));
}
Any decent optimizer should have little difficulty optimizing the intermediate tuples of references away.
I have a Matrix class template as follows:
template<typename T, std::size_t nrows, std::size_t ncols>
class Matrix
{
T data[nrows][ncols];
public:
T& operator ()(std::size_t i, std::size_t j)
{
return data[i][j];
}
};
What I want is to define a .setIdentity() function only for instantiations when nrows==ncols is true at compile time. And there will be no definition of .setIdentity() when nrows==ncols is false.
What I am trying is using enable_if idiom, but that will define the function for all cases. Isn't it?
You can do it with std::enable_if in the following mode
template <std::size_t r = nrows, std::size_t c = ncols>
typename std::enable_if<r == c>::type setIdentity ()
{ /* do something */ }
A full example
#include <type_traits>
template<typename T, std::size_t nrows, std::size_t ncols>
class Matrix
{
T data[nrows][ncols];
public:
T& operator ()(std::size_t i, std::size_t j)
{ return data[i][j]; }
template <std::size_t r = nrows, std::size_t c = ncols>
typename std::enable_if<r == c>::type setIdentity ()
{ /* do something */ }
};
int main()
{
Matrix<int, 3, 3> mi3;
Matrix<int, 3, 2> mnoi;
mi3.setIdentity();
// mnoi.setIdentity(); error
return 0;
}
--- EDIT ---
As pointed in a comment by Niall (regarding the TemplateRex's answer, but my solution suffer from the same defect) this solution can be circonvented expliciting the number of rows and columns in this way
mi3.setIdentity<4, 4>();
(but this isn't a real problem (IMHO) because mi3 is a square matrix and setIdentity() could work with real dimensions (nrows and ncols)) or even with
mnoi.setIdentity<4, 4>()
(and this is a big problem (IMHO) because mnoi isn't a square matrix).
Obviously there is the solution proposed by Niall (add a static_assert; something like
template <std::size_t r = nrows, std::size_t c = ncols>
typename std::enable_if<r == c>::type setIdentity ()
{
static_assert(r == nrows && c == ncols, "no square matrix");
/* do something else */
}
or something similar) but I propose to add the same check in std::enable_if.
I mean
template <std::size_t r = nrows, std::size_t c = ncols>
typename std::enable_if< (r == c)
&& (r == nrows)
&& (c == ncols)>::type setIdentity ()
{ /* do something */ }
The lazy and needlessly repetitive way
Just add a partial specialization:
template<typename T, std::size_t N>
class Matrix<T, N, N>
{
T data[N][N];
public:
T& operator ()(std::size_t i, std::size_t j)
{
return data[i][j];
}
void setidentity(/*whatever params*/) { std::cout << "yay!"; }
};
Live Example
For general N * M matrices, the general template will be instantiated, whereas only for N * N matrics, this specialization is a better match.
Disadvantage: code repetition of all regular code. Could use a base class, but it's actually easier to do some SFINAE magic (below)
A slightly harder but more economical way
You can also use SFINAE by adding hidden template parameters N and M that default to nrows and ncols to setidentity, and to enable_if on the condition N == M.
template<typename T, std::size_t nrows, std::size_t ncols>
class Matrix
{
T data[nrows][ncols];
public:
T& operator ()(std::size_t i, std::size_t j)
{
return data[i][j];
}
template <std::size_t N = nrows, std::size_t M = ncols, std::enable_if_t<(N == M)>* = nullptr>
void setidentity(/*whatever params*/) {
static_assert(N == nrows && M == ncols, "invalid");
std::cout << "yay!";
}
};
Or, since the question was tagged C++11, use typename std::enable_if<(N == M)>::type instead.
Live Example
Use a pseudo-CRTP to add modular support for something.
template<class T, std::size_t nrows, std::size_t ncols>
class Matrix;
template<class T, std::size_t size>
struct MatrixDiagonalSupport {
auto self() { return static_cast<Matrix<T, size, size>*>(this); }
auto self() const { return static_cast<Matrix<T, size, size> const*>(this); }
void setIdentity() {
for (std::size_t i = 0; i < size; ++i) {
for (std::size_t j = 0; j < i; ++j) {
(*self())(i,j) = {};
}
(*self())(i,i) = 1; // hope T supports this!
for (std::size_t j = i+1; j < size; ++j) {
(*self())(i,j) = {};
}
}
}
};
template<class T>
struct empty_t {};
template<bool b, class T>
using maybe= std::conditional_t<b, T, empty_t<T>>;
template<typename T, std::size_t nrows, std::size_t ncols>
class Matrix: public maybe<nrows==ncols,MatrixDiagonalSupport<T, nrows>>
{
// ...
Here we inherit from nothing if we aren't diagonal, and a class implementing set identity if we are diagonal.
Users of Matrix get .setIdentity() from its parent magically if it is right.
static_cast inside self() ends up being a zero-cost abstraction and giving the base class access to the child class.
This is pseudo-CRTP because we don't actually pass the derived class type to the parent, just enough information for the parent to reconstruct it.
This solution makes the method an actual method, and avoids any kind of SFINAE trickery.
Live example
In C++11 replace conditional_t<?> with typename conditional<?>::type:
template<bool b, class T>
using maybe=typename std::conditional<b, T, empty_t<T>>::type;
and everything should compile.
A basic, but simple solution not mentioned by any other answer: you can use std::conditional and inheritance.
It follows a minimal, working example:
#include<type_traits>
#include<cstddef>
struct HasSetIdentity {
void setIdentity() { }
};
struct HasNotSetIdentity {};
template<typename T, std::size_t nrows, std::size_t ncols>
class Matrix: public std::conditional<(nrows==ncols), HasSetIdentity, HasNotSetIdentity>::type
{
T data[nrows][ncols];
public:
T& operator ()(std::size_t i, std::size_t j)
{
return data[i][j];
}
};
int main() {
Matrix<int, 2,2> m1;
m1.setIdentity();
Matrix<int, 2,3> m2;
// Method not available
// m2.setIdentity();
}
You can still move data down the hierarchy if you need them to be shared by all the subobjects.
It mostly depends on the real problem.
skypjack and max66 have both presented simple answers to the problem. This is just an alternate way of doing it, using simple inheritance, although it means the use of a child class for square matrices:
template<typename T, std::size_t nrows, std::size_t ncols>
class Matrix
{
protected:
T data[nrows][ncols];
public:
T& operator ()(std::size_t i, std::size_t j)
{
return data[i][j];
}
};
template<typename T, std::size_t N>
class SqMatrix : public Matrix <T, N, N>
{
public:
setIdentity()
{
//Do whatever
}
}
I'm trying to split a std::array<T, N> into a tuple of smaller arrays, like std::tuple<std::array<T, N1>, std::array<T, N2>, ...> where N1 + N2 + ... = N.
namespace detail {
// Summation of the given values
template <class T>
constexpr T sum(const T& x) { return x; }
template <class T, class ...Args>
constexpr auto sum(const T& x, Args&&... args)
{ return x + sum(std::forward<Args>(args)...); }
}
template <class T, std::size_t... Ns>
constexpr
std::tuple<std::array<T, Ns>...>
f(const std::array<T, detail::sum(Ns...)>& x)
{
// How do I implement this function?
}
int main()
{
constexpr std::array<Foo, 5> arr = { ... };
constexpr auto t = f<Foo, 2,3>(arr);
}
Actually I already implemented f but it's based on a loop which simply creates an empty array and copies the elements of the given array, but it doesn't work if T is not default_constructible.
I tried to utilize std::integer_sequence and std::make_index_sequence, but I think i'm totally lost with no clue.
Can anyone help me implement the function please?
Write
template<class T,size_t...Is,size_t N>
std::array<T,sizeof...(Is)>
extract(std::array<T,N>const&,std::index_sequence<Is...>){
return {{arr[Is]...}};
}
now we just need to turn {1,2,3} into {{0},{1,2},{3,4,5}} roughly, with everything being C++ index sequences (so syntax).
Map {3,4,0} to {0,1,2} -- a count of indexes to subarrays. Then map {3,4,0} x 1 to {3,4,5,6} and similar for the others. That gives us the indexes inside the subarrays, which we feed to extract and bob is your uncle.
template<size_t n, size_t...counts>
constexpr auto
foo( std::index_sequence<counts...> )
-> offset_seq<
sum_n<n>(counts...),
std::make_index_sequence<get_n<n,counts...> >
>{ return {}; }
with various helpers to be written is the {3,4,0} x 1 to {3,4,5,6} portion, for example.