Swap columns in c++ - c++

I have an std matrix defined as:
std::vector<std::vector<double> > Qe(6,std::vector<double>(6));
and a vector v that is:
v{0, 1, 3, 2, 4, 5};
I would like to swap the columns 3 and 2 of matrix Qe like indicated in vector v.
In Matlab this is as easy as writing Qe=Qe(:,v);
I wonder if there is an easy way other than a for loop to do this in c++.
Thanks in advance.

Given that you've implemented this as a vector of vectors, you can use a simple swap:
std::swap(Qe[2], Qe[3]);
This should have constant complexity. Of course, this will depend on whether you're treating your data as column-major or row-major. If you're going to be swapping columns often, however, you'll want to arrange the data to suit that (i.e., to allow the code above to work).
As far as doing the job without a for loop when you're using row-major ordering (the usual for C++), you can technically eliminate the for loop (at least from your source code) by using a standard algorithm instead:
std::for_each(Qe.begin(), Qe.end(), [](std::vector<double> &v) {std::swap(v[2], v[3]); });
This doesn't really change what's actually happening though--it just hides the for loop itself inside a standard algorithm. In this case, I'd probably prefer a range-based for loop:
for (auto &v : Qe)
std::swap(v[2], v[3]);
...but I've never been particularly fond of std::for_each, and when C++11 added range-based for loops, I think that was a superior alternative to the vast majority of cases where std::for_each might previously have been a reasonable possibility (IOW, I've never seen much use for std::for_each, and see almost none now).

Depends on how you implement your matrix.
If you have a vector of columns, you can swap the column references. O(1)
If you have a vector of rows, you need to swap the elements inside each row using a for loop. O(n)
std::vector<std::vector<double>> can be used as a matrix but you also need to define for yourself whether it is a vector of columns or vector of rows.
You can create a function for this so you don't write a for loop each time. For example, you can write a function which receives a matrix which is a vector of columns and a reordering vector (like v) and based on the reordering vector you create a new matrix.
//untested code and inefficient, just an example:
vector<vector<double>> ReorderColumns(vector<vector<double>> A, vector<int> order)
{
vector<vector<double>> B;
for (int i=0; i<order.size(); i++)
{
B[i] = A[order[i]];
}
return B;
}
Edit: If you want to do linear algebra there are libraries that can help you, you don't need to write everything yourself. There are math libraries for other purposes too.

If you are in a row scenario. The following would probably work:
// To be tested
std::vector<std::vector<double> >::iterator it;
for (it = Qe.begin(); it != Qe.end(); ++it)
{
std::swap((it->second)[2], (it->second)[3]);
}
In this scenario I don't see any other solution that would avoid doing a loop O(n).

Related

Copying vector elements to a vector pair

In my C++ code,
vector <string> strVector = GetStringVector();
vector <int> intVector = GetIntVector();
So I combined these two vectors into a single one,
void combineVectors(vector<string>& strVector, vector <int>& intVector, vector < pair <string, int>>& pairVector)
{
for (int i = 0; i < strVector.size() || i < intVector.size(); ++i )
{
pairVector.push_back(pair<string, int> (strVector.at(i), intVector.at(i)));
}
}
Now this function is called like this,
vector <string> strVector = GetStringVector();
vector <int> intVector = GetIntVector();
vector < pair <string, int>> pairVector
combineVectors(strVector, intVector, pairVector);
//rest of the implementation
The combineVectors function uses a loop to add the elements of other 2 vectors to the vector pair. I doubt this is a efficient way as this function gets called hundrands of times passing different data. This might cause a performance issue because everytime it goes through the loop.
My goal is to copy both the vectors in "one go" to the vector pair. i.e., without using a loop. Am not sure whether that's even possible.
Is there a better way of achieving this without compromising the performance?
You have clarified that the arrays will always be of equal size. That's a prerequisite condition.
So, your situation is as follows. You have vector A over here, and vector B over there. You have no guarantees whether the actual memory that vector A uses and the actual memory that vector B uses are next to each other. They could be anywhere.
Now you're combining the two vectors into a third vector, C. Again, no guarantees where vector C's memory is.
So, you have really very little to work with, in terms of optimizations. You have no additional guarantees whatsoever. This is pretty much fundamental: you have two chunks of bytes, and those two chunks need to be copied somewhere else. That's it. That's what has to be done, that's what it all comes down to, and there is no other way to get it done, other than doing exactly that.
But there is one thing that can be done to make things a little bit faster. A vector will typically allocate memory for its values in incremental steps, reserving some extra space, initially, and as values get added to the vector, one by one, and eventually reach the vector's reserved size, the vector has to now grab a new larger block of memory, copy everything in the vector to the larger memory block, then delete the older block, and only then add the next value to the vector. Then the cycle begins again.
But you know, in advance, how many values you are about to add to the vector, so you simply instruct the vector to reserve() enough size in advance, so it doesn't have to repeatedly grow itself, as you add values to it. Before your existing for loop, simply:
pairVector.reserve(pairVector.size()+strVector.size());
Now, the for loop will proceed and insert new values into pairVector which is guaranteed to have enough space.
A couple of other things are possible. Since you have stated that both vectors will always have the same size, you only need to check the size of one of them:
for (int i = 0; i < strVector.size(); ++i )
Next step: at() performs bounds checking. This loop ensures that i will never be out of bounds, so at()'s bound checking is also some overhead you can get rid of safely:
pairVector.push_back(pair<string, int> (strVector[i], intVector[i]));
Next: with a modern C++ compiler, the compiler should be able to optimize away, automatically, several redundant temporaries, and temporary copies here. It's possible you may need to help the compiler, a little bit, and use emplace_back() instead of push_back() (assuming C++11, or later):
pairVector.emplace_back(strVector[i], intVector[i]);
Going back to the loop condition, strVector.size() gets evaluated on each iteration of the loop. It's very likely that a modern C++ compiler will optimize it away, but just in case you can also help your compiler check the vector's size() only once:
int i=strVector.size();
for (int i = 0; i < n; ++i )
This is really a stretch, but it might eke out a few extra quantums of execution time. And that pretty much all obvious optimizations here. Realistically, the most to be gained here is by using reserve(). The other optimizations might help things a little bit more, but it all boils down to moving a certain number of bytes from one area in memory to another area. There aren't really special ways of doing that, that's faster than other ways.
We can use std:generate() to achieve this:
#include <bits/stdc++.h>
using namespace std;
vector <string> strVector{ "hello", "world" };
vector <int> intVector{ 2, 3 };
pair<string, int> f()
{
static int i = -1;
++i;
return make_pair(strVector[i], intVector[i]);
}
int main() {
int min_Size = min(strVector.size(), intVector.size());
vector< pair<string,int> > pairVector(min_Size);
generate(pairVector.begin(), pairVector.end(), f);
for( int i = 0 ; i < 2 ; i++ )
cout << pairVector[i].first <<" " << pairVector[i].second << endl;
}
I'll try and summarize what you want with some possible answers depending on your situation. You say you want a new vector that is essentially a zipped version of two other vectors which contain two heterogeneous types. Where you can access the two types as some sort of pair?
If you want to make this more efficient, you need to think about what you are using the new vector for? I can see three scenarios with what you are doing.
The new vector is a copy of your data so you can do stuff with it without affecting the original vectors. (ei you still need the original two vectors)
The new vector is now the storage mechanism for your data. (ei you
no longer need the original two vectors)
You are simply coupling the vectors together to make use and representation easier. (ei where they are stored doesn't actually matter)
1) Not much you can do aside from copying the data into your new vector. Explained more in Sam Varshavchik's answer.
3) You do something like Shakil's answer or here or some type of customized iterator.
2) Here you make some optimisations here where you do zero coping of the data with the use of a wrapper class. Note: A wrapper class works if you don't need to use the actual std::vector < std::pair > class. You can make a class where you move the data into it and create access operators for it. If you can do this, it also allows you to decompose the wrapper back into the original two vectors without copying. Something like this might suffice.
class StringIntContainer {
public:
StringIntContaint(std::vector<std::string>& _string_vec, std::vector<int>& _int_vec)
: string_vec_(std::move(_string_vec)), int_vec_(std::move(_int_vec))
{
assert(string_vec_.size() == int_vec_.size());
}
std::pair<std::string, int> operator[] (std::size_t _i) const
{
return std::make_pair(string_vec_[_i], int_vec_[_i]);
}
/* You may want methods that return reference to data so you can edit it*/
std::pair<std::vector<std::string>, std::vector<int>> Decompose()
{
return std::make_pair(std::move(string_vec_), std::move(int_vec_[_i])));
}
private:
std::vector<std::string> _string_vec_;
std::vector<int> int_vec_;
};

C++ row and columns matrix manipulation

I've created a 2D matrix as a vector of vectors like this :
vector<vector<int>> mat;
now I need to swap the row and columns of my matrix for example :
row 0 swapped with row 4
column 5 swapped with column 1
the rows aren't a problem since there is the swap() function of the stl library. Exchanging rows though seems quite problematic because, of course, they are not considered as one atomic structure. so at this point I'm really stuck... I've considered doing it brutally swapping every element of the rows I'm interested in, but it seems quite inelegant. Any idea of how I could achieve my goal ?
If you consider "elenance" as a STL function that can do all this stuff for you, then there's no function like this. The aim of STL is not about making your code as simple as possible, the creators of C++ only add to STL things that:
Is really hard to implement with the current language's instrument
Things that need a special support from your compiler (special optimization, etc.)
Some elements that became common
So, just implement by your own.
If you don't want to use for (;;) loops because it's not "elegant" at some point, then you can do something like this:
/* swapping column i and j */
std::vector<std::vector<T>> mat;
std::for_each(mat.begin(), mat.end(), [i,j](std::vector<int>& a)
{ std::swap(a[i], a[j]); });
Update: If the speed is important for you and you want to swap columns as fast as swapping rows (in O(1) ), then you can use this implementation (that takes extra space)):
std::vector<std::vector<int>> mat;
/* preprocessing */
std::vector<int> permutation(mat[0].size());
std::iota(permutation.begin(), permutation.end(), 0);
/* now, if you need to get the element mat[i][j] */
mat_i_j = mat[i][ permutation[j] ];
/* if you want to swap column i and j */
std::swap(permutation[i], permutation[j]);

How to initialize a vector<int> v(1000) with values {1,1,1,...,1} without a loop in C++?

We can initialize a vector in C++11 in the following way
vector<int> v {1,2,3,4,5,6}
But what if I want to initialize a vector<int> v(1000) with values {1,1,1,1....1}?
In python it would be:
somelist [1] * 1000
I'm not sure if Python has a loop behind that line but my goal by omitting the loop is to do better in terms of performance and a simpler code.
If you want a vector of 1000 elements, all set to 1, then std::vector has a constructor that does that for you:
vector<int> v(1000, 1);
The time complexity of this constructor is necessarily linear, but you can expect it to be very fast. You would be hard pressed to find a faster alternative, so if this is an issue, you might require a re-design.

Iterator Loop vs index loop [duplicate]

This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
Why use iterators instead of array indices?
I'm reviewing my knowledge on C++ and I've stumbled upon iterators. One thing I want to know is what makes them so special and I want to know why this:
using namespace std;
vector<int> myIntVector;
vector<int>::iterator myIntVectorIterator;
// Add some elements to myIntVector
myIntVector.push_back(1);
myIntVector.push_back(4);
myIntVector.push_back(8);
for(myIntVectorIterator = myIntVector.begin();
myIntVectorIterator != myIntVector.end();
myIntVectorIterator++)
{
cout<<*myIntVectorIterator<<" ";
//Should output 1 4 8
}
is better than this:
using namespace std;
vector<int> myIntVector;
// Add some elements to myIntVector
myIntVector.push_back(1);
myIntVector.push_back(4);
myIntVector.push_back(8);
for(int y=0; y<myIntVector.size(); y++)
{
cout<<myIntVector[y]<<" ";
//Should output 1 4 8
}
And yes I know that I shouldn't be using the std namespace. I just took this example off of the cprogramming website. So can you please tell me why the latter is worse? What's the big difference?
The special thing about iterators is that they provide the glue between algorithms and containers. For generic code, the recommendation would be to use a combination of STL algorithms (e.g. find, sort, remove, copy) etc. that carries out the computation that you have in mind on your data structure (vector, list, map etc.), and to supply that algorithm with iterators into your container.
Your particular example could be written as a combination of the for_each algorithm and the vector container (see option 3) below), but it's only one out of four distinct ways to iterate over a std::vector:
1) index-based iteration
for (std::size_t i = 0; i != v.size(); ++i) {
// access element as v[i]
// any code including continue, break, return
}
Advantages: familiar to anyone familiar with C-style code, can loop using different strides (e.g. i += 2).
Disadvantages: only for sequential random access containers (vector, array, deque), doesn't work for list, forward_list or the associative containers. Also the loop control is a little verbose (init, check, increment). People need to be aware of the 0-based indexing in C++.
2) iterator-based iteration
for (auto it = v.begin(); it != v.end(); ++it) {
// if the current index is needed:
auto i = std::distance(v.begin(), it);
// access element as *it
// any code including continue, break, return
}
Advantages: more generic, works for all containers (even the new unordered associative containers, can also use different strides (e.g. std::advance(it, 2));
Disadvantages: need extra work to get the index of the current element (could be O(N) for list or forward_list). Again, the loop control is a little verbose (init, check, increment).
3) STL for_each algorithm + lambda
std::for_each(v.begin(), v.end(), [](T const& elem) {
// if the current index is needed:
auto i = &elem - &v[0];
// cannot continue, break or return out of the loop
});
Advantages: same as 2) plus small reduction in loop control (no check and increment), this can greatly reduce your bug rate (wrong init, check or increment, off-by-one errors).
Disadvantages: same as explicit iterator-loop plus restricted possibilities for flow control in the loop (cannot use continue, break or return) and no option for different strides (unless you use an iterator adapter that overloads operator++).
4) range-for loop
for (auto& elem: v) {
// if the current index is needed:
auto i = &elem - &v[0];
// any code including continue, break, return
}
Advantages: very compact loop control, direct access to the current element.
Disadvantages: extra statement to get the index. Cannot use different strides.
What to use?
For your particular example of iterating over std::vector: if you really need the index (e.g. access the previous or next element, printing/logging the index inside the loop etc.) or you need a stride different than 1, then I would go for the explicitly indexed-loop, otherwise I'd go for the range-for loop.
For generic algorithms on generic containers I'd go for the explicit iterator loop unless the code contained no flow control inside the loop and needed stride 1, in which case I'd go for the STL for_each + a lambda.
With a vector iterators do no offer any real advantage. The syntax is uglier, longer to type and harder to read.
Iterating over a vector using iterators is not faster and is not safer (actually if the vector is possibly resized during the iteration using iterators will put you in big troubles).
The idea of having a generic loop that works when you will change later the container type is also mostly nonsense in real cases. Unfortunately the dark side of a strictly typed language without serious typing inference (a bit better now with C++11, however) is that you need to say what is the type of everything at each step. If you change your mind later you will still need to go around and change everything. Moreover different containers have very different trade-offs and changing container type is not something that happens that often.
The only case in which iteration should be kept if possible generic is when writing template code, but that (I hope for you) is not the most frequent case.
The only problem present in your explicit index loop is that size returns an unsigned value (a design bug of C++) and comparison between signed and unsigned is dangerous and surprising, so better avoided. If you use a decent compiler with warnings enabled there should be a diagnostic on that.
Note that the solution is not to use an unsiged as the index, because arithmetic between unsigned values is also apparently illogical (it's modulo arithmetic, and x-1 may be bigger than x). You instead should cast the size to an integer before using it.
It may make some sense to use unsigned sizes and indexes (paying a LOT of attention to every expression you write) only if you're working on a 16 bit C++ implementation (16 bit was the reason for having unsigned values in sizes).
As a typical mistake that unsigned size may introduce consider:
void drawPolyline(const std::vector<P2d>& points)
{
for (int i=0; i<points.size()-1; i++)
drawLine(points[i], points[i+1]);
}
Here the bug is present because if you pass an empty points vector the value points.size()-1 will be a huge positive number, making you looping into a segfault.
A working solution could be
for (int i=1; i<points.size(); i++)
drawLine(points[i - 1], points[i]);
but I personally prefer to always remove unsinged-ness with int(v.size()).
PS: If you really don't want to think by to yourself to the implications and simply want an expert to tell you then consider that a quite a few world recognized C++ experts agree and expressed opinions on that unsigned values are a bad idea except for bit manipulations.
Discovering the ugliness of using iterators in the case of iterating up to second-last is left as an exercise for the reader.
Iterators make your code more generic.
Every standard library container provides an iterator hence if you change your container class in future the loop wont be affected.
Iterators are first choice over operator[]. C++11 provides std::begin(), std::end() functions.
As your code uses just std::vector, I can't say there is much difference in both codes, however, operator [] may not operate as you intend to. For example if you use map, operator[] will insert an element if not found.
Also, by using iterator your code becomes more portable between containers. You can switch containers from std::vector to std::list or other container freely without changing much if you use iterator such rule doesn't apply to operator[].
It always depends on what you need.
You should use operator[] when you need direct access to elements in the vector (when you need to index a specific element in the vector). There is nothing wrong in using it over iterators. However, you must decide for yourself which (operator[] or iterators) suits best your needs.
Using iterators would enable you to switch to other container types without much change in your code. In other words, using iterators would make your code more generic, and does not depend on a particular type of container.
By writing your client code in terms of iterators you abstract away the container completely.
Consider this code:
class ExpressionParser // some generic arbitrary expression parser
{
public:
template<typename It>
void parse(It begin, const It end)
{
using namespace std;
using namespace std::placeholders;
for_each(begin, end,
bind(&ExpressionParser::process_next, this, _1);
}
// process next char in a stream (defined elsewhere)
void process_next(char c);
};
client code:
ExpressionParser p;
std::string expression("SUM(A) FOR A in [1, 2, 3, 4]");
p.parse(expression.begin(), expression.end());
std::istringstream file("expression.txt");
p.parse(std::istringstream<char>(file), std::istringstream<char>());
char expr[] = "[12a^2 + 13a - 5] with a=108";
p.parse(std::begin(expr), std::end(expr));
Edit: Consider your original code example, implemented with :
using namespace std;
vector<int> myIntVector;
// Add some elements to myIntVector
myIntVector.push_back(1);
myIntVector.push_back(4);
myIntVector.push_back(8);
copy(myIntVector.begin(), myIntVector.end(),
std::ostream_iterator<int>(cout, " "));
The nice thing about iterator is that later on if you wanted to switch your vector to a another STD container. Then the forloop will still work.
its a matter of speed. using the iterator accesses the elements faster. a similar question was answered here:
What's faster, iterating an STL vector with vector::iterator or with at()?
Edit:
speed of access varies with each cpu and compiler

Sorting a vector alongside another vector in C++

I am writing a function in C++ which will take in 2 vectors of doubles called xvalues and yvalues. My aim is to create an interpolation with these inputs. However, it would be really convenient if the (x,y) pairs were sorted so that the x-values were in increasing order and the y-values still corresponded to the correct x-value.
Does anyone know how I can do this efficiently?
I would probably create a vector of pairs and sort that by whatever means necessary.
It sounds like your data abstraction (2 separate collections for values that are actually "linked" is wrong).
As an alternative, you could write some kind of iterator adaptor that internally holds two iterators and increases/decreases/assigns them simultaneously. They dereference to a special type that on swap, swaps the two values in both vectors, but on compare only compare one. This might be some work (extra swap,op<, class ), but when done as a template, and you need this more often, could pay out.
Or you use a vector of pairs, which you then can sort easily with the stl sort algorithm, or you write your own sort method. Therefore you've several options.
Within your own sorting algorithm you can then take care of not only sorting your x-vector but also the y-vector respectively.
Here as an example using bubble sort for your two vectors (vec1 and vec2).
bool bDone = false;
while (!done) {
done = true;
for(unsigned int i=0; i<=vec1.size()-1; ++i) {
if ( vec1.at(i) > vec1.at(i+1) ) {
double tmp = vec1.at(i);
vec1.at(i) = vec1.at(i+1);
vec1.at(i+1) = tmp;
tmp = vec2.at(i);
vec2.at(i) = vec2.at(i+1);
vec2.at(i+1) = tmp;
done = false;
}
}
}
But again, as others pointed out here, you should defenitely use std::vector< std::pair<double, double> > and the just sort it.
The idea is easy: implement a sort algorithm (e.g. quicksort is easy, short an OK for most use cases - there are a lot implementations available: http://www.java-samples.com/showtutorial.php?tutorialid=445 ).
Do the compare on your x-vector and
do the swap on both vectors.
The sort method has to take both vectors a input, but that should be a minor issue.