boost set name from string [duplicate] - c++

Is it possible to give a name to a boost::thread so that the debuggers tables and the crash logs can be more readable? How?

You would need to access the underlying thread primitive and assign a name in a system dependent manner. Debugging and crash logs are inherently system dependent and boost::thread is more about non-system-dependency, i.e. about portability.
It seems ( http://www.boost.org/doc/libs/1_43_0/doc/html/thread.html ) that there is no documented way to access underlying system resources for a boost thread. (But I have never used it myself so I may miss something.)
Edit: (As David writes in the comment) http://www.boost.org/doc/libs/1_43_0/doc/html/thread/thread_management.html#thread.thread_management.thread.nativehandle

I'm using boost 1.50.0 on Win32 + VS2010 and thread::native_handle contains number which I didn't manage to pair to anything in system. On the other hand, the thread::get_id() method returns directly windows thread ID in form of a hexadecimal string. Notice that the value returned is platform specific, though. The following code does work under Boost 1.50.0 + Win32 + VS2010. Parts of code reused from msdn
const DWORD MS_VC_EXCEPTION = 0x406D1388;
#pragma pack(push, 8)
typedef struct THREADNAME_INFO {
DWORD dwType; // Must be 0x1000.
LPCSTR szName; // Pointer to name (in user addr space).
DWORD dwThreadID; // Thread ID (-1=caller thread).
DWORD dwFlags; // Reserved for future use, must be zero.
} THREADNAME_INFO;
#pragma pack(pop)
void _SetThreadName(DWORD threadId, const char* threadName) {
THREADNAME_INFO info;
info.dwType = 0x1000;
info.szName = threadName;
info.dwThreadID = threadId;
info.dwFlags = 0;
__try {
RaiseException( MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(ULONG_PTR), (ULONG_PTR*)&info );
}
__except(EXCEPTION_EXECUTE_HANDLER) {
}
}
void SetThreadName(boost::thread::id threadId, std::string threadName) {
// convert string to char*
const char* cchar = threadName.c_str();
// convert HEX string to DWORD
unsigned int dwThreadId;
std::stringstream ss;
ss << std::hex << threadId;
ss >> dwThreadId;
// set thread name
_SetThreadName((DWORD)dwThreadId, cchar);
}
Call like this:
boost::thread* thr = new boost::thread(boost::bind(...));
SetThreadName(thr->get_id(), "MyName");

There is a proposal to add this to boost which has had a slow start:
https://github.com/boostorg/thread/issues/84

Related

Stackwalk get Function Name, Line number and File Name, in debug

Quick summary
In a nut shell i wish to access the debug information regarding the stack, preferably for passing information to Logger.
I wish for the information to tell me the Function Name, Line Number and File Name.
I've got the symbols and i'm attempting to access the junk values in them and turn them in to English. However nothing seems to work.
I have commented the code for people to read and see if they can help me effectively walk the stack to pull the information out i need.
So far i can point out SymGetModuleBase() does not return a positive number only 0, according to MSDN it fails if returns 0. Which is correct as it returns a memory address.
SymGetSymFromAddr() fails to return true, which i'm assuming gets the name of the stack frame/function
SymGetLineFromAddr() goes on to fail as well and doesn't return the line number location in the file and also doesn't gather the file path.
I believe this is due to the process parameter being invalid. I will elaborate below.
Attempts to locate and fix the problem
I have read the MSDN documentation repeatedly and feel like i'm banging my head off the wall, i've done pretty much what it said and i feel like it's just not working.
However i have noticed SymInitialize() should be called prior to attempting this, which i do call. This changed the GetLastError() value from 6 ERROR_INVALID_HANDLE to 0 ERROR_SUCCESS. Yet SymGetModuleBase() still returns 0 no matter if SymInitialize() although GetLastError() reports different error codes depending on SymInitialize() use. It should return a valid virtual memory address this is where i think the main problem lies in the code.
HANDLE process = ::GetCurrentProcess(); this line in the code below returns 0xffffffffffffffff very suspect if you ask me. This should return a pseudo virtual memory address but it to me anyway looks like a false result. This happens every time i run the program which leads me to think ::GetCurrentProcess() this is either got a bug, or doesn't work somehow. According to MSDN this is the correct a up to date way of getting the current process and i don't know how to get a valid HANDLE to a the process another way. So i can't pass the first parameter in SymGetModuleBase() the correct process, although i maybe wrong.
Full code for the function
void Logger::WriteStackFrames(log::TextColor tc)
{
// Initalize some memory
DWORD machine = IMAGE_FILE_MACHINE_AMD64;
HANDLE process = ::GetCurrentProcess();
HANDLE thread = GetCurrentThread();
// Initalize more memory
CONTEXT context;
STACKFRAME stack_frame;
// Set some memory
memset(&context, 0, sizeof(CONTEXT));
memset(&stack_frame, 0, sizeof(STACKFRAME));
// Capture the context
RtlCaptureContext(&context);
// Initalize a few things here and there
stack_frame.AddrPC.Offset = context.Rip;
stack_frame.AddrPC.Mode = AddrModeFlat;
stack_frame.AddrStack.Offset = context.Rsp;
stack_frame.AddrStack.Mode = AddrModeFlat;
stack_frame.AddrFrame.Offset = context.Rbp;
stack_frame.AddrFrame.Mode = AddrModeFlat;
// Randomly saw this was supposed to be called prior to StackWalk so tried it
if (!SymInitialize(process, 0, false))
{
wprintf(L"SymInitialize unable to find process!! Error: %d\r\n", GetLastError());
}
for (ULONG frame = 0; ; frame++)
{
// Set text color
SetTextColor(tc);
// Check for frames
BOOL result = StackWalk(machine, process, thread, &stack_frame, &context, 0,
SymFunctionTableAccess, SymGetModuleBase, 0);
// Get memory address of base module. Returns 0 although when SymInitialize is called before it the GetLastError returns 0 without return 6
DWORD64 module_base = SymGetModuleBase(process, stack_frame.AddrPC.Offset);
if (module_base == 0) {
wprintf(L"SymGetModuleBase is unable to get virutal address!! Error: %d\r\n", GetLastError());
}
// Initalize more memory
MODULEINFO module_info;
SecureZeroMemory(&module_info, sizeof(MODULEINFO));
// Get the file name of the file containing the function
TCHAR module_buffer[log::MaxPath];
DWORD mod_file = GetModuleFileName((HINSTANCE)module_base, module_buffer, log::MaxPath);
if ((module_base != 0) && (mod_file != 0))
{
module_info.module_name = module_buffer;
}
// Initalize more memory and clear it out
PIMAGEHLP_SYMBOL64 symbol;
IMAGEHLP_LINE64 line_num;
SecureZeroMemory(&symbol, sizeof(PIMAGEHLP_SYMBOL64));
SecureZeroMemory(&symbol, sizeof(IMAGEHLP_LINE64));
// Get the symbol
TCHAR symbol_buffer[log::MaxPath];
symbol = (PIMAGEHLP_SYMBOL)symbol_buffer;
symbol->SizeOfStruct = (sizeof(IMAGEHLP_SYMBOL) + log::MaxPath);
symbol->MaxNameLength = 254;
// Attempt to get name from symbol (fails)
LPSTR name_buffer = new CHAR[254];
if (SymGetSymFromAddr(process, stack_frame.AddrPC.Offset, 0, symbol))
{
name_buffer = symbol->Name;
}
// Set the size of something
DWORD offset = 0;
line_num.SizeOfStruct = sizeof(IMAGEHLP_LINE64);
// Attempt to get the line and file name of where the symbol is
if (SymGetLineFromAddr(process, stack_frame.AddrPC.Offset, &offset, &line_num))
{
module_info.line = line_num.LineNumber;
module_info.file = line_num.FileName;
}
// Initalize memory
LPWSTR console_message = new TCHAR[log::MaxMsgLength];
LPWSTR file_message = new TCHAR[log::MaxMsgLength];
// Set some strings
swprintf(console_message, log::MaxMsgLength, L">> Frame %02lu: called from: %016X Stack: %016X Frame: %016X Address return: %016X\r\n",
frame, stack_frame.AddrPC.Offset, stack_frame.AddrStack.Offset, stack_frame.AddrFrame.Offset, stack_frame.AddrReturn.Offset);
swprintf(file_message, log::MaxMsgLength, L"Frame %02lu: called from: %016X Stack: %016X Frame: %016X Address return: %016X\r\n",
frame, stack_frame.AddrPC.Offset, stack_frame.AddrStack.Offset, stack_frame.AddrFrame.Offset, stack_frame.AddrReturn.Offset);
/* When the symbol can yield the name, line and file name the above strings
will also include that information */
// To go here . . .
// Write some strings
wprintf(console_message);
WriteAsync(file_message);
// Delete some memory
if (console_message) {
delete[] console_message; console_message = nullptr;
}
if (file_message) {
delete[] file_message; file_message = nullptr;
}
// If nothing else to do break loop
if (!result) {
break;
}
}
}
What i hope to achieve
Although i realize this will only work in debug mode that is fine, and i know i could write a macro using the __LINE__ __FUNCTION__ __FILE__ macros but that isn't what i'm looking for.
The results should be a wind up from the bottom stack showing the memory addresses of the calling PC, stack and frame. This works.
However it should also show me which the Name of the function, the Line number and the File path. This doesn't work.
FYI: I realize i need to add the code in to the generate the string and output it, but the code isn't capable of getting the information for the strings so that isn't coded in yet.
Please if anyone can help me, it would be fantastic all the code is focused around the "DbgHelp.h" windows file and most information is available on MSDN. So for the long question but i felt i should provide everything i know.
::GetCurrentProcess() = 0xffffffffffffffff
is not suspicious.
I tried a few variations on your code pulling bits from here and there - in the end I could not get it to work as I was using clang/mingw and it was not generating .pdb files. However, maybe the code will work for you as you are using MSVC. Anyway, here it is, in case it helps
I also noticed you hard coded machine type to AMD - I assume that is correct for you, but below I have an ifdef I found that sets it for other archs.
#include <windows.h>
#include <excpt.h>
#include <imagehlp.h>
#include <binutils/bfd.h>
#include <psapi.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <stdbool.h>
#include <psapi.h>
#include <dbghelp.h>
#define MAX_SYMBOL_LEN 1024
typedef struct CallstackEntry
{
DWORD64 offset; // if 0, we have no valid entry
CHAR name[MAX_SYMBOL_LEN];
CHAR undName[MAX_SYMBOL_LEN];
CHAR undFullName[MAX_SYMBOL_LEN];
DWORD64 offsetFromSmybol;
DWORD offsetFromLine;
DWORD lineNumber;
CHAR lineFileName[MAX_SYMBOL_LEN];
DWORD symType;
LPCSTR symTypeString;
CHAR moduleName[MAX_SYMBOL_LEN];
DWORD64 baseOfImage;
CHAR loadedImageName[MAX_SYMBOL_LEN];
} CallstackEntry;
typedef enum CallstackEntryType
{
firstEntry,
nextEntry,
lastEntry
} CallstackEntryType;
void _backtrace (void)
{
HANDLE process = ::GetCurrentProcess();
HANDLE thread = GetCurrentThread();
if (!SymInitialize(process, 0, true)) {
wprintf(L"SymInitialize unable to find process!! Error: %d\r\n",~
GetLastError());
}
DWORD symOptions = SymGetOptions();
symOptions |= SYMOPT_LOAD_LINES;
symOptions |= SYMOPT_FAIL_CRITICAL_ERRORS;
symOptions = SymSetOptions(symOptions);
char szSearchPath[MAX_SYMBOL_LEN] = {0};
SymGetSearchPath(process, szSearchPath, MAX_SYMBOL_LEN);
char szUserName[MAX_SYMBOL_LEN] = {0};
DWORD dwSize = MAX_SYMBOL_LEN;
GetUserNameA(szUserName, &dwSize);
CHAR search_path_debug[MAX_SYMBOL_LEN];
size_t maxLen = MAX_SYMBOL_LEN;
#if _MSC_VER >= 1400
maxLen = _TRUNCATE;
#endif
_snprintf_s(search_path_debug, maxLen,~
"SymInit: Symbol-SearchPath: '%s', symOptions: %d, UserName: '%s'\n",
szSearchPath, symOptions, szUserName);
search_path_debug[MAX_SYMBOL_LEN - 1] = 0;
printf(search_path_debug);
// Initalize more memory
CONTEXT context;
memset(&context, 0, sizeof(CONTEXT));
context.ContextFlags = CONTEXT_FULL;
RtlCaptureContext(&context);
// Initalize a few things here and there
STACKFRAME stack;
memset(&stack, 0, sizeof(STACKFRAME));
stack.AddrPC.Offset = context.Rip;
stack.AddrPC.Mode = AddrModeFlat;
stack.AddrStack.Offset = context.Rsp;
stack.AddrStack.Mode = AddrModeFlat;
stack.AddrFrame.Offset = context.Rbp;
stack.AddrFrame.Mode = AddrModeFlat;
#ifdef _M_IX86
auto machine = IMAGE_FILE_MACHINE_I386;
#elif _M_X64
auto machine = IMAGE_FILE_MACHINE_AMD64;
#elif _M_IA64
auto machine = IMAGE_FILE_MACHINE_IA64;
#else
#error "platform not supported!"
#endif
for (ULONG frame = 0; ; frame++) {
BOOL result = StackWalk(machine,~
process,~
thread,~
&stack,
&context,
0,
SymFunctionTableAccess,~
SymGetModuleBase,~
0);
CallstackEntry csEntry;
csEntry.offset = stack.AddrPC.Offset;
csEntry.name[0] = 0;
csEntry.undName[0] = 0;
csEntry.undFullName[0] = 0;
csEntry.offsetFromSmybol = 0;
csEntry.offsetFromLine = 0;
csEntry.lineFileName[0] = 0;
csEntry.lineNumber = 0;
csEntry.loadedImageName[0] = 0;
csEntry.moduleName[0] = 0;
IMAGEHLP_SYMBOL64 symbol {};
symbol.SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
symbol.MaxNameLength = MAX_SYMBOL_LEN;
// Initalize more memory and clear it out
if (SymGetSymFromAddr64(process,~
stack.AddrPC.Offset,
&csEntry.offsetFromSmybol,~
&symbol)) {
}
IMAGEHLP_LINE64 line {};
line.SizeOfStruct = sizeof(line);
if (SymGetLineFromAddr64(process,~
stack.AddrPC.Offset,
&csEntry.offsetFromLine,~
&line)) {
}
printf("Frame %lu:\n"
" Symbol name: %s\n"
" PC address: 0x%08LX\n"
" Stack address: 0x%08LX\n"
" Frame address: 0x%08LX\n"
"\n",
frame,
symbol.Name,
(ULONG64)stack.AddrPC.Offset,
(ULONG64)stack.AddrStack.Offset,
(ULONG64)stack.AddrFrame.Offset
);
// If nothing else to do break loop
if (!result) {
break;
}
}
}

Windows program entry point using EnumProcessModules returns unexpected value

I am running a simple app and trying to read a specific offset within it's memory using Window's PSAPI.
when I run my debugger, I get the real value of the memory address, and the relative one to my ".exe" entry point.
yet, when I run the following code, the base module I get as an entry point together with my offset yields a different address(it's wrong, and off by a few (hexa)demical points).
what might be the problem?
ReadMemory is a template for ReadProcessMemory
HWND WINDOW_HANDLE;
HANDLE PROC_HANDLE;
DWORD PROC_ID;
DWORD address;
SIZE_T bytesRead;
int InitReadMemory(const char* windowClass,const char* caption, DWORD addressOffset)
{
DWORD cbNeeded;
DWORD dwdResult;
HMODULE mainModule;
BOOL enumResult;
//Get the window handle
WINDOW_HANDLE = FindWindow(windowClass, NULL);
if(WINDOW_HANDLE == NULL)
{
//Window was not foud
return 10;
}
//Get the process ID
dwdResult = GetWindowThreadProcessId(WINDOW_HANDLE, &PROC_ID);
if(dwdResult==0)
{
//Getting Process ID failed
return 20;
}
//Open the process
PROC_HANDLE = OpenProcess(PROCESS_ALL_ACCESS, false, PROC_ID);
if(PROC_HANDLE==NULL)
{
//Process failed to open
return 30;
}
/*
*Get the Main Module-
*first entry in the returned HMODULE array from
*EnumProcessModules
*/
enumResult = EnumProcessModules(PROC_HANDLE, &mainModule, sizeof(HMODULE), &cbNeeded);
if(enumResult != 0)
{
//Failed enumerating process modules
return 40;
}
//offset the requested memory address from the application's base address
address = (DWORD)((UINT_PTR)mainModule + addressOffset);
#ifdef DEBUG
using namespace std;
char filenameBuffer[64]="";
string number;
stringstream stristream;
stristream << address;
stristream >> number;
cout << number << "\r\n" << endl;
GetModuleFileNameEx(PROC_HANDLE, mainModule , filenameBuffer, 256);
cout << (byte)ReadMemory<byte>() << "\r\n" << number << "\r\n" << filenameBuffer << endl;
system("PAUSE");
#endif
return 1;}
thank you in advance :)
P.S. I'm mostly just looking for pointers ...
bah dum tsss
Update:
apparently, checking for GetLastError value, EnumProcessModules prompts a 299 error code after it is done. and debugging shows that mainModule holds nothing... yet EnumProcessModules returns 0 as in "no errors".
yesterday, I managed to get it AND get GetModuleFileName to work propery(same code, only added GetLastError).
Apparently, my problem was that I was running the tests with the snippet
enumResult = EnumProcessModules(PROC_HANDLE, &mainModule, sizeof(HMODULE), &cbNeeded)
if(enumResult != 0)
{
//Failed enumerating process modules
return 40;
}
and a successful run of EnumProcessModules yields a nonzero result! (thus causing me some confusion and faulted my whole debugging process)
after I figured this detail out, I ran some old tests again and found out that my target process is 64 bit, while I was running a 32 bit application.
changed to 64bit and now it works like a charm

Getting Base Address not working

I need the base Address of the exe "tibia.exe". This is what I got so far but it doesn't work. It always returns 0.
What's wrong?
DWORD MainWindow::getBaseAddress(DWORD dwProcessIdentifier)
{
TCHAR lpszModuleName[] = {'t','i','b','i','a','.','e','x','e','\0'}; //tibia.exe
HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE,
dwProcessIdentifier);
DWORD dwModuleBaseAddress = 0;
if(hSnapshot != INVALID_HANDLE_VALUE)
{
MODULEENTRY32 ModuleEntry32;
ModuleEntry32.dwSize = sizeof(MODULEENTRY32);
if(Module32First(hSnapshot, &ModuleEntry32))
{
do
{
if( wcscmp(ModuleEntry32.szModule, lpszModuleName) == 0)
{
dwModuleBaseAddress = (DWORD)ModuleEntry32.modBaseAddr;
break;
}
}
while(Module32Next(hSnapshot, &ModuleEntry32));
}
CloseHandle(hSnapshot);
}
return dwModuleBaseAddress;
}
//Call it here
tibiaWindow = FindWindow( L"TibiaClient", NULL);
DWORD PID;
GetWindowThreadProcessId( tibiaWindow, &PID );
DWORD baseAddress = getBaseAddress( PID );
if( baseAddress == 0 )
return false ;
Perhaps it's just because I was using them before ToolHelp32 was available (at least on the NT-based operating systems), but I tend to use the PSAPI functions for this kind of task. Using them, the code would look like this:
#include <windows.h>
#include <string>
#include <psapi.h>
#include <iostream>
int main(int argc, char **argv) {
HANDLE process = GetCurrentProcess();
if (argc != 1)
process = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, false, atoi(argv[1]));
HMODULE handles[2048];
DWORD needed;
EnumProcessModules(process, handles, sizeof(handles), &needed);
for (int i = 0; i < needed / sizeof(handles[0]); i++) {
MODULEINFO info;
char name[1024];
GetModuleBaseName(process, handles[i], name, sizeof(name));
if (std::string(name).find(".exe") != std::string::npos) {
GetModuleInformation(process, handles[i], &info, sizeof(info));
std::cout << name << ": " << info.lpBaseOfDll << "\n";
break;
}
}
}
As it stands right now, this will let you enter a process ID on the command line, and show the load address of the first module it finds in that process with a name that includes ".exe". If you don't specify a process ID, it'll search through its own process (demos how the functions work, but otherwise pretty much useless).
Using either ToolHelp32 or PSAPI, you end up with a similar limitation: you need to compile this into a 64-bit executable for it to be able to "see" other 64-bit processes (i.e., when compiled as 32-bit code, they see only other 32-bit processes).
There are also some processes (e.g., CSRSS.exe) that neither will be able to open/enumerate successfully. As far as I know, the same processes will succeed/fail with PSAPI vs. ToolHelp32.
PSAPI does have one bit of clumsiness compared to ToolHelp32: dealing (well) with processes that have lots of modules is clumsy (at best). You call EnumProcessModules, and if you haven't given room for enough modules, the "Needed" parameter will be set to the space needed for the number of modules it contains. There's a race condition though: between the time that returns and the time you call EnumProcessModules again, the process could have loaded more DLLs, so that second call could fail the same way.
For the moment, I've just assumed that no process will use more than 2048 modules. To be really correct, you should have a while loop (or maybe a do/while loop) that starts with zero space, calls EnumProcessModules to find out how much space is needed, allocate that (perhaps with a little extra in case it loads more DLLs) and repeat until it succeeds.

how to get current process ID and machine name in C++

In C#, it is straightforward to get the current process ID and machine name:
int processID = Process.GetCurrentProcess().Id;
string machineName = Environment.MachineName;
How can I retrieve them in native C++?
As you commented the platform is Windows 7, the WINAPI provides GetCurrentProcessId() and GetComputerName().
Simple example for GetComputerName():
const int BUF_SIZE = MAX_COMPUTERNAME_LENGTH + 1;
char buf[BUF_SIZE] = "";
DWORD size = BUF_SIZE;
if (GetComputerNameA(buf, &size)) // Explicitly calling ANSI version.
{
std::string computer_name(buf, size);
}
else
{
// Handle failure.
}
getpid() && gethostname() - use man to learn all about them...
#ifdef _WIN32
return GetCurrentProcessId();
#else
return ::getpid();
#endif

Give a name to a boost thread?

Is it possible to give a name to a boost::thread so that the debuggers tables and the crash logs can be more readable? How?
You would need to access the underlying thread primitive and assign a name in a system dependent manner. Debugging and crash logs are inherently system dependent and boost::thread is more about non-system-dependency, i.e. about portability.
It seems ( http://www.boost.org/doc/libs/1_43_0/doc/html/thread.html ) that there is no documented way to access underlying system resources for a boost thread. (But I have never used it myself so I may miss something.)
Edit: (As David writes in the comment) http://www.boost.org/doc/libs/1_43_0/doc/html/thread/thread_management.html#thread.thread_management.thread.nativehandle
I'm using boost 1.50.0 on Win32 + VS2010 and thread::native_handle contains number which I didn't manage to pair to anything in system. On the other hand, the thread::get_id() method returns directly windows thread ID in form of a hexadecimal string. Notice that the value returned is platform specific, though. The following code does work under Boost 1.50.0 + Win32 + VS2010. Parts of code reused from msdn
const DWORD MS_VC_EXCEPTION = 0x406D1388;
#pragma pack(push, 8)
typedef struct THREADNAME_INFO {
DWORD dwType; // Must be 0x1000.
LPCSTR szName; // Pointer to name (in user addr space).
DWORD dwThreadID; // Thread ID (-1=caller thread).
DWORD dwFlags; // Reserved for future use, must be zero.
} THREADNAME_INFO;
#pragma pack(pop)
void _SetThreadName(DWORD threadId, const char* threadName) {
THREADNAME_INFO info;
info.dwType = 0x1000;
info.szName = threadName;
info.dwThreadID = threadId;
info.dwFlags = 0;
__try {
RaiseException( MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(ULONG_PTR), (ULONG_PTR*)&info );
}
__except(EXCEPTION_EXECUTE_HANDLER) {
}
}
void SetThreadName(boost::thread::id threadId, std::string threadName) {
// convert string to char*
const char* cchar = threadName.c_str();
// convert HEX string to DWORD
unsigned int dwThreadId;
std::stringstream ss;
ss << std::hex << threadId;
ss >> dwThreadId;
// set thread name
_SetThreadName((DWORD)dwThreadId, cchar);
}
Call like this:
boost::thread* thr = new boost::thread(boost::bind(...));
SetThreadName(thr->get_id(), "MyName");
There is a proposal to add this to boost which has had a slow start:
https://github.com/boostorg/thread/issues/84