Direct state access for draw* functions? - opengl

Now that we have direct state access I wonder why there are no updated glDraw* DSA functions.
For example glDrawArrays is dependent to the current VAO, so why is there no glNamedDrawArrays?
Do I still have call
glBindVertexArray(vao);
glDrawArrays(..);
or is there another way?

glDraw* is just tell OGL to draw something under current context and that maybe related many states like Shader, Blender, VBO/VAO, Z/Stencil, Texture, etc.. Even a tiny change may bring different render result, so you can image DSA glDraw* will be a long function parameter list, that's not good. For example, you want to change cull face from CW to CCW, maybe you need to find the corresponding parameter in a long function call, and change it. Be note, OGL is most C-like, and default parameter feature of function is limited, each time you call DSA glDraw*, you need to have a long function call with most same values, that will make you crazy.
As #Andon M. Coleman mentioned, DSA aimed for reduce the call sequence of general OGL function call type: bind->modify->unbind, and DSA only need 1 API call. That will reduce the CPU time, especial you have a very large OGL API calls.
Thanks
An

Related

Why OpenGL is designed to bind buffer to target before set buffer data? [duplicate]

I don't understand what the purpose is of binding points (such as GL_ARRAY_BUFFER) in OpenGL. To my understanding glGenBuffers() creates a sort of pointer to a vertex buffer object located somewhere within GPU memory.
So:
glGenBuffers(1, &bufferID)
means I now have a handle, bufferID, to 1 vertex object on the graphics card. Now I know the next step would be to bind bufferID to a binding point
glBindBuffer(GL_ARRAY_BUFFER, bufferID)
so that I can use that binding point to send data down using the glBufferData() function like so:
glBufferData(GL_ARRAY_BUFFER, sizeof(data), data, GL_STATIC_DRAW)
But why couldn't I just use the bufferID to specifiy where I want to send the data instead? Something like:
glBufferData(bufferID, sizeof(data), data, GL_STATIC_DRAW)
Then when calling a draw function I would also just put in which ever ID to whichever VBO I want the draw function to draw. Something like:
glDrawArrays(bufferID, GL_TRIANGLES, 0, 3)
Why do we need the extra step of indirection with glBindBuffers?
OpenGL uses object binding points for two things: to designate an object to be used as part of a rendering process, and to be able to modify the object.
Why it uses them for the former is simple: OpenGL requires a lot of objects to be able to render.
Consider your overly simplistic example:
glDrawArrays(bufferID, GL_TRIANGLES, 0, 3)
That API doesn't let me have separate vertex attributes come from separate buffers. Sure, you might then propose glDrawArrays(GLint count, GLuint *object_array, ...). But how do you connect a particular buffer object to a particular vertex attribute? Or how do you have 2 attributes come from buffer 0 and a third attribute from buffer 1? Those are things I can do right now with the current API. But your proposed one can't handle it.
And even that is putting aside the many other objects you need to render: program/pipeline objects, texture objects, UBOs, SSBOs, transform feedback objects, query objects, etc. Having all of the needed objects specified in a single command would be fundamentally unworkable (and that leaves aside the performance costs).
And every time the API would need to add a new kind of object, you would have to add new variations of the glDraw* functions. And right now, there are over a dozen such functions. Your way would have given us hundreds.
So instead, OpenGL defines ways for you to say "the next time I render, use this object in this way for that process." That's what binding an object for use means.
But why couldn't I just use the bufferID to specifiy where I want to send the data instead?
This is about binding an object for the purpose of modifying the object, not saying that it will be used. That is... a different matter.
The obvious answer is, "You can't do it because the OpenGL API (until 4.5) doesn't have a function to let you do it." But I rather suspect the question is really why OpenGL doesn't have such APIs (until 4.5, where glNamedBufferStorage and such exist).
Indeed, the fact that 4.5 does have such functions proves that there is no technical reason for pre-4.5 OpenGL's bind-object-to-modify API. It really was a "decision" that came about by the evolution of the OpenGL API from 1.0, thanks to following the path of least resistance. Repeatedly.
Indeed, just about every bad decision that OpenGL has made can be traced back to taking the path of least resistance in the API. But I digress.
In OpenGL 1.0, there was only one kind of object: display list objects. That means that even textures were not stored in objects. So every time you switched textures, you had to re-specify the entire texture with glTexImage*D. That means re-uploading it. Now, you could (and people did) wrap each texture's creation in a display list, which allowed you to switch textures by executing that display list. And hopefully the driver would realize you were doing that and instead allocate video memory and so forth appropriately.
So when 1.1 came around, the OpenGL ARB realized how mind-bendingly silly that was. So they created texture objects, which encapsulate both the memory storage of a texture and the various state within. When you wanted to use the texture, you bound it. But there was a snag. Namely, how to change it.
See, 1.0 had a bunch of already existing functions like glTexImage*D, glTexParamter and the like. These modify the state of the texture. Now, the ARB could have added new functions that do the same thing but take texture objects as parameters.
But that would mean dividing all OpenGL users into 2 camps: those who used texture objects and those who did not. It meant that, if you wanted to use texture objects, you had to rewrite all of your existing code that modified textures. If you had some function that made a bunch of glTexParameter calls on the current texture, you would have to change that function to call the new texture object function. But you would also have to change the function of yours that calls it so that it would take, as a parameter, the texture object that it operates on.
And if that function didn't belong to you (because it was part of a library you were using), then you couldn't even do that.
So the ARB decided to keep those old functions around and simply have them behave differently based on whether a texture was bound to the context or not. If one was bound, then glTexParameter/etc would modify the bound texture, rather than the context's normal texture.
This one decision established the general paradigm shared by almost all OpenGL objects.
ARB_vertex_buffer_object used this paradigm for the same reason. Notice how the various gl*Pointer functions (glVertexAttribPointer and the like) work in relation to buffers. You have to bind a buffer to GL_ARRAY_BUFFER, then call one of those functions to set up an attribute array. When a buffer is bound to that slot, the function will pick that up and treat the pointer as an offset into the buffer that was bound at the time the *Pointer function was called.
Why? For the same reason: ease of compatibility (or to promote laziness, depending on how you want to see it). ATI_vertex_array_object had to create new analogs to the gl*Pointer functions. Whereas ARB_vertex_buffer_object just piggybacked off of the existing entrypoints.
Users didn't have to change from using glVertexPointer to glVertexBufferOffset or some other function. All they had to do was bind a buffer before calling a function that set up vertex information (and of course change the pointers to byte offsets).
It also mean that they didn't have to add a bunch of glDrawElementsWithBuffer-type functions for rendering with indices that come from buffer objects.
So this wasn't a bad idea in the short term. But as with most short-term decision making, it starts being less reasonable with time.
Of course, if you have access to GL 4.5/ARB_direct_state_access, you can do things the way they ought to have been done originally.

When does OpenGL get finished with pointers in functions?

OpenGL has a number of functions that directly take pointers. Some of them read data from those pointers, others write data to those pointers.
However, OpenGL functions often don't execute immediately. Usually, when you draw something, it takes a while for the drawing to finish.
So how do I know when OpenGL is finished with a pointer I give it?
All OpenGL functions, with the exception noted below, will be finished with any pointer you give it upon that function's return. So glReadPixels will have finished all pixel reading and format conversion upon its return. This is why asynchronous pixel transfer is so important for reading operations. It allows OpenGL to not do that, to not synchronize with the GPU.
The only exception to this rule is every function that ends in the word "Pointer". Things like glVertexAttribPointer, glTexCoordPointer, and the like. When you use client-side memory with these functions (no longer legal in core profile OpenGL 3.2+), these functions store a pointer to that memory. Therefore, you must ensure that this pointer is valid for as long as you intend to render with those vertex attributes.
After each rendering call using client-memory, OpenGL requires that the implementation have finished reading from client memory by the time the rendering function returns. So you can call glDrawArrays, then delete the pointers in question. And as long as you don't make another draw call until you've changed those pointers, you're fine. This means OpenGL has to have copied out all relevant vertex data by the time the rendering call returns (one of the reasons why using buffer objects is faster).

Concept behind OpenGL's 'Bind' functions

I am learning OpenGL from this tutorial.
My question is about the specification in general, not about a specific function or topic.
When seeing code like the following:
glGenBuffers(1, &positionBufferObject);
glBindBuffer(GL_ARRAY_BUFFER, positionBufferObject);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertexPositions), vertexPositions, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
I'm confused about the utility of calling the bind functions before and after setting the buffer data.
It seems superfluous to me, due to my inexperience with OpenGL and Computer Graphics in general.
The man page says that:
glBindBuffer lets you create or use a named buffer object. Calling glBindBuffer with target set to
GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER or GL_PIXEL_UNPACK_BUFFER and buffer set to the
name of the new buffer object binds the buffer object name to the target. When a buffer object is bound to a
target, the previous binding for that target is automatically broken.
What exactly is the concept/utility of 'binding' something to a 'target' ?
the commands in opengl don't exist in isolation. they assume the existence of a context. one way to think of this is that there is, hidden in the background, an opengl object, and the functions are methods on that object.
so when you call a function, what it does depends on the arguments, of course, but also on the internal state of opengl - on the context/object.
this is very clear with bind, which says "set this as the current X". then later functions modify the "current X" (where X might be buffer, for example). [update:] and as you say, the thing that is being set (the attribute in the object, or the "data member") is the first argument to bind. so GL_ARRAY_BUFFER names a particular thing that you are setting.
and to answer the second part of the question - setting it to 0 simply clears the value so you don't accidentally make unplanned changes elsewhere.
The OpenGL technique can be incredibly opaque and confusing. I know! I've been writing 3D engines based upon OpenGL for years (off and on). In my case part of the problem is, I write the engine to hide the underlying 3D API (OpenGL), so once I get something working I never see the OpenGL code again.
But here is one technique that helps my brain comprehend the "OpenGL way". I think this way of thinking about it is true (but not the whole story).
Think about the hardware graphics/GPU cards. They have certain capabilities implemented in hardware. For example, the GPU may only be able to update (write) one texture at a time. Nonetheless, it is mandatory that the GPU contain many textures within the RAM inside the GPU, because transfer between CPU memory and GPU memory is very slow.
So what the OpenGL API does is to create the notion of an "active texture". Then when we call an OpenGL API function to copy an image into a texture, we must do it this way:
1: generate a texture and assign its identifier to an unsigned integer variable.
2: bind the texture to the GL_TEXTURE bind point (or some such bind point).
3: specify the size and format of the texture bound to GL_TEXTURE target.
4: copy some image we want on the texture to the GL_TEXTURE target.
And if we want to draw an image on another texture, we must repeat that same process.
When we are finally ready to render something on the display, we need our code to make one or more of the textures we created and copied images upon to become accessible by our fragment shader.
As it turns out, the fragment shader can access more than one texture at a time by accessing multiple "texture units" (one texture per texture unit). So, our code must bind the textures we want to make available to the texture units our fragment shaders expect them bound to.
So we must do something like this:
glActiveTexture (GL_TEXTURE0);
glBindTexture (GL_TEXTURE_2D, mytexture0);
glActiveTexture (GL_TEXTURE1);
glBindTexture (GL_TEXTURE_2D, mytexture1);
glActiveTexture (GL_TEXTURE2);
glBindTexture (GL_TEXTURE_2D, mytexture2);
glActiveTexture (GL_TEXTURE3);
glBindTexture (GL_TEXTURE_2D, mytexture3);
Now, I must say that I love OpenGL for many reasons, but this approach drive me CRAZY. That's because all the software I have written for years would look like this instead:
error = glSetTexture (GL_TEXTURE0, GL_TEXTURE_2D, mytexture0);
error = glSetTexture (GL_TEXTURE1, GL_TEXTURE_2D, mytexture1);
error = glSetTexture (GL_TEXTURE2, GL_TEXTURE_2D, mytexture2);
error = glSetTexture (GL_TEXTURE3, GL_TEXTURE_2D, mytexture3);
Bamo. No need for setting all this state over and over and over again. Just specify which texture-unit to attach the texture to, plus the texture-type to indicate how to access the texture, plus the ID of the texture I want to attach to the texture unit.
I also wouldn't need to bind a texture as the active texture to copy an image to it, I would just give the ID of the texture I wanted to copy to. Why should it need to be bound?
Well, there's the catch that forces OpenGL to be structured in the crazy way it is. Because the hardware does some things, and the software driver does other things, and because what is done where is a variable (depends on GPU card), they need some way to keep the complexity under control. Their solution is essentially to have only one bind point for each kind of entity/object, and to require we bind our entities to those bind points before we call functions that manipulate them. And as a second purpose, binding entities is what makes them available to the GPU, and our various shaders that execute in the GPU.
At least that's how I keep the "OpenGL way" straight in my head. Frankly, if someone really, really, REALLY understands all the reasons OpenGL is (and must be) structured the way it is, I'd love them to post their own reply. I believe this is an important question and topic, and the rationale is rarely if ever described at all, much less in a manner that my puny brain can comprehend.
From the section Introduction: What is OpenGL?
Complex aggregates like structs are never directly exposed in OpenGL. Any such constructs are hidden behind the API. This makes it easier to expose the OpenGL API to non-C languages without having a complex conversion layer.
In C++, if you wanted an object that contained an integer, a float, and a string, you would create it and access it like this:
struct Object
{
int count;
float opacity;
char *name;
};
//Create the storage for the object.
Object newObject;
//Put data into the object.
newObject.count = 5;
newObject.opacity = 0.4f;
newObject.name = "Some String";
In OpenGL, you would use an API that looks more like this:
//Create the storage for the object
GLuint objectName;
glGenObject(1, &objectName);
//Put data into the object.
glBindObject(GL_MODIFY, objectName);
glObjectParameteri(GL_MODIFY, GL_OBJECT_COUNT, 5);
glObjectParameterf(GL_MODIFY, GL_OBJECT_OPACITY, 0.4f);
glObjectParameters(GL_MODIFY, GL_OBJECT_NAME, "Some String");
None of these are actual OpenGL commands, of course. This is simply an example of what the interface to such an object would look like.
OpenGL owns the storage for all OpenGL objects. Because of this, the user can only access an object by reference. Almost all OpenGL objects are referred to by an unsigned integer (the GLuint). Objects are created by a function of the form glGen*, where * is the type of the object. The first parameter is the number of objects to create, and the second is a GLuint* array that receives the newly created object names.
To modify most objects, they must first be bound to the context. Many objects can be bound to different locations in the context; this allows the same object to be used in different ways. These different locations are called targets; all objects have a list of valid targets, and some have only one. In the above example, the fictitious target “GL_MODIFY” is the location where objectName is bound.
This is how most OpenGL objects work, and buffer objects are "most OpenGL objects."
And if that's not good enough, the tutorial covers it again in Chapter 1: Following the Data:
void InitializeVertexBuffer()
{
glGenBuffers(1, &positionBufferObject);
glBindBuffer(GL_ARRAY_BUFFER, positionBufferObject);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertexPositions), vertexPositions, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
The first line creates the buffer object, storing the handle to the object in the global variable positionBufferObject. Though the object now exists, it does not own any memory yet. That is because we have not allocated any with this object.
The glBindBuffer function binds the newly-created buffer object to the GL_ARRAY_BUFFER binding target. As mentioned in the introduction, objects in OpenGL usually have to be bound to the context in order for them to do anything, and buffer objects are no exception.
The glBufferData function performs two operations. It allocates memory for the buffer currently bound to GL_ARRAY_BUFFER, which is the one we just created and bound. We already have some vertex data; the problem is that it is in our memory rather than OpenGL's memory. The sizeof(vertexPositions) uses the C++ compiler to determine the byte size of the vertexPositions array. We then pass this size to glBufferData as the size of memory to allocate for this buffer object. Thus, we allocate enough GPU memory to store our vertex data.
The other operation that glBufferData performs is copying data from our memory array into the buffer object. The third parameter controls this. If this value is not NULL, as in this case, glBufferData will copy the data referenced by the pointer into the buffer object. After this function call, the buffer object stores exactly what vertexPositions stores.
The fourth parameter is something we will look at in future tutorials.
The second bind buffer call is simply cleanup. By binding the buffer object 0 to GL_ARRAY_BUFFER, we cause the buffer object previously bound to that target to become unbound from it. Zero in this cases works a lot like the NULL pointer. This was not strictly necessary, as any later binds to this target will simply unbind what is already there. But unless you have very strict control over your rendering, it is usually a good idea to unbind the objects you bind.
Binding a buffer to a target is something like setting a global variable. Subsequent function calls then operate on that global data. In the case of OpenGL all the "global variables" together form a GL context. Virtually all GL functions read from that context or modify it in some way.
The glGenBuffers() call is sort of like malloc(), allocating a buffer; we set a global to point to it with glBindBuffer(); we call a function that operates on that global (glBufferData()) and then we set the global to NULL so it won't inadvertently operate on that buffer again using glBindBuffer().
OpenGL is what is known as a "state machine," to that end OpenGL has several "binding targets" each of which can only have one thing bound at once. Binding something else replaces the current bind, and thus changes it's state. Thus by binding buffers you are (re)defining the state of the machine.
As a state machine, whatever information you have bound will have an effect on the next output of the machine, in OpenGL that is its next draw-call. Once that is done you could bind new vertex data, bind new pixel data, bind new targets etc then initiate another draw call. If you wanted to create the illusion of movement on your screen, when you were satisfied you had drawn your entire scene (a 3d engine concept, not an OpenGL concept) you'd flip the framebuffer.

Automatic bind in OpenGL object wrapper

I tend to wrap OpenGL objects in their own classes. In OpenGL there is the concept of binding, where you bind your object, do something with it and then unbind it. For example, a texture:
glBindTexture(GL_TEXTURE_2D, TextureColorbufferName);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1000);
glBindTexture(GL_TEXTURE_2D, 0);
Wrapping this would be something like:
texture->bind();
texture->setParameter(...);
texture->setParameter(...);
texture->unBind();
The problem here, is that I want to avoid the bind() and unBind() functions, and instead just be able to call the set methods and the GLObject will be bound automaticly.
I could just do it in every method implementation:
public void Texture::setParameter(...)
{
this.bind();
// do something
this.unBind();
}
Though then I have to do that for every added method! Is there a better way, so it is automatically done before and after every method added?
Maybe a context object may help here. Consider this small object:
class TextureContext {
public:
TextureContext(char* texname) {
glBindTexture(GL_TEXTURE_2D, texname);
}
~TextureContext() {
glBindTexture(GL_TEXTURE_2D, 0);
}
};
This object is now used within a scope:
{
TextureContext mycont(textname);
mytexture->setParameter(...);
mytexture->setParameter(...);
mytexture->setParameter(...);
}
the object mycont only lives in the scope and calls its destructor (ant the unbind method respectively) automatically once the scope is left.
EDIT:
Maybe you can adjust the TextureContext class to take your Texture instance instead in the constructor and retrieves the texture name itself before binding the texture.
The problem here, is that I want to avoid the bind() and unBind() functions
Most likely, you won't be able to get rid of them completely. glTexImage2D will require bind/unBind (or lock/unlock if you wnat DirectX-style names)
I could just do it in every method implementation:
You shouldn't do that, because you'll get massive performance drop. It is called "state trashing", if I remember correctly. If you need to modify multiple parameters, you should modify them all in one go. Calling "bind"/"unbind" frequently will be extremely inefficient and isn't recommended in performance guidelines I saw (i.e. DirectX SDK, nvidia documentation, random GDC papaers, etc).
Is there a better way, so it is automatically done before and after every method added?
Yes, there is. Cache multiple state changes and delay actual OpenGL calls till they're absolutely necessary.
I.e. if your program requests to set Min filter, Mag filter, wrap_s, wrap_t and other parameters for glTexParameter, and your texture isn't currently bound to any texutre stage, don't set parameters now. Store them in internal list (within this specific texture), and set them all at once next time texture is bound. Or when list reaches certain size, or when user calls glGetTexParameter. Once it is time to set parameters, bind texture, set parameters, and unbind it, if necessary.
There are two potential problems with this approach, though:
Time spent on changing texture states might become a bit unpredictable. (because you won't be sure when exactly actual OpenGL cal will be performed).
It might be harder to detect OpenGL errors using this method.
If internal list uses dynamically allocated memory and frequently calls new/delete, this might result in bottleneck, because calls to new/delete can be slow. This can be solved by using fixed-size circular buffer for that internal list.
I tend to wrap OpenGL objects in their own classes.
A guy goes to the doctor and say, "It hurts whenever I raise my arm like this." So the doctor says, "Then stop raising your arm like that."
Your problem is that you're trying to provide an object-based interface to a system that is not object based. That will only end in tears and/or pain.
A far better solution would be to raise the level of your abstraction. Instead of wrapping OpenGL objects directly, wrap your graphics API. You might have some external concept of "texture" which would store an OpenGL texture object, but you wouldn't expose functions that change parameters on that texture directly. Or even indirectly.
Don't make promises with your API that you can't keep. Raise the abstraction to the point where the external code simply doesn't care what the texture's filtering mode and other parameters are.
Alternatively, have the filtering (and wrapping) be part of the object's constructor, a fixed value set at creation time.

OpenGL object creation

Right now, I'm modelling some sort of little OpenGL library to fool around with graphic programming etc. Therefore, I'm using classes to wrap around specific OpenGL function calls like texture creation, shader creation and so on, so far, so good.
My Problem:
All OpenGL calls must be done by the thread which owns the created OpenGL Context (at least under Windows, every other thread will do nothing and create an OpenGL error). So, in order to get an OpenGL context, I firstly create an instance of a window class (just another wrapper around the Win API calls) and finally create an OpenGL context for that window. That sounded quiet logical to me. (If there's already a flaw in my design that makes you scream, let me know...)
If I want to create a texture, or any other object that needs OpenGL calls for creation, I basically do this (the called constructor of an OpenGL object, example):
opengl_object()
{
//do necessary stuff for object initialisation
//pass object to the OpenGL thread for final contruction
//wait until object is constructed by the OpenGL thread
}
So, in words, I create an object like any other object using
opengl_object obj;
Which then, in its contructor, puts itself into a queue of OpenGL objects to be created by the OpenGL context thread. The OpenGL context thread then calls a virtual function which is implemented in all OpenGL objects and contains the necessary OpenGL calls to finally create the object.
I really thought, this way of handling that problem, would be nice. However, right now, I think I'm awfully wrong.
The case is, even though the above way works perfectly fine so far, I'm having troubles as soon as the class hierarchy goes deeper. For example (which is not perfectly, but it shows my problem):
Let's say, I have a class called sprite, representing a Sprite, obviously. It has its own create function for the OpenGL thread in which the vertices and texture coordinates are loaded into the graphic cards memory and so on. That's no problem so far.
Let's further say, I want to have 2 ways of rendering sprites. One Instanced and one through another way. So, I would end up with 2 classes, sprite_instanced and sprite_not_instanced. Both are derived from the sprite class, as they both are sprite which are only rendered differently. However, sprite_instanced and sprite_not_instanced need further OpenGL calls in their create function.
My Solution so far (and I feel really awful about it!)
I have some kind of understanding how object generation in c++ works and how it affects virtual functions. So I decided to use the virtual create function of the class sprite only to load the vertex data and so on into the the graphics memory. The virtual create method of sprite_instanced will then do the preparation to render that sprite instanced.
So, if I want write
sprite_instanced s;
Firstly, the sprite constructor is called and after some initialisation, the constructing thread passes the object to the OpenGL thread. At this point, the passed object is merely a normal sprite, so sprite::create will be called and the OpenGL thread will create a normal sprite. After that, the constructing thread will call the constructor of sprite_instanced, again do some initialisation and pass the object to the OpenGL thread. This time however, it's a sprite_instanced and therefore sprite_instanced::create will be called.
So, if I'm right with the above assumption, everything happens exactly as it should, in my case at least. I spend the last hour reading about calling virtual functions from constructors and how the v-table is build etc. I've ran some test to check my assumption, but that might be compiler-specific so I don't rely on them 100%. In addition, it just feels awful and like a terrible hack.
Another Solution
Another possibility would be implementing factory method in the OpenGL thread class to take care of that. So I can do all the OpenGL calls inside the constructor of those objects. However, in that case, I would need a lot of functions (or one template-based approach) and it feels like a possible loss of potential rendering time when the OpenGL thread has more to do than it needs to...
My Question
Is it ok to handle it the way I described it above? Or should I rather throw that stuff away and do something else?
You were already given some good advice. So I'll just spice it up a bit:
One important thing to understand about OpenGL is, that it is a state machine, which doesn't need some elaborate "initialization". You just use it, and that's about it. Buffer Objects (Textures, Vertex Buffer Objects, Pixel Buffer Objects) may make it look different, and most tutorials and real world applications indeed fill Buffer Objects at application start.
However it is perfectly fine to create them during regular program execution. In my 3D engine I use the free CPU time during the double buffer swap for asynchronous uploads into Buffer Objects (for(b in buffers){glMapBuffer(b.target, GL_WRITE_ONLY);} start_buffer_filling_thread(); SwapBuffers(); wait_for_buffer_filling_thread(); for(b in buffers){glUnmapBuffer(b.target);}).
It's also important to understand that for simple things like sprites should not given its own VBO for each sprite. One normally groups large groups of sprites in a single VBO. You don't have to draw them all together, since you can offset into the VBO and make partial drawing calls. But this common pattern of OpenGL (geometrical objects sharing a buffer object) completely goes against that principle of your classes. So you's need some buffer object manager, that hands out slices of address space to consumers.
Using a class hierachy with OpenGL in itself is not a bad idea, but then it should be some levels higher than OpenGL. If you just map OpenGL 1:1 to classes you gain nothing but complexity and bloat. If I call OpenGL functions directly or by class, I'll still have to do all the grunt work. So a texture class should not just map the concept of a texture object, but it should also take care of interacting with Pixel Buffer Objects (if used).
If you actually want to wrap OpenGL in classes I strongly recommend not using virtual functions but static (means on the compilation unit level) inline classes, so that they become syntactic sugar the compiler will not bloat up too much.
The question is simplified by the fact a single context is assumed to be current on a single thread; actually there can be multiple OpenGL contexts, also on different threads (and while we're at, we consider context name spaces sharing).
First all, I think you should separate the OpenGL calls from the object constructor. Doing this allow you to setup an object without carrying about OpenGL context currency; successively the object could be enqueued for creation in the main rendering thread.
An example. Suppose we have 2 queues: one which holds Texture objects for loading texture data from filesystem, one which hold Texture objects for uploading texture data on GPU memory (after having loaded data, of course).
Thread 1: The texture loader
{
for (;;) {
while (textureLoadQueue.Size() > 0) {
Texture obj = textureLoadQueue.Dequeue();
obj.Load();
textureUploadQueue.Enqueue(obj);
}
}
}
Thread 2: The texture uploader code section, essentially the main rendering thread
{
while (textureUploadQueue.Size() > 0) {
Texture obj = textureUploadQueue.Dequeue();
obj.Upload(ctx);
}
}
The Texture object constructor should looks like:
Texture::Texture(const char *path)
{
mImagePath = path;
textureLoadQueue.Enqueue(this);
}
This is only an example. Of course each object has different requirements, but this solution is the most scalable.
My solution is essentially described by the interface IRenderObject (the documentation is far different from the current implementation, since I'm refactoring alot at this moment and the development is at a very alpha level). This solution is applied to C# languages, which introduce additional complexity due the garbage collection management, but the concept are perfectly adaptable to C++ language.
Essentially, the interface IRenderObject define a base OpenGL object:
It has a name (those returned by Gen routines)
It can be created using a current OpenGL context
It can be deleted using a current OpenGL context
It can be released asynchronously using an "OpenGL garbage collector"
The creation/deletion operations are very intuitive. The take a RenderContext abstracting the current context; using this object, it is possible to execute checks that can be useful to find bug in object creation/deletion:
The Create method check whether the context is current, if the context can create an object of that type, and so on...
The Delete method check whether the context is current, and more important, check whether the context passed as parameter is sharing the same object name space of the context that has created the underlying IRenderObject
Here is an example on the Delete method. Here the code works, but it doesn't work as expected:
RenderContext ctx1 = new RenderContext(), ctx2 = new RenderContext();
Texture tex1, tex2;
ctx1.MakeCurrent(true);
tex1 = new Texture2D();
tex1.Load("example.bmp");
tex1.Create(ctx1); // In this case, we have texture object name = 1
ctx2.MakeCurrent(true);
tex2 = new Texture2D();
tex2.Load("example.bmp");
tex2.Create(ctx2); // In this case, we have texture object name = 1, the same has before since the two contexts are not sharing the object name space
// Somewhere in the code
ctx1.MakeCurrent(true);
tex2.Delete(ctx1); // Works, but it actually delete the texture represented by tex1!!!
The asynchronous release operation aim to delete the object, but not having a current context ( infact the method doesn't take any RenderContext parameter). It could happen that the object is disposed in a separate thread, which doesn't have a current context; but also, I cannot rely on the gargage colllector (C++ doesn't have one), since it is executed in a thread with I have no control. Furthermore, it is desiderable to implement the IDisposable interface, so application code can control the OpenGL object lifetime.
The OpenGL GarbageCollector, is executed on the thread having the right context current.
It is always bad form to call any virtual function in a constructor. The virtual call will not be completed as normal.
Your data structures are very confused. You should investigate the concept of Factory objects. These are objects that you use to construct other objects. You should have a SpriteFactory, which gets pushed into some kind of queue or whatever. That SpriteFactory should be what creates the Sprite object itself. That way, you don't have this notion of a partially constructed object, where creating it pushes itself into a queue and so forth.
Indeed, anytime you start to write, "Objectname::Create", stop and think, "I really should be using a Factory object."
OpenGL was designed for C, not C++. What I've learned works best is to write functions rather than classes to wrap around OpenGL functions, as OpenGL manages its own objects internally. Use classes for loading your data, then pass it to C-style functions which deal with OpenGL. You should be very careful generating/freeing OpenGL buffers in constructors/destructors!
I would avoid having your objects insert themselves into the GL thread's queue on construction. That should be an explicit step, e.g.
gfxObj_t thing(arg) // read a file or something in constructor
mWindow.addGfxObj(thing) // put the thing in mWindow's queue
This lets you do things like constructing a set of objects and then putting them all in the queue at once, and guarantees that the constructor ends before any virtual functions are called. Note that putting the enqueue at the end of the constructor does not guarantee this, because constructors are always called from top-most class down. This means that if you queue an object to have a virtual function called on it, derived classes will be enqueued before their own constructors begin acting. This means you have a race condition which can cause action on an uninitialized object! A nightmare to debug if you don't realize what you've done.
I think the problem here isn't RAII, or the fact that OpenGL is a c-style interface. It's that you're assuming sprite and sprite_instanced should both derive from a common base. These problems occur all the time with class hierarchies and one of the first lessons I learned about object orientation, mostly through many errors, is that it's almost always better to encapsulate than to derive. EXCEPT that if you're going to derive, do it through an abstract interface.
In other words, don't be fooled by the fact that both of these classes have the name "sprite" in them. They are otherwise totally different in behaviour. For any common functionality they share, implement an abstract base that encapsulates that functionality.