If I run the following code in the REPL
(let [f '.startsWith] (f "abab" "a"))
it is evaluated to "a" instead of 'true'. Could someone please explain me this surprising result?
Actually, the real code, I want to make work is the following.
(defn set-up-bean! [bean functions-and-parameters]
(doseq [[f p] functions-and-parameters]
(f bean p))
(.init bean))
What I want to achieve is, to make the following two function calls do the same thing.
(set-up-bean! bean [['.setMember "a"]])
and
(do
(.setMember bean "a")
(.init bean))
One conventional approach is to use an anonymous function
(let [f (fn [a b] (.startsWith ^String a ^String b))] (f "abab" "a"))
...as this lets you type-hint parameters as-needed. You might also consider memfn:
(let [f (memfn startsWith String)] (f "abab" "a"))
In any event -- dot notation is syntactical sugar for interop, rather than providing real callable functions.
Related
Here's a working minimal example showing how Clojure can handle non-namespaced symbols:
(defmacro simple-macro [s]
(name `~s))
(str "And the answer is "
(simple-macro v1))
Now I'd like to do something more complicated. Inspired by this example:
(defn typical-closure []
(let [names (atom [])]
(fn [arg] (swap! names conj arg) #names)))
(def Q (typical-closure))
(Q 1)
(Q 2)
;; [1 2]
I now want to define a similar closure to take the names of undefined variables.
(defn take-names-fun []
(let [names (atom [])]
#((swap! names conj (simple-macro %)) (deref names))))
(def P (take-names-fun))
(P v1)
But this doesn't work as hoped; I get the error:
Unable to resolve symbol: v1 in this context
Is there a way to fix this so that we can add the name "v1" to the list of names defined above?
I tried using a macro instead (inspired by a syntax trick on page 21 of "Mastering Clojure Macros")... but this answer on ask.clojure.org says it doesn't make sense to define a closure over an atom in a macro.
(defmacro take-names-macro []
(let [names (atom [])]
`(fn [~'x] (swap! ~names conj (simple-macro ~'x)) (deref ~names))))
(def R (take-names-macro))
And indeed, I get another error here:
Can't embed object in code, maybe print-dup not defined:
However, there is no such restriction for using atoms inside defn. Maybe at the end of the day I need to put my symbols in a namespace...?
Not quite sure what it is that you're ultimately trying to accomplish.
But, since P is a function, it will always evaluate its arguments. So, if you pass it an undefined symbol, you'll get the error you got. Instead, you have to create a macro so that you can quote the undefined symbol (to stop the evaluation of the argument) and then pass that to P. Here is an example that does that.
user> (defn take-names-fun []
(let [names (atom [])]
(fn [arg] (swap! names conj (name arg)))))
#'user/take-names-fun
user> (def P (take-names-fun))
#'user/P
user> (defmacro PM [s] `(P (quote ~s)))
#'user/PM
user> (PM v1)
["v1"]
user> (PM v2)
["v1" "v2"]
user>
You might find the article on Evaluation in Clojure helpful.
#dorab's answer is nice.
But you could also tell yourself: "When entering undefined variables into a function, I have to quote them to avoid evaluation of them!"
So, after:
(defn typical-closure []
(let [names (atom [])]
(fn [arg] (swap! names conj arg) #names)))
(def Q (typical-closure))
Do:
user=> (Q 'v1)
[v1]
user=> (Q 'v2)
[v1 v2]
user=> (Q 3)
[v1 v2 3]
user=> (Q 'v4)
[v1 v2 3 v4]
user=>
In this way you don't need the macro and you can alternate between evaluated and not-evaluated arguments (undefined symbols).
So with the way fn's are written in clojure there is unfortunately no way to get the name of the var being passed as a param from within the fn body.. Someone with more experience with the clojure src may be able to explain better why that is, my initial guess would be that it has something to do with keeping thread local scopes isolated and lazy.
But there's absolutely nothing stopping you from writing a macro that wraps other macros using your closure idea!
Here's an example of how something like that may be written:
https://stackoverflow.com/a/11857444
I am programming something that doesn't have side-effects, but my code is not very readable.
Consider the following piece of code:
(let [csv_data (if header_row (cons header_row data_rows) data_rows)]
)
I'm trying to use csv_data in a block of code. What is a clean way of conditioning on the presence of a header_row? I've looked at if-let, but couldn't see how that could help here.
I have run into similar situations with functional for-loops as well where I'm binding the result to a local variable, and the code looks like a pile of expressions.
Do I really have to create a separate helper function in so many cases?
What am I missing here?
Use the cond->> macro
(let [csv_data (cond->> data_rows
header_row (cons header-row)]
)
It works like the regular ->> macro, but before each threading form a test expression has to be placed that determines whether the threading form will be used.
There is also cond->. Read more about threading macros here: Official threading macros guide
First, don't use underscore, prefer dashes.
Second, there is nothing wrong with a little helper function; after all, this seems to be a requirement for handling your particular data format.
Third, if you can change your data so that you can skip those decisions and have a uniform representation for all corner cases, this is even better. A header row contains a different kind of data (column names?), so you might prefer to keep them separate:
(let [csv {:header header :rows rows}]
...)
Or maybe at some point you could have "headers" and "rows" be of the same type: sequences of rows. Then you can concat them directly.
The ensure-x idiom is a very common way to normalize your data:
(defn ensure-list [data]
(and data (list data)))
For example:
user=> (ensure-list "something")
("something")
user=> (ensure-list ())
(())
user=> (ensure-list nil)
nil
And thus:
(let [csv (concat (ensure-list header) rows)]
...)
i would propose an utility macro. Something like this:
(defmacro update-when [check val-to-update f & params]
`(if-let [x# ~check]
(~f x# ~val-to-update ~#params)
~val-to-update))
user> (let [header-row :header
data-rows [:data1 :data2]]
(let [csv-data (update-when header-row data-rows cons)]
csv-data))
;;=> (:header :data1 :data2)
user> (let [header-row nil
data-rows [:data1 :data2]]
(let [csv-data (update-when header-row data-rows cons)]
csv-data))
;;=> [:data1 :data2]
it is quite universal, and lets you fulfill more complex tasks then just simple consing. Like for example you want to reverse some coll if check is trueish, and concat another list...
user> (let [header-row :header
data-rows [:data1 :data2]]
(let [csv-data (update-when header-row data-rows
(fn [h d & params] (apply concat (reverse d) params))
[1 2 3] ['a 'b 'c])]
csv-data))
;;=> (:data2 :data1 1 2 3 a b c)
update
as noticed by #amalloy , this macro should be a function:
(defn update-when [check val-to-update f & params]
(if check
(apply f check val-to-update params)
val-to-update))
After thinking about the "cost" of a one-line helper function in the namespace I've came up with a local function instead:
(let [merge_header_fn (fn [header_row data_rows]
(if header_row
(cons header_row data_rows)
data_rows))
csv_data (merge_header_fn header_row data_rows) ]
...
<use csv_data>
...
)
Unless someone can suggest a more elegant way of handling this, I will keep this as an answer.
I've generated a seq of arg lists, e.g.:
[[a b c]
[d e f]
[g h i]]
... such that (map (partial apply f) that-seq) should produce a list of the same result. I want to check if all of these indeed produce that same result. Normally, you'd use the are macro for something like this, but I don't have a literal bunch of exprs to test against: I have a seq. So, I guess I want the "equivalent" of (apply are ...). As far as I can tell, my options are:
write a macro
Use every? true?, giving up on useful error messages.
Are there any better ways to do this?
Use this for more accurate reporting
(testing "blake2b defaults are accurate"
(doseq [args-variation blake2b-empty-args-variations]
(is (= (seq empty-string-digest)
(seq (blake2b args-variation)))
(str "Args variation: " (seq args-variation)))))
FYI, for now, I've gone with:
(testing "blake2b defaults are accurate"
(let [results (map #(apply blake2b %) blake2b-empty-args-variations)]
(is (every? (partial array-eq empty-string-digest) results))))
Leonardo Borges has put together a fantastic presentation on Monads in Clojure. In it he describes the reader monad in Clojure using the following code:
;; Reader Monad
(def reader-m
{:return (fn [a]
(fn [_] a))
:bind (fn [m k]
(fn [r]
((k (m r)) r)))})
(defn ask [] identity)
(defn asks [f]
(fn [env]
(f env)))
(defn connect-to-db []
(do-m reader-m
[db-uri (asks :db-uri)]
(prn (format "Connected to db at %s" db-uri))))
(defn connect-to-api []
(do-m reader-m
[api-key (asks :api-key)
env (ask)]
(prn (format "Connected to api with key %s" api-key))))
(defn run-app []
(do-m reader-m
[_ (connect-to-db)
_ (connect-to-api)]
(prn "Done.")))
((run-app) {:db-uri "user:passwd#host/dbname" :api-key "AF167"})
;; "Connected to db at user:passwd#host/dbname"
;; "Connected to api with key AF167"
;; "Done."
The benefit of this is that you're reading values from the environment in a purely functional way.
But this approach looks very similar to the partial function in Clojure. Consider the following code:
user=> (def hundred-times (partial * 100))
#'user/hundred-times
user=> (hundred-times 5)
500
user=> (hundred-times 4 5 6)
12000
My question is: What is the difference between the reader monad and a partial function in Clojure?
The reader monad is a set of rules we can apply to cleanly compose readers. You could use partial to make a reader, but it doesn't really give us a way to put them together.
For example, say you wanted a reader that doubled the value it read. You might use partial to define it:
(def doubler
(partial * 2))
You might also want a reader that added one to whatever value it read:
(def plus-oner
(partial + 1))
Now, suppose you wanted to combine these guys in a single reader that adds their results. You'll probably end up with something like this:
(defn super-reader
[env]
(let [x (doubler env)
y (plus-oner env)]
(+ x y)))
Notice that you have to explicitly forward the environment to those readers. Total bummer, right? Using the rules provided by the reader monad, we can get much cleaner composition:
(def super-reader
(do-m reader-m
[x doubler
y plus-oner]
(+ x y)))
You can use partial to "do" the reader monad. Turn let into a do-reader by doing syntactic transformation on let with partial application of the environment on the right-hand side.
(defmacro do-reader
[bindings & body]
(let [env (gensym 'env_)
partial-env (fn [f] (list `(partial ~f ~env)))
bindings* (mapv #(%1 %2) (cycle [identity partial-env]) bindings)]
`(fn [~env] (let ~bindings* ~#body))))
Then do-reader is to the reader monad as let is to the identity monad (relationship discussed here).
Indeed, since only the "do notation" application of the reader monad was used in Beyamor's answer to your reader monad in Clojure question, the same examples will work as is with m/domonad Reader replaced with do-reader as above.
But, for the sake of variety I'll modify the first example to be just a bit more Clojurish with the environment map and take advantage of the fact that keywords can act as functions.
(def sample-bindings {:count 3, :one 1, :b 2})
(def ask identity)
(def calc-is-count-correct?
(do-reader [binding-count :count
bindings ask]
(= binding-count (count bindings))))
(calc-is-count-correct? sample-bindings)
;=> true
Second example
(defn local [modify reader] (comp reader modify))
(def calc-content-len
(do-reader [content ask]
(count content)))
(def calc-modified-content-len
(local #(str "Prefix " %) calc-content-len))
(calc-content-len "12345")
;=> 5
(calc-modified-content-len "12345")
;=> 12
Note since we built on let, we still have destructing at our disposal. Silly example:
(def example1
(do-reader [a :foo
b :bar]
(+ a b)))
(example1 {:foo 2 :bar 40 :baz 800})
;=> 42
(def example2
(do-reader [[a b] (juxt :foo :bar)]
(+ a b)))
(example2 {:foo 2 :bar 40 :baz 800})
;=> 42
So, in Clojure, you can indeed get the functionality of the do notation of reader monad without introducing monads proper. Analagous to doing a ReaderT transform on the identity monad, we can do a syntactic transformation on let. As you surmised, one way to do so is with partial application of the environment.
Perhaps more Clojurish would be to define a reader-> and reader->> to syntactically insert the environment as the second and last argument respectively. I'll leave those as an exercise for the reader for now.
One take-away from this is that while types and type-classes in Haskell have a lot of benefits and the monad structure is a useful idea, not having the constraints of the type system in Clojure allows us to treat data and programs in the same way and do arbitrary transformations to our programs to implement syntax and control as we see fit.
Functions with closures seem to break when used with eval.
(eval {:fn (let [x "foo"] (fn [] "x"))})
;=> {:fn #<user$eval14716$fn__14717 user$eval14716$fn__14717#1ddd735>}
(eval {:fn (let [x "foo"] (fn [] x))})
;=> IllegalArgumentException No matching ctor found for class user$eval14740$fn__14741
; clojure.lang.Reflector.invokeConstructor (Reflector.java:166)
I don't really know enough about Clojure (or closure) to know if this is a bug or something which intentionally isn't allowed - can anyone shed some light on this?
Edit: Just to be clear, I'm talking specifically about the way eval handles function objects. AFAIK eval is actually designed to work with java objects, including functions; the example given on the clojure website - (eval (list + 1 2 3)) - passes a function object into eval.
Cloure's eval does not perfectly support function objects. It's not necessarily even closures that cause the problem.
For example, this did not work in Clojure 1.0.0:
(eval {:fn (fn [x] x)})
But this did:
(eval (fn [x] x))
The first example got fixed. The following also works:
(eval (let [x "foo"] (fn [] x)))
But the following still does not work:
(eval {:fn (let [x "foo"] (fn [] x))})
I can't pin it down to a single line in the compiler, but it's something about how literal objects (clojure.lang.Compiler$ObjExpr I think) get handled by eval in different contexts: e.g. at the "top" of an expression versus inside another data structure.
In general, I think, you cannot rely on being able to eval function objects in Clojure, regardless of whether or not they are closures. It happens to work for some simple examples, mostly to simplify the explanation of things like (eval (list + 1 2)). Macros should always return literal source code as data structures, not compiled functions.
Try quoting your argument to eval:
(eval '{:fn (let [x "foo"] (fn [] x))})
;=> {:fn #<user$eval345$fn__346 user$eval345$fn__346#17b6dd83>}
((:fn *1))
;=> "foo"
This is not a bug. The equivalent of (eval (list + 1 2 3)) with a "closure" is (eval (list fn [] "foo")), not (eval (fn [] "foo")).
And (eval (list fn [] "foo")) => Can't take value of a macro: #'clojure.core/fn, again indicating that you're not supposed to do things like that (and there's no need for it anyway).