C++: how to do "map" of Scheme - c++

Below is a sample code of Scheme (correct me if i'm wrong):
(define (translate points delta)
(map
(lambda (x)
(+ x delta)
)
points
)
)
basically it defines a lambda function that add delta to input x, then apply it to each item of points.
I found such feature quite interesting that it omits all the iterators and etc.
Is it possible to do such "map" in C++, in an elegant way?
Update according to the reply:
To be more specific, is there a way to implement such "map" function of Scheme, in C++, so that it could be used elegantly? Maybe a template function named "map" that accept function pointer / functor, and a container?

The closest translation of your code in idiomatic C++ would be using std::transform with a std::back_inserter:
std::vector<point> points{…};
std::vector<point> output;
// optional, may improve performance:
output.reserve(points.size());
auto lambda = [=](point x) { return x + delta; };
std::transform(begin(points), end(points), std::back_inserter(output), lambda);
Here, lambda captures its surrounding scope by value – this is indicated by the [=] prefix. This makes it possible to use delta inside it.
However, for T -> T transformations you would usually use an in-place variant instead of pushing values into a new container:
std::vector<point> points{…};
auto lambda = [=](point x) { return x + delta; };
std::transform(begin(points), end(points), begin(points), lambda);

The C++ version is called std::transform.

There is no predefined exact equivalent... but it's not difficult to write:
template<typename T, typename F>
T mymap(const T& container, F f) {
T result;
for (auto const & x : container) {
result.push_back(f(x));
}
return result;
}
std::vector<int> translate(const std::vector<int>& x, int delta) {
return mymap(x, [=](int x){return x+delta;});
}
Something similar to scheme map is std::transform, but requires you to provide an output iterator of where to store the transformed elements.
The C++ standard library is built around the concept of iterator pairs (for example even for sort you don't pass a container but a pair of iterators). I personally don't think this is such a great idea, but it's the way the language was designed.

Related

Pass either a double or a vector<double>& to a function

I have a function which calculates the first derivative dy/dx for discrete values y(x) stroed as std::vector:
vector<double> CalcDerivative(vector<double>&y, vector<double>&x) {...}
Often the spacing dx is constant so it would be more efficient to pass a double to this function instead of vector<double> as argument x.
I tried to accomplish this with std::variant. The drawback with std::variant is however, that it cannot handle references so the vector x has to be copied while being passed as a variant to the function.
For now I solved the problem by defining two functions with overloaded arguments. But I wonder whether there is a more elegant solution which won't duplicate the code for the two cases (x as double or as vector<double>).
One possible solution might be to define the "worker" function such that it is independent of the "number of passed doubles". For this purpose, std::span is suitable. The exemplary solution might look like:
std::vector<double> CalcDWorker(
std::span<const double> y, std::span<const double> x)
{
... // x.size() == 1 indicates uniform spacing
}
std::vector<double> CalcDerivative(
const std::vector<double>& y, const std::vector<double>& x)
{
return CaclDWorker({y.begin(), y.end()}, {x.begin(), x.end()});
}
std::vector<double> CalcDerivative(
const std::vector<double>& y, double x)
{
return CaclDWorker({y.begin(), y.end()}, {&x, 1});
}
It requires C++20, but there are third-party span implementations available also for earlier C++ versions (such as the one provided by Boost).
Live demo: https://godbolt.org/z/n6adEKWes

Is it possible / advisable to return a range?

I'm using the ranges library to help filer data in my classes, like this:
class MyClass
{
public:
MyClass(std::vector<int> v) : vec(v) {}
std::vector<int> getEvens() const
{
auto evens = vec | ranges::views::filter([](int i) { return ! (i % 2); });
return std::vector<int>(evens.begin(), evens.end());
}
private:
std::vector<int> vec;
};
In this case, a new vector is constructed in the getEvents() function. To save on this overhead, I'm wondering if it is possible / advisable to return the range directly from the function?
class MyClass
{
public:
using RangeReturnType = ???;
MyClass(std::vector<int> v) : vec(v) {}
RangeReturnType getEvens() const
{
auto evens = vec | ranges::views::filter([](int i) { return ! (i % 2); });
// ...
return evens;
}
private:
std::vector<int> vec;
};
If it is possible, are there any lifetime considerations that I need to take into account?
I am also interested to know if it is possible / advisable to pass a range in as an argument, or to store it as a member variable. Or is the ranges library more intended for use within the scope of a single function?
This was asked in op's comment section, but I think I will respond it in the answer section:
The Ranges library seems promising, but I'm a little apprehensive about this returning auto.
Remember that even with the addition of auto, C++ is a strongly typed language. In your case, since you are returning evens, then the return type will be the same type of evens. (technically it will be the value type of evens, but evens was a value type anyways)
In fact, you probably really don't want to type out the return type manually: std::ranges::filter_view<std::ranges::ref_view<const std::vector<int>>, MyClass::getEvens() const::<decltype([](int i) {return ! (i % 2);})>> (141 characters)
As mentioned by #Caleth in the comment, in fact, this wouldn't work either as evens was a lambda defined inside the function, and the type of two different lambdas will be different even if they were basically the same, so there's literally no way of getting the full return type here.
While there might be debates on whether to use auto or not in different cases, but I believe most people would just use auto here. Plus your evens was declared with auto too, typing the type out would just make it less readable here.
So what are my options if I want to access a subset (for instance even numbers)? Are there any other approaches I should be considering, with or without the Ranges library?
Depends on how you would access the returned data and the type of the data, you might consider returning std::vector<T*>.
views are really supposed to be viewed from start to end. While you could use views::drop and views::take to limit to a single element, it doesn't provide a subscript operator (yet).
There will also be computational differences. vector need to be computed beforehand, where views are computed while iterating. So when you do:
for(auto i : myObject.getEven())
{
std::cout << i;
}
Under the hood, it is basically doing:
for(auto i : myObject.vec)
{
if(!(i % 2)) std::cout << i;
}
Depends on the amount of data, and the complexity of computations, views might be a lot faster, or about the same as the vector method. Plus you can easily apply multiple filters on the same range without iterating through the data multiple times.
In the end, you can always store the view in a vector:
std::vector<int> vec2(evens.begin(), evens.end());
So my suggestions is, if you have the ranges library, then you should use it.
If not, then vector<T>, vector<T*>, vector<index> depending on the size and copiability of T.
There's no restrictions on the usage of components of the STL in the standard. Of course, there are best practices (eg, string_view instead of string const &).
In this case, I can foresee no problems with handling the view return type directly. That said, the best practices are yet to be decided on since the standard is so new and no compiler has a complete implementation yet.
You're fine to go with the following, in my opinion:
class MyClass
{
public:
MyClass(std::vector<int> v) : vec(std::move(v)) {}
auto getEvens() const
{
return vec | ranges::views::filter([](int i) { return ! (i % 2); });
}
private:
std::vector<int> vec;
};
As you can see here, a range is just something on which you can call begin and end. Nothing more than that.
For instance, you can use the result of begin(range), which is an iterator, to traverse the range, using the ++ operator to advance it.
In general, looking back at the concept I linked above, you can use a range whenever the conext code only requires to be able to call begin and end on it.
Whether this is advisable or enough depends on what you need to do with it. Clearly, if your intention is to pass evens to a function which expects a std::vector (for instance it's a function you cannot change, and it calls .push_back on the entity we are talking about), you clearly have to make a std::vector out of filter's output, which I'd do via
auto evens = vec | ranges::views::filter(whatever) | ranges::to_vector;
but if all the function which you pass evens to does is to loop on it, then
return vec | ranges::views::filter(whatever);
is just fine.
As regards life time considerations, a view is to a range of values what a pointer is to the pointed-to entity: if the latter is destroied, the former will be dangling, and making improper use of it will be undefined behavior. This is an erroneous program:
#include <iostream>
#include <range/v3/view/filter.hpp>
#include <string>
using namespace ranges;
using namespace ranges::views;
auto f() {
// a local vector here
std::vector<std::string> vec{"zero","one","two","three","four","five"};
// return a view on the local vecotor
return vec | filter([](auto){ return true; });
} // vec is gone ---> the view returned is dangling
int main()
{
// the following throws std::bad_alloc for me
for (auto i : f()) {
std::cout << i << std::endl;
}
}
You can use ranges::any_view as a type erasure mechanism for any range or combination of ranges.
ranges::any_view<int> getEvens() const
{
return vec | ranges::views::filter([](int i) { return ! (i % 2); });
}
I cannot see any equivalent of this in the STL ranges library; please edit the answer if you can.
EDIT: The problem with ranges::any_view is that it is very slow and inefficient. See https://github.com/ericniebler/range-v3/issues/714.
It is desirable to declare a function returning a range in a header and define it in a cpp file
for compilation firewalls (compilation speed)
stop the language server from going crazy
for better factoring of the code
However, there are complications that make it not advisable:
How to get type of a view?
If defining it in a header is fine, use auto
If performance is not a issue, I would recommend ranges::any_view
Otherwise I'd say it is not advisable.

Binary search for math function

I have an increasing math function, for example y = x + 5*x^3 + x^7 + 11*ln x and I want to find first (positive) x such that y(x) >= 1478.
Can I use binary search algorithm from stl to solve this problem?
The problem is, that STL algorithms (std::lower_bound is probably your candidate of choice) work on collections. Or more specific: on iterators of collections.
One way to use them for your problem is an adapter: You write an 'iterator' that simply returns the functions value on dereferencing.
The code for this might be pretty big as you need to satisfy all requirements of a RandomAccessIterator. However you can templatize it on your function. Example:
template<class F>
FuncIterator{
typedef int ParamType;
typedef float ResultType; // Or better: result_of F
ParamType param_;
FuncIterator(ParamType param): param_(param){}
ResultType operator*(){ return F(param_); }
FuncIterator& operator+=(int diff){ param_ += diff; return *this; }
//... Other functions required for RandomAccessIterator
}
auto result = std::lower_bound(FuncIterator<MyFunc>(0), FuncIterator<MyFunc>(1000));
std::cout << "First x value is:" result.param_ << std::endl;
Again: That iterator is more complex than show here, but you should get further from here. You need some defines, and possible traits. But you need to define it only once and can reuse it for any function. It gets more generic, if you use the std traits to deduce the type of the param and result of F.
Final note: Binary search only searches a range! So you must decide on this range when calling std::lower_bound. It cannot find 'the first value x with F(x)>=y' for any x but only for any x in a given range.

Returning container from function: optimizing speed and modern style

Not entirely a question, although just something I have been pondering on how to write such code more elegantly by style and at the same time fully making use of the new c++ standard etc. Here is the example
Returning Fibonacci sequence to a container upto N values (for those not mathematically inclined, this is just adding the previous two values with the first two values equal to 1. i.e. 1,1,2,3,5,8,13, ...)
example run from main:
std::vector<double> vec;
running_fibonacci_seq(vec,30000000);
1)
template <typename T, typename INT_TYPE>
void running_fibonacci_seq(T& coll, const INT_TYPE& N)
{
coll.resize(N);
coll[0] = 1;
if (N>1) {
coll[1] = 1;
for (auto pos = coll.begin()+2;
pos != coll.end();
++pos)
{
*pos = *(pos-1) + *(pos-2);
}
}
}
2) the same but using rvalue && instead of & 1.e.
void running_fibonacci_seq(T&& coll, const INT_TYPE& N)
EDIT: as noticed by the users who commented below, the rvalue and lvalue play no role in timing - the speeds were actually the same for reasons discussed in the comments
results for N = 30,000,000
Time taken for &:919.053ms
Time taken for &&: 800.046ms
Firstly I know this really isn't a question as such, but which of these or which is best modern c++ code? with the rvalue reference (&&) it appears that move semantics are in place and no unnecessary copies are being made which makes a small improvement on time (important for me due to future real-time application development). some specific ''questions'' are
a) passing a container (which was vector in my example) to a function as a parameter is NOT an elegant solution on how rvalue should really be used. is this fact true? if so how would rvalue really show it's light in the above example?
b) coll.resize(N); call and the N=1 case, is there a way to avoid these calls so the user is given a simple interface to only use the function without creating size of vector dynamically. Can template metaprogramming be of use here so the vector is allocated with a particular size at compile time? (i.e. running_fibonacci_seq<30000000>) since the numbers can be large is there any need to use template metaprogramming if so can we use this (link) also
c) Is there an even more elegant method? I have a feeling std::transform function could be used by using lambdas e.g.
void running_fibonacci_seq(T&& coll, const INT_TYPE& N)
{
coll.resize(N);
coll[0] = 1;
coll[1] = 1;
std::transform (coll.begin()+2,
coll.end(), // source
coll.begin(), // destination
[????](????) { // lambda as function object
return ????????;
});
}
[1] http://cpptruths.blogspot.co.uk/2011/07/want-speed-use-constexpr-meta.html
Due to "reference collapsing" this code does NOT use an rvalue reference, or move anything:
template <typename T, typename INT_TYPE>
void running_fibonacci_seq(T&& coll, const INT_TYPE& N);
running_fibonacci_seq(vec,30000000);
All of your questions (and the existing comments) become quite meaningless when you recognize this.
Obvious answer:
std::vector<double> running_fibonacci_seq(uint32_t N);
Why ?
Because of const-ness:
std::vector<double> const result = running_fibonacci_seq(....);
Because of easier invariants:
void running_fibonacci_seq(std::vector<double>& t, uint32_t N) {
// Oh, forgot to clear "t"!
t.push_back(1);
...
}
But what of speed ?
There is an optimization called Return Value Optimization that allows the compiler to omit the copy (and build the result directly in the caller's variable) in a number of cases. It is specifically allowed by the C++ Standard even when the copy/move constructors have side effects.
So, why passing "out" parameters ?
you can only have one return value (sigh)
you may wish the reuse the allocated resources (here the memory buffer of t)
Profile this:
#include <vector>
#include <cstddef>
#include <type_traits>
template <typename Container>
Container generate_fibbonacci_sequence(std::size_t N)
{
Container coll;
coll.resize(N);
coll[0] = 1;
if (N>1) {
coll[1] = 1;
for (auto pos = coll.begin()+2;
pos != coll.end();
++pos)
{
*pos = *(pos-1) + *(pos-2);
}
}
return coll;
}
struct fibbo_maker {
std::size_t N;
fibbo_maker(std::size_t n):N(n) {}
template<typename Container>
operator Container() const {
typedef typename std::remove_reference<Container>::type NRContainer;
typedef typename std::decay<NRContainer>::type VContainer;
return generate_fibbonacci_sequence<VContainer>(N);
}
};
fibbo_maker make_fibbonacci_sequence( std::size_t N ) {
return fibbo_maker(N);
}
int main() {
std::vector<double> tmp = make_fibbonacci_sequence(30000000);
}
the fibbo_maker stuff is just me being clever. But it lets me deduce the type of fibbo sequence you want without you having to repeat it.

Multiply vector elements by a scalar value using STL

Hi I want to (multiply,add,etc) vector by scalar value for example myv1 * 3 , I know I can do a function with a forloop , but is there a way of doing this using STL function? Something like the {Algorithm.h :: transform function }?
Yes, using std::transform:
std::transform(myv1.begin(), myv1.end(), myv1.begin(),
std::bind(std::multiplies<T>(), std::placeholders::_1, 3));
Before C++17 you could use std::bind1st(), which was deprecated in C++11.
std::transform(myv1.begin(), myv1.end(), myv1.begin(),
std::bind1st(std::multiplies<T>(), 3));
For the placeholders;
#include <functional>
If you can use a valarray instead of a vector, it has builtin operators for doing a scalar multiplication.
v *= 3;
If you have to use a vector, you can indeed use transform to do the job:
transform(v.begin(), v.end(), v.begin(), _1 * 3);
(assuming you have something similar to Boost.Lambda that allows you to easily create anonymous function objects like _1 * 3 :-P)
Modern C++ solution for your question.
#include <algorithm>
#include <vector>
std::vector<double> myarray;
double myconstant{3.3};
std::transform(myarray.begin(), myarray.end(), myarray.begin(), [&myconstant](auto& c){return c*myconstant;});
I think for_each is very apt when you want to traverse a vector and manipulate each element according to some pattern, in this case a simple lambda would suffice:
std::for_each(myv1.begin(), mtv1.end(), [](int &el){el *= 3; });
note that any variable you want to capture for the lambda function to use (say that you e.g. wanted to multiply with some predetermined scalar), goes into the bracket as a reference.
If you had to store the results in a new vector, then you could use the std::transform() from the <algorithm> header:
#include <algorithm>
#include <vector>
int main() {
const double scale = 2;
std::vector<double> vec_input{1, 2, 3};
std::vector<double> vec_output(3); // a vector of 3 elements, Initialized to zero
// ~~~
std::transform(vec_input.begin(), vec_input.end(), vec_output.begin(),
[&scale](double element) { return element *= scale; });
// ~~~
return 0;
}
So, what we are saying here is,
take the values (elements) of vec_input starting from the beginning (vec_input.begin()) to the end (vec_input.begin()),
essentially, with the first two arguments, you specify a range of elements ([beginning, end)) to transform,
range
pass each element to the last argument, lambda expression,
take the output of lambda expression and put it in the vec_output starting from the beginning (vec_output.begin()).
the third argument is to specify the beginning of the destination vector.
The lambda expression
captures the value of scale factor ([&scale]) from outside by reference,
takes as its input a vector element of type double (passed to it by std::transform())
in the body of the function, it returns the final result,
which, as I mentioned above, will be consequently stored in the vec_input.
Final note: Although unnecessary, you could pass lambda expression per below:
[&scale](double element) -> double { return element *= scale; }
It explicitly states that the output of the lambda expression is a double. However, we can omit that, because the compiler, in this case, can deduce the return type by itself.
I know this not STL as you want, but it is something you can adapt as different needs arise.
Below is a template you can use to calculate; 'func' would be the function you want to do: multiply, add, and so on; 'parm' is the second parameter to the 'func'. You can easily extend this to take different func's with more parms of varied types.
template<typename _ITStart, typename _ITEnd, typename _Func , typename _Value >
_ITStart xform(_ITStart its, _ITEnd ite, _Func func, _Value parm)
{
while (its != ite) { *its = func(*its, parm); its++; }
return its;
}
...
int mul(int a, int b) { return a*b; }
vector< int > v;
xform(v.begin(), v.end(), mul, 3); /* will multiply each element of v by 3 */
Also, this is not a 'safe' function, you must do type/value-checking etc. before you use it.