I was playing with templates to detect different string literals and I came to following code (try it with C++20):
#include <iostream>
#include <type_traits>
template <typename T, std::enable_if_t<std::is_same_v<std::decay_t<T>, const char*>, int> = 0>
void print_str(T) {
std::cout << "char* print_str\n";
}
template <typename T, std::enable_if_t<std::is_same_v<std::decay_t<T>, const char8_t*>, int> = 0>
void print_str(T) {
std::cout << "char8_t* print_str\n";
}
template <typename T, std::enable_if_t<std::is_same_v<std::decay_t<T>, const wchar_t*>, int> = 0>
void print_str(T) {
std::cout << "wchar_t* print_str\n";
}
int main() {
auto a = "hello"; // prints "char* print_str"
print_str(a);
auto b = L"hello"; // prints "wchar_t* print_str"
print_str(b);
auto c = u8"hello"; // prints "char8_t* print_str"
print_str(c);
}
I use the fact that in C++20, the u8 prefix declares char8_t type. But here are my questions:
Even though u8 prefix is from C++11, it uses char8_t only starting C++20. So how I can detect UTF-8 strings which is prefixed with u8 between C++11 and C++20?
How I can change my templates to detect both for example const char* and char* which same function? I tried to use remove_const<> but it does not work because it won't remove const from const char*.
You can't detect char8_t in languages like C++17 that did not have it. So you have to have constexpr function that detects if it is UTF-8 by examining contents of the string. Such function makes sense with char8_t also. It is simple to construct illegal UTF-8 strings using char8_t. C++17 or less did not contain such functions.
Use or? std::is_same_v<std::decay_t<T>, const char*> || std::is_same_v<std::decay_t<T>, char*>
So how I can detect UTF-8 strings which is prefixed with u8 between C++11 and C++20?
Type of string doesn't ensure encoding.
const char* can be used for utf-8 but also for LATIN-1
In the same way const wchar* is not necessary utf-16.
There is some heuristic to detect encoding.
How I can change my templates to detect both for example const char* and char* which same function? I tried to use remove_const<> but it does not work because it won't remove const from const char*.
const char * != char* const.
You can remove const from the later to obtain char*
You might do
std::is_same_v<std::remove_const_t<std::remove_pointer_t<T>>, char> && std::is_pointer_v<T>
but simply change to:
void print_str(const char*) { std::cout << "char* print_str\n"; }
void print_str(const char8_t*) { std::cout << "char8_t* print_str\n"; }
void print_str(const wchar_t*) { std::cout << "wchar_t* print_str\n"; }
If you insist with template:
template <typename T>
void print_str(const T*) {
if constexpr (std::is_same_v<char, T>) {
std::cout << "char* print_str\n";
} else if constexpr (std::is_same_v<char8_t, T>) {
std::cout << "char8_t* print_str\n";
} else if constexpr (std::is_same_v<wchar_t, T>) {
std::cout << "wchar_t* print_str\n";
}
}
I've got a utility called choose_literal which chooses a literal string encoded as char*, wchar_*, char8_t*, char16_t*, char32_t* depending on the desired type (the choice).
It looks like this:
template <typename T>
constexpr auto choose_literal(const char * psz, const wchar_t * wsz, const CHAR8_T * u8z, const char16_t * u16z, const char32_t * u32z) {
if constexpr (std::is_same_v<T, char>)
return psz;
if constexpr (std::is_same_v<T, wchar_t>)
return wsz;
#ifdef char8_t
if constexpr (std::is_same_v<T, char8_t>)
return u8z;
#endif
if constexpr (std::is_same_v<T, char16_t>)
return u16z;
if constexpr (std::is_same_v<T, char32_t>)
return u32z;
}
I supply a little preprocessor macro to make this work w/o having to type each of those string encodings manually:
// generates the appropriate character literal using preprocessor voodoo
// usage: LITERAL(char-type, "literal text")
#define LITERAL(T,x) details::choose_literal<T>(x, L##x, u8##x, u##x, U##x)
This of course only works for literal strings which can be encoded in the target format by the compiler - but something like an empty string can be, as can ASCII characters (i.e. a-z, 0-9, etc., which have representations in all of those encodings).
e.g. here's a trivial bit of code that will return the correct empty-string given a valid character type 'T':
template <typename T>
constexpr const T * GetBlank() {
return LITERAL(T, "");
}
This is great as far as it goes, and it works well enough in my code.
What I'd like to do is to refactor this such that I get back the character-array including its size, as if I'd written something like:
const char blank[] = "";
or
const wchar_t blank[] = L"";
Which allows the compiler to know the length of the string-literal, not just its address.
My choose_literal<T>(str) returns only the const T * rather than the const T (&)[size] which would be ideal.
In general I'd love to be able to pass such entities around intact - rather than have them devolve into just a pointer.
But in this specific case, is there a technique you might point me towards that allows me to declare a struct with a data-member for the desired encoding which then also knows its array-length?
A little bit of constexpr recursion magic allows you to return a string_view of the appropriate type.
#include <string_view>
#include <type_traits>
#include <iostream>
template <typename T, class Choice, std::size_t N, class...Rest>
constexpr auto choose_literal(Choice(& choice)[N], Rest&...rest)
{
using const_char_type = Choice;
using char_type = std::remove_const_t<const_char_type>;
if constexpr (std::is_same_v<T, char_type>)
{
constexpr auto extent = N;
return std::basic_string_view<char_type>(choice, extent - 1);
}
else
{
return choose_literal<T>(rest...);
}
}
int main()
{
auto clit = choose_literal<char>("hello", L"hello");
std::cout << clit;
auto wclit = choose_literal<wchar_t>("hello", L"hello");
std::wcout << wclit;
}
https://godbolt.org/z/4roZ_O
If it were me, I'd probably want to wrap this and other functions into a constexpr class which offers common services like printing the literal in the correct form depending on the stream type, and creating the correct kind of string from the literal.
For example:
#include <string_view>
#include <type_traits>
#include <iostream>
#include <tuple>
template <typename T, class Choice, std::size_t N, class...Rest>
constexpr auto choose_literal(Choice(& choice)[N], Rest&...rest)
{
using const_char_type = Choice;
using char_type = std::remove_const_t<const_char_type>;
if constexpr (std::is_same_v<T, char_type>)
{
constexpr auto extent = N;
return std::basic_string_view<char_type>(choice, extent - 1);
}
else
{
return choose_literal<T>(rest...);
}
}
template<class...Choices>
struct literal_chooser
{
constexpr literal_chooser(Choices&...choices)
: choices_(choices...)
{}
template<class T>
constexpr auto choose()
{
auto invoker = [](auto&...choices)
{
return choose_literal<T>(choices...);
};
return std::apply(invoker, choices_);
}
std::tuple<Choices&...> choices_;
};
template<class Char, class...Choices>
std::basic_ostream<Char>& operator<<(std::basic_ostream<Char>& os, literal_chooser<Choices...> chooser)
{
return os << chooser.template choose<Char>();
}
template<class Char, class...Choices>
std::basic_string<Char> to_string(literal_chooser<Choices...> chooser)
{
auto sview = chooser.template choose<Char>();
return std::basic_string<Char>(sview.data(), sview.size());
}
int main()
{
auto lit = literal_chooser("hello", L"hello");
std::cout << lit << std::endl;
std::wcout << lit << std::endl;
auto s1 = to_string<char>(lit);
auto s2 = to_string<wchar_t>(lit);
std::cout << s1 << std::endl;
std::wcout << s2 << std::endl;
}
The use of the reference argument type Choices& is important. C++ string literals are references to arrays of const Char. Passing by value would result in the literal being decayed into a pointer, which would lose information about the extent of the array.
we can add other services, written in terms of the literal_chooser:
template<class Char, class...Choices>
constexpr std::size_t size(literal_chooser<Choices...> chooser)
{
auto sview = chooser.template choose<Char>();
return sview.size();
}
We're going to change the function so that it takes a const T (&)[size] for each input, and the return type is going to be decltype(auto). Using decltype(auto) prevents the return from decaying into a value, preserving things like references to arrays.
Updated function:
template <typename T, size_t N1, size_t N2, size_t N3, size_t N4>
constexpr decltype(auto) choose_literal(const char (&psz)[N1], const wchar_t (&wsz)[N2], const char16_t (&u16z)[N3], const char32_t (&u32z)[N4]) {
if constexpr (std::is_same<T, char>())
return psz;
if constexpr (std::is_same<T, wchar_t>())
return wsz;
if constexpr (std::is_same<T, char16_t>())
return u16z;
if constexpr (std::is_same<T, char32_t>())
return u32z;
}
In main, we can assign the result to something of type auto&&:
#define LITERAL(T,x) choose_literal<T>(x, L##x, u##x, U##x)
int main() {
constexpr auto&& literal = LITERAL(char, "hello");
return sizeof(literal); // Returns 6
}
Potential simplification
We can simplify the choose_literal function by making it recursive, that way it can be expanded for any number of types. This works without any changes to the LITERAL macro.
template<class T, class Char, size_t N, class... Rest>
constexpr decltype(auto) choose_literal(const Char(&result)[N], Rest const&... rest) {
if constexpr(std::is_same_v<T, Char>)
return result;
else
return choose_literal<T>(rest...);
}
I recently starting playing around with template metaprogramming in C++, and been trying to evaluate the length of a C-style string.
I've had some success with this bit of code
template <const char *str, std::size_t index>
class str_length {
public:
static inline std::size_t val() {
return (str[index] != '\0') ? (1 + str_length<str, index + 1>::val()) : 0;
}
};
template <const char *str>
class str_length <str, 500> {
public:
static inline std::size_t val() {
return 0;
}
};
extern const char bitarr[] { "0000000000000000000" };
int main() {
std::cout << str_length<bitarr, 0>::val() << std::endl;
getchar();
return 0;
}
However, I had to set a "upper limit" of 500 by creating a specialization of str_length. Omitting that would cause my compiler to run indefinitely (presumably creating infinite specializations of str_length).
Is there anything I could do to not specify the index = 500 limit?
I'm using VC++2015 if that helps.
Oh, and I'm not using constexpr because VC++ doesn't quite support the C++14 extended constexpr features yet. (https://msdn.microsoft.com/en-us/library/hh567368.aspx#cpp14table)
The usual way to stop infinite template instantiation, in these situation, is by using specialization; which is orthogonal to constexpr-ness of anything. Reviewing the list of additional stuff that extended constexpr allows in C++14, I see nothing in the following example that needs extended constexpr support. gcc 6.1.1 compiles this in -std=c++11 compliance mode, FWIW:
#include <iostream>
template<const char *str, size_t index, char c> class str_length_helper;
template <const char *str>
class str_length {
public:
static constexpr std::size_t val()
{
return str_length_helper<str, 0, str[0]>::val();
}
};
template<const char *str, std::size_t index, char c>
class str_length_helper {
public:
static constexpr std::size_t val()
{
return 1+str_length_helper<str, index+1, str[index+1]>::val();
}
};
template<const char *str, std::size_t index>
class str_length_helper<str, index, 0> {
public:
static constexpr std::size_t val()
{
return 0;
}
};
static constexpr char bitarr[] { "0000000000000000000" };
int main() {
std::cout << str_length<bitarr>::val() << std::endl;
getchar();
return 0;
}
Note, however, that the character string itself must be constexpr. As the comments noted, this is of dubious practical use; but there's nothing wrong with messing around in this manner in order to get the hang of metaprogramming.
The key point is the use of specialization, and the fact that in order to be able to use str[index] as a template parameter, str must be constexpr.
I want to declare a class template in which one of the template parameters takes a string literal, e.g. my_class<"string">.
Can anyone give me some compilable code which declares a simple class template as described?
Note: The previous wording of this question was rather ambiguous as to what the asker was actually trying to accomplish, and should probably have been closed as insufficiently clear. However, since then this question became multiple times referred-to as the canonical ‘string literal type parameter’ question. As such, it has been re-worded to agree with that premise.
You can have a const char* non-type template parameter, and pass it a const char[] variable with static linkage, which is not all that far from passing a string literal directly.
#include <iostream>
template<const char *str>
struct cts {
void p() {std::cout << str;}
};
static const char teststr[] = "Hello world!";
int main() {
cts<teststr> o;
o.p();
}
http://coliru.stacked-crooked.com/a/64cd254136dd0272
Further from Neil's answer: one way to using strings with templates as you want is to define a traits class and define the string as a trait of the type.
#include <iostream>
template <class T>
struct MyTypeTraits
{
static const char* name;
};
template <class T>
const char* MyTypeTraits<T>::name = "Hello";
template <>
struct MyTypeTraits<int>
{
static const char* name;
};
const char* MyTypeTraits<int>::name = "Hello int";
template <class T>
class MyTemplateClass
{
public:
void print() {
std::cout << "My name is: " << MyTypeTraits<T>::name << std::endl;
}
};
int main()
{
MyTemplateClass<int>().print();
MyTemplateClass<char>().print();
}
prints
My name is: Hello int
My name is: Hello
C++20 fixed_string + "Class Types in Non-Type Template Parameters"
Apparently, a proposal for this was first accepted, but then removed: "String literals as non-type template parameters"
The removal was partly because it was deemed to be easy enough to do with another proposal that was accepted: "Class Types in Non-Type Template Parameters".
The accepted proposal contains an example with the following syntax:
template <std::basic_fixed_string Str>
struct A {};
using hello_A = A<"hello">;
I'll try to update this with an example that actually tells me anything once I see a compiler that supports it.
A Redditor has also shown that the following compiles on GCC master, provided you define your own version of basic_fixed_string which was not in the standard library yet: https://godbolt.org/z/L0J2K2
template<unsigned N>
struct FixedString {
char buf[N + 1]{};
constexpr FixedString(char const* s) {
for (unsigned i = 0; i != N; ++i) buf[i] = s[i];
}
constexpr operator char const*() const { return buf; }
};
template<unsigned N> FixedString(char const (&)[N]) -> FixedString<N - 1>;
template<FixedString T>
class Foo {
static constexpr char const* Name = T;
public:
void hello() const;
};
int main() {
Foo<"Hello!"> foo;
foo.hello();
}
g++ -std=c++2a 9.2.1 from the Ubuntu PPA fails to compile that with:
/tmp/ccZPAqRi.o: In function `main':
main.cpp:(.text+0x1f): undefined reference to `_ZNK3FooIXtl11FixedStringILj6EEtlA7_cLc72ELc101ELc108ELc108ELc111ELc33EEEEE5helloEv'
collect2: error: ld returned 1 exit status
Bibliography: https://botondballo.wordpress.com/2018/03/28/trip-report-c-standards-meeting-in-jacksonville-march-2018/
Finally, EWG decided to pull the previously-approved proposal to allow string literals in non-type template parameters, because the more general facility to allow class types in non-type template parameters (which was just approved) is a good enough replacement. (This is a change from the last meeting, when it seemed like we would want both.) The main difference is that you now have to wrap your character array into a struct (think fixed_string or similar), and use that as your template parameter type. (The user-defined literal part of P0424 is still going forward, with a corresponding adjustment to the allowed template parameter types.)
This will be especially cool with the C++17 if constexpr: if / else at compile time in C++?
This kind of feature appears to be in line with the awesome "constexpr everything" proposals that went into C++20, such as: Is it possible to use std::string in a constexpr?
Sorry, C++ does not currently support the use of string literals (or real literals) as template parameters.
But re-reading your question, is that what you are asking? You cannot say:
foo <"bar"> x;
but you can say
template <typename T>
struct foo {
foo( T t ) {}
};
foo <const char *> f( "bar" );
This is a solution with MPLLIBS to pass a strings as template arguments ( C++11 ).
#include <iostream>
#include <mpllibs/metaparse/string.hpp> // https://github.com/sabel83/mpllibs
#include <boost/mpl/string.hpp>
// -std=c++11
template<class a_mpl_string>
struct A
{
static const char* string;
};
template<class a_mpl_string>
const char* A< a_mpl_string >
::string { boost::mpl::c_str< a_mpl_string >::value }; // boost compatible
typedef A< MPLLIBS_STRING ( "any string as template argument" ) > a_string_type;
int main ( int argc, char **argv )
{
std::cout << a_string_type{}.string << std::endl;
return 0;
}
prints:
any string as template argument
The lib on github: https://github.com/sabel83/mpllibs
inline const wchar_t *GetTheStringYouWant() { return L"The String You Want"; }
template <const wchar_t *GetLiteralFunc(void)>
class MyType
{
void test()
{
std::cout << GetLiteralFunc;
}
}
int main()
{
MyType<GetTheStringYouWant>.test();
}
Try it with pasing the address of a function as the template argument.
EDIT: ok the title of your question seems to be misleading
"I want a class which takes two parameters in its constructor. The first can be either an int, double or float, so , and the second is always a string literal "my string", so I guess const char * const."
It looks like you're trying to achieve:
template<typename T>
class Foo
{
public:
Foo(T t, const char* s) : first(t), second(s)
{
// do something
}
private:
T first;
const char* second;
};
This would work for any type, for the first parameter: int, float, double, whatever.
Now if you really want to restrict the type of the first parameter to be only int, float or double; you can come up with something more elaborate like
template<typename T>
struct RestrictType;
template<>
struct RestrictType<int>
{
typedef int Type;
};
template<>
struct RestrictType<float>
{
typedef float Type;
};
template<>
struct RestrictType<double>
{
typedef double Type;
};
template<typename T>
class Foo
{
typedef typename RestrictType<T>::Type FirstType;
public:
Foo(FirstType t, const char* s) : first(t), second(s)
{
// do something
}
private:
FirstType first;
const char* second;
};
int main()
{
Foo<int> f1(0, "can");
Foo<float> f2(1, "i");
Foo<double> f3(1, "have");
//Foo<char> f4(0, "a pony?");
}
If you remove the comment on the last line, you'll effectively get a compiler error.
String literals are not allowed by C++2003
ISO/IEC 14882-2003 §14.1:
14.1 Template parameters
A non-type template-parameter shall have one of the following (optionallycv-qualified) types:
— integral or enumeration type,
— pointer to object or pointer to function,
— reference to object or reference to function,
— pointer to member.
ISO/IEC 14882-2003 §14.3.2:
14.3.2 Template non-type arguments
A template-argument for a non-type, non-template template-parameter shall be one of:
— an integral constant-expression of integral or enumeration type; or
— the name of a non-type template-parameter; or
— the address of an object or function with external linkage, including function templates and function template-ids but excluding non-static class members, expressed as & id expression where the & is optional if the name refers to a function or array, or if the corresponding template-parameter is a reference; or
— a pointer to member expressed as described in 5.3.1.
[Note:A string literal (2.13.4) does not satisfy the requirements of any of these categories and thus is not an acceptable template-argument.
[Example:
template<class T, char* p> class X {
//...
X();
X(const char* q) { /* ... */ }
};
X<int,"Studebaker"> x1; //error: string literal as template-argument
char p[] = "Vivisectionist";
X<int,p> x2; //OK
—end example] —end note]
And it looks like it's not going to change in the upcoming C++0X, see the current draft 14.4.2 Template non-type arguments.
Based on your comments under Niel's answer, another possibility is the following:
#include <iostream>
static const char* eventNames[] = { "event_A", "event_B" };
enum EventId {
event_A = 0,
event_B
};
template <int EventId>
class Event
{
public:
Event() {
name_ = eventNames[EventId];
}
void print() {
std::cout << name_ << std::endl;
}
private:
const char* name_;
};
int main()
{
Event<event_A>().print();
Event<event_B>().print();
}
prints
event_A
event_B
You cannot pass a string literal directly as a template parameter.
But you can get close:
template<class MyString = typestring_is("Hello!")>
void MyPrint() {
puts( MyString::data() );
}
...
// or:
MyPrint<typestring_is("another text")>();
...
All you need is a small header file from here.
Alternatives:
Define a global char const * and pass it to the template as pointer. (here)
Drawback: Requires additional code outside of the template argument list. It is not suitable, if you need to specify the string literal "inline".
Use a non-standard language extension. (here)
Drawback: Not guaranteed to work with all compilers.
Use BOOST_METAPARSE_STRING. (here)
Drawback: Your code will depend on the Boost library.
Use a variadic template parameter pack of char, e.g. str_t<'T','e','s','t'>.
This is what the above solution does for you behind the scenes.
Use proxy static constexpr const char type_name_str[] = {"type name"}; for passing string as template parameter. Defining string using [] is important.
#include <iostream>
template<typename T, const char* const t_name>
struct TypeName
{
public:
static constexpr const char* Name()
{
return t_name;
};
};
static constexpr const char type_name_str[] = {"type name"};
int main()
{
std::cout<<TypeName<float, type_name_str>::Name();
return 0;
}
I want a class which takes two parameters in its constructor. The first can be either an int, double or float, so , and the second is always a string literal "my string"
template<typename T>
class demo
{
T data;
std::string s;
public:
demo(T d,std::string x="my string"):data(d),s(x) //Your constructor
{
}
};
I am not sure but is this something what you want?
Maybe not what the OP is asking, but if you use boost, you can create a macro like this for example:
#define C_STR(str_) boost::mpl::c_str< BOOST_METAPARSE_STRING(str_) >::value
Then use as follows:
template<const char* str>
structe testit{
};
testit<C_STR("hello")> ti;
template <char... elements>
struct KSym /* : optional_common_base */ {
// We really only care that we have a unique-type and thus can exploit being a `""_ksym singleton`
const char z[sizeof...(elements) + 1] = { elements..., '\0' };
// We can have properties, we don't need anything to be constexpr for Rs
};
template <typename T, T... chars>
auto&& operator""_ksym() {
static KSym<chars...> kSym; // Construct the unique singleton (lazily on demand)
return kSym;
}
static auto ksym_example1 = "a unique string symbol1\n"_ksym.z;
static auto ksym_example2 = "a unique string symbol2\n"_ksym.z;
auto dont_care = []() {
::OutputDebugString(ksym_example1);
::OutputDebugString("a unique string symbol2\n"_ksym.z);
assert("a unique string symbol1\n"_ksym.z == ksym_example1);
assert("a unique string symbol2\n"_ksym.z == ksym_example2);
return true;
}();
The above is working for me in production using Clang 11 on Windows.
(edited) I now use exactly this in clang on Windows:
// P0424R1: http://www.open-std.org/jtc1/SC22/wg21/docs/papers/2017/p0424r1.pdf
template <char... chars_ta> struct KSymT;
template <typename T, T... chars_ta> // std::move(KSymT<chars_ta...>::s);
auto operator""_ksym()->KSymT<chars_ta...>& { return KSymT<chars_ta...>::s; }
struct KSym {
virtual void onRegister() {}
virtual std::string_view zview_get() = 0;
};
template <char... chars_ta>
struct KSymT : KSym {
inline static KSymT s;
// We really only care that we have a unique-type and thus can exploit being a `""_ksym singleton`
inline static constexpr char z[sizeof...(chars_ta) + 1] = { chars_ta..., '\0' };
inline static constexpr UIntPk n = sizeof...(chars_ta);
// We can have properties, we don't need anything to be constexpr for Rs
virtual std::string_view zview_get() { return std::string_view(z); };
//#KSym-support compare with `Af_CmdArgs`
inline bool operator==(const Af_CmdArgs& cmd) {
return (cmd.argl[0] == n && memcmp(cmd.argv[0], z, n) == 0);
}
};
I was struggling with a similar problem and finally came up with a concise implementation that unpacks the string literal into a char... template parameter pack and without using the GNU literal operator template extension:
#include <utility>
template <char ...Chars>
struct type_string_t {
static constexpr const char data[sizeof...(Chars)] = {Chars...};
};
template <char s(std::size_t), std::size_t ...I>
auto type_string_impl(std::index_sequence<I...>) {
return type_string_t<s(I)...>();
}
#define type_string(s) \
decltype (type_string_impl<[] -> constexpr (std::size_t i) {return s[i];}> \
(std::make_index_sequence<sizeof (s)>()))
static_assert (std::is_same<type_string("String_A"),
type_string("String_A")>::value);
static_assert (!std::is_same<type_string("String_A"),
type_string("String_B")>::value);
A major caveat: this depends on a C++20 feature (class values as non-type template arguments; P0732, P1907), which (as of December 2020) is only (partially) implemented in GCC 9 and later (preprocessor feature test: (__cpp_nontype_template_args >= 201911L) || (__GNUG__ >= 9)). However, since the feature is standard, it is only a matter of time before other compilers catch up.
Another C++20 solution I don't see mentioned, but which was sufficiently simple and suitable for my own needs, is to use a constexpr lambda as the NTTP returning the string:
#include <string_view>
template<auto getStrLambda>
struct MyType {
static constexpr std::string_view myString{getStrLambda()};
};
int main() {
using TypeWithString = MyType<[]{return "Hello world!";}>;
return 0;
}
Compiler explorer example here.
here is a solution and extensions/examples
my solution extends https://ctrpeach.io/posts/cpp20-string-literal-template-parameters/
#include <iostream>
#include <algorithm>
#include <string>
template<size_t N>
struct StringLiteral {
char value[N];
constexpr StringLiteral(const char(&str)[N]) {
std::copy_n(str, N, value);
}
};
template <StringLiteral T>
struct String {
static constexpr std::string str() {
return T.value;
}
};
template <typename... Strings>
struct JoinedString {
static constexpr std::string str() {
return (Strings::str() + ...);
}
};
template <typename Delim, typename String, typename... Strings>
struct DelimJoinedString {
static constexpr std::string str() {
if constexpr (sizeof...(Strings))
return JoinedString<String, Delim, DelimJoinedString<Delim, Strings...>>::str();
else
return String::str();
}
};
int main() {
// "123"
using s123 = String<"123">;
std::cout << s123::str() << "\n";
// "abc"
using abc = String<"abc">;
std::cout << abc::str() << "\n";
// "abc123abc123"
using abc123abc123 = JoinedString<abc, s123, abc, s123>;
std::cout << abc123abc123::str() << "\n";
// "abc, 123"
using abccomma123 = DelimJoinedString<String<", ">, abc, s123>;
std::cout << abccomma123::str() << "\n";
// "abc, 123, 123, abc"
using commaabc123123abc = DelimJoinedString<String<", ">, abc, s123, s123, abc>;
std::cout << commaabc123123abc::str() << "\n";
return 0;
}
a string literal "my string", so I guess const char * const
Actually, string literals with n visible characters are of type const char[n+1].
#include <iostream>
#include <typeinfo>
template<class T>
void test(const T& t)
{
std::cout << typeid(t).name() << std::endl;
}
int main()
{
test("hello world"); // prints A12_c on my compiler
}