Related
I have to write a program that detect 3 types of road signs (speed limit, no parking and warnings). I know how to detect a circle using HoughCircles but I have several images and the parameters for HoughCircles are different for each image. There's a general way to detect circles without changing parameters for each image?
Moreover I need to detect triangle (warning signs) so I'm searching for a general shape detector. Have you any suggestions/code that can help me in this task?
Finally for detect the number on speed limit signs I thought to use SIFT and compare the image with some templates in order to identify the number on the sign. Could it be a good approach?
Thank you for the answer!
I know this is a pretty old question but I had been through the same problem and now I show you how I solved it.
The following images show some of the most accurate results that are displayed by the opencv program.
In the following images the street signs detected are circled with three different colors that distinguish the three kinds of street signs (warning, no parking, speed limit).
Red for warning signs
Blue for no parking signs
Fuchsia for speed limit signs
The speed limit value is written in green above the speed limit signs
[![example][1]][1]
[![example][2]][2]
[![example][3]][3]
[![example][4]][4]
As you can see the program performs quite well, it is able to detect and distinguish the three kinds of sign and to recognize the speed limit value in case of speed limit signs. Everything is done without computing too many false positives when, for instance, in the image there are some signs that do not belong to one of the three categories.
In order to achieve this result the software computes the detection in three main steps.
The first step involves a color based approach where the red objects in the image are detected and their region are extract to be analyzed. This step is particularly useful in order to prevent the detection of false positives, because only a small part of the image is processed.
The second step works with a machine learning algorithm: in particular we use a Cascade Classifier to compute the detection. This operation firstly requires to train the classifiers and on a later stage to use them to detect the signs.
In the last step the speed limit values inside the speed limit signs are read, also in this case through a machine learning algorithm but using the k-nearest neighbor algorithm.
Now we are going to see in detail each step.
COLOR BASED STEP
Since the street signs are always circled by a red frame, we can afford to take out and analyze only the regions where the red objects are detected.
In order to select the red objects, we consider all the ranges of the red color: even if this may produce some false positives, they will be easily discarded in the next steps.
inRange(image, Scalar(0, 70, 50), Scalar(10, 255, 255), mask1);
inRange(image, Scalar(170, 70, 50), Scalar(180, 255, 255), mask2);
In the image below we can see an example of the red objects detected with this method.
After having found the red pixels we can gather them to find the regions using a clustering algorithm, I use the method
partition(<#_ForwardIterator __first#>, _ForwardIterator __last, <#_Predicate __pred#>)
After the execution of this method we can save all the points in the same cluster in a vector (one for each cluster) and extract the bounding boxes which represent the
regions to be analyzed in the next step.
HAAR CASCADE CLASSIFIERS FOR SIGNS DETECTION
This is the real detection step where the street signs are detected. In order to perform a cascade classifier the first step consist in building a dataset of positives and negatives images. Now I explain how I have built my own datasets of images.
The first thing to note is that we need to train three different Haar cascades in order to distinguish between the three kind of signs that we have to detect, hence we must repeat the following steps for each of the three kinds of sign.
We need two datasets: one for the positive samples (which must be a set of images that contains the road signs that we are going to detect) and another one for the negative samples which can be any kind of image without street signs.
After collecting a set of 100 images for the positive samples and a set of 200 images for the negatives in two different folders, we need to write two text files:
Signs.info which contains a list of file names like the one below,
one for each positive sample in the positive folder.
pos/image_name.png 1 0 0 50 45
Here, the numbers after the name represent respectively the number
of street signs in the image, the coordinate of the upper left
corner of the street sign, his height and his width.
Bg.txt which contains a list of file names like the one below, one
for each sign in the negative folder.
neg/street15.png
With the command line below we generate the .vect file which contains all the information that the software retrieves from the positive samples.
opencv_createsamples -info sign.info -num 100 -w 50 -h 50 -vec signs.vec
Afterwards we train the cascade classifier with the following command:
opencv_traincascade -data data -vec signs.vec -bg bg.txt -numPos 60 -numNeg 200 -numStages 15 -w 50 -h 50 -featureType LBP
where the number of stages indicates the number of classifiers that will be generated in order to build the cascade.
At the end of this process we gain a file cascade.xml which will be used from the CascadeClassifier program in order to detect the objects in the image.
Now we have trained our algorithm and we can declare a CascadeClassifier for each kind of street sign, than we detect the signs in the image through
detectMultiScale(<#InputArray image#>, <#std::vector<Rect> &objects#>)
this method creates a Rect around each object that has been detected.
It is important to note that exactly as every machine learning algorithm, in order to perform well, we need a large number of samples in the dataset. The dataset that I have built, is not extremely large, thus in some situations it is not able to detect all the signs. This mostly happens when a small part of the street sign is not visible in the image like in the warning sign below:
I have expanded my dataset up to the point where I have obtained a fairly accurate result without
too many errors.
SPEED LIMIT VALUE DETECTION
Like for the street signs detection also here I used a machine learning algorithm but with a different approach. After some work, I realized that an OCR (tesseract) solution does not perform well, so I decided to build my own ocr software.
For the machine learning algorithm I took the image below as training data which contains some speed limit values:
The amount of training data is small. But, since in speed limit signs all letters have the same font, it is not a huge problem.
To prepare the data for training, I made a small code in OpenCV. It does the following things:
It loads the image on the left;
It selects the digits (obviously by contour finding and applying constraints on area and height of letters to avoid false detections).
It draws the bounding rectangle around one letter and it waits for the key to be manually pressed. This time the user presses the digit key corresponding to the letter in box by himself.
Once the corresponding digit key is pressed, it saves 100 pixel values in an array and the correspondent manually entered digit in another array.
Eventually it saves both the arrays in separate txt files.
Following the manual digit classification all the digits in the train data( train.png) are manually labeled, and the image will look like the one below.
Now we enter into training and testing part.
For training we do as follows:
Load the txt files we already saved earlier
Create an instance of classifier that we are going to use ( KNearest)
Then we use KNearest.train function to train the data
Now the detection:
We load the image with the speed limit sign detected
Process the image as before and extract each digit using contour methods
Draw bounding box for it, then resize to 10x10, and store its pixel values in an array as done earlier.
Then we use KNearest.find_nearest() function to find the nearest item to the one we gave.
And it recognizes the correct digit.
I tested this little OCR on many images, and just with this small dataset I have obtained an accuracy of about 90%.
CODE
Below I post all my openCv c++ code in a single class, following my instruction you should be able to achive my result.
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <cmath>
#include <stdlib.h>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui.hpp"
#include <string.h>
#include <opencv2/ml/ml.hpp>
using namespace std;
using namespace cv;
std::vector<cv::Rect> getRedObjects(cv::Mat image);
vector<Mat> detectAndDisplaySpeedLimit( Mat frame );
vector<Mat> detectAndDisplayNoParking( Mat frame );
vector<Mat> detectAndDisplayWarning( Mat frame );
void trainDigitClassifier();
string getDigits(Mat image);
vector<Mat> loadAllImage();
int getSpeedLimit(string speed);
//path of the haar cascade files
String no_parking_signs_cascade = "/Users/giuliopettenuzzo/Desktop/cascade_classifiers/no_parking_cascade.xml";
String speed_signs_cascade = "/Users/giuliopettenuzzo/Desktop/cascade_classifiers/speed_limit_cascade.xml";
String warning_signs_cascade = "/Users/giuliopettenuzzo/Desktop/cascade_classifiers/warning_cascade.xml";
CascadeClassifier speed_limit_cascade;
CascadeClassifier no_parking_cascade;
CascadeClassifier warning_cascade;
int main(int argc, char** argv)
{
//train the classifier for digit recognition, this require a manually train, read the report for more details
trainDigitClassifier();
cv::Mat sceneImage;
vector<Mat> allImages = loadAllImage();
for(int i = 0;i<=allImages.size();i++){
sceneImage = allImages[i];
//load the haar cascade files
if( !speed_limit_cascade.load( speed_signs_cascade ) ){ printf("--(!)Error loading\n"); return -1; };
if( !no_parking_cascade.load( no_parking_signs_cascade ) ){ printf("--(!)Error loading\n"); return -1; };
if( !warning_cascade.load( warning_signs_cascade ) ){ printf("--(!)Error loading\n"); return -1; };
Mat scene = sceneImage.clone();
//detect the red objects
std::vector<cv::Rect> allObj = getRedObjects(scene);
//use the three cascade classifier for each object detected by the getRedObjects() method
for(int j = 0;j<allObj.size();j++){
Mat img = sceneImage(Rect(allObj[j]));
vector<Mat> warningVec = detectAndDisplayWarning(img);
if(warningVec.size()>0){
Rect box = allObj[j];
}
vector<Mat> noParkVec = detectAndDisplayNoParking(img);
if(noParkVec.size()>0){
Rect box = allObj[j];
}
vector<Mat> speedLitmitVec = detectAndDisplaySpeedLimit(img);
if(speedLitmitVec.size()>0){
Rect box = allObj[j];
for(int i = 0; i<speedLitmitVec.size();i++){
//get speed limit and skatch it in the image
int digit = getSpeedLimit(getDigits(speedLitmitVec[i]));
if(digit > 0){
Point point = box.tl();
point.y = point.y + 30;
cv::putText(sceneImage,
"SPEED LIMIT " + to_string(digit),
point,
cv::FONT_HERSHEY_COMPLEX_SMALL,
0.7,
cv::Scalar(0,255,0),
1,
cv::CV__CAP_PROP_LATEST);
}
}
}
}
imshow("currentobj",sceneImage);
waitKey(0);
}
}
/*
* detect the red object in the image given in the param,
* return a vector containing all the Rect of the red objects
*/
std::vector<cv::Rect> getRedObjects(cv::Mat image)
{
Mat3b res = image.clone();
std::vector<cv::Rect> result;
cvtColor(image, image, COLOR_BGR2HSV);
Mat1b mask1, mask2;
//ranges of red color
inRange(image, Scalar(0, 70, 50), Scalar(10, 255, 255), mask1);
inRange(image, Scalar(170, 70, 50), Scalar(180, 255, 255), mask2);
Mat1b mask = mask1 | mask2;
Mat nonZeroCoordinates;
vector<Point> pts;
findNonZero(mask, pts);
for (int i = 0; i < nonZeroCoordinates.total(); i++ ) {
cout << "Zero#" << i << ": " << nonZeroCoordinates.at<Point>(i).x << ", " << nonZeroCoordinates.at<Point>(i).y << endl;
}
int th_distance = 2; // radius tolerance
// Apply partition
// All pixels within the radius tolerance distance will belong to the same class (same label)
vector<int> labels;
// With lambda function (require C++11)
int th2 = th_distance * th_distance;
int n_labels = partition(pts, labels, [th2](const Point& lhs, const Point& rhs) {
return ((lhs.x - rhs.x)*(lhs.x - rhs.x) + (lhs.y - rhs.y)*(lhs.y - rhs.y)) < th2;
});
// You can save all points in the same class in a vector (one for each class), just like findContours
vector<vector<Point>> contours(n_labels);
for (int i = 0; i < pts.size(); ++i){
contours[labels[i]].push_back(pts[i]);
}
// Get bounding boxes
vector<Rect> boxes;
for (int i = 0; i < contours.size(); ++i)
{
Rect box = boundingRect(contours[i]);
if(contours[i].size()>500){//prima era 1000
boxes.push_back(box);
Rect enlarged_box = box + Size(100,100);
enlarged_box -= Point(30,30);
if(enlarged_box.x<0){
enlarged_box.x = 0;
}
if(enlarged_box.y<0){
enlarged_box.y = 0;
}
if(enlarged_box.height + enlarged_box.y > res.rows){
enlarged_box.height = res.rows - enlarged_box.y;
}
if(enlarged_box.width + enlarged_box.x > res.cols){
enlarged_box.width = res.cols - enlarged_box.x;
}
Mat img = res(Rect(enlarged_box));
result.push_back(enlarged_box);
}
}
Rect largest_box = *max_element(boxes.begin(), boxes.end(), [](const Rect& lhs, const Rect& rhs) {
return lhs.area() < rhs.area();
});
//draw the rects in case you want to see them
for(int j=0;j<=boxes.size();j++){
if(boxes[j].area() > largest_box.area()/3){
rectangle(res, boxes[j], Scalar(0, 0, 255));
Rect enlarged_box = boxes[j] + Size(20,20);
enlarged_box -= Point(10,10);
rectangle(res, enlarged_box, Scalar(0, 255, 0));
}
}
rectangle(res, largest_box, Scalar(0, 0, 255));
Rect enlarged_box = largest_box + Size(20,20);
enlarged_box -= Point(10,10);
rectangle(res, enlarged_box, Scalar(0, 255, 0));
return result;
}
/*
* code for detect the speed limit sign , it draws a circle around the speed limit signs
*/
vector<Mat> detectAndDisplaySpeedLimit( Mat frame )
{
std::vector<Rect> signs;
vector<Mat> result;
Mat frame_gray;
cvtColor( frame, frame_gray, CV_BGR2GRAY );
//normalizes the brightness and increases the contrast of the image
equalizeHist( frame_gray, frame_gray );
//-- Detect signs
speed_limit_cascade.detectMultiScale( frame_gray, signs, 1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );
cout << speed_limit_cascade.getFeatureType();
for( size_t i = 0; i < signs.size(); i++ )
{
Point center( signs[i].x + signs[i].width*0.5, signs[i].y + signs[i].height*0.5 );
ellipse( frame, center, Size( signs[i].width*0.5, signs[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 );
Mat resultImage = frame(Rect(center.x - signs[i].width*0.5,center.y - signs[i].height*0.5,signs[i].width,signs[i].height));
result.push_back(resultImage);
}
return result;
}
/*
* code for detect the warning sign , it draws a circle around the warning signs
*/
vector<Mat> detectAndDisplayWarning( Mat frame )
{
std::vector<Rect> signs;
vector<Mat> result;
Mat frame_gray;
cvtColor( frame, frame_gray, CV_BGR2GRAY );
equalizeHist( frame_gray, frame_gray );
//-- Detect signs
warning_cascade.detectMultiScale( frame_gray, signs, 1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );
cout << warning_cascade.getFeatureType();
Rect previus;
for( size_t i = 0; i < signs.size(); i++ )
{
Point center( signs[i].x + signs[i].width*0.5, signs[i].y + signs[i].height*0.5 );
Rect newRect = Rect(center.x - signs[i].width*0.5,center.y - signs[i].height*0.5,signs[i].width,signs[i].height);
if((previus & newRect).area()>0){
previus = newRect;
}else{
ellipse( frame, center, Size( signs[i].width*0.5, signs[i].height*0.5), 0, 0, 360, Scalar( 0, 0, 255 ), 4, 8, 0 );
Mat resultImage = frame(newRect);
result.push_back(resultImage);
previus = newRect;
}
}
return result;
}
/*
* code for detect the no parking sign , it draws a circle around the no parking signs
*/
vector<Mat> detectAndDisplayNoParking( Mat frame )
{
std::vector<Rect> signs;
vector<Mat> result;
Mat frame_gray;
cvtColor( frame, frame_gray, CV_BGR2GRAY );
equalizeHist( frame_gray, frame_gray );
//-- Detect signs
no_parking_cascade.detectMultiScale( frame_gray, signs, 1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );
cout << no_parking_cascade.getFeatureType();
Rect previus;
for( size_t i = 0; i < signs.size(); i++ )
{
Point center( signs[i].x + signs[i].width*0.5, signs[i].y + signs[i].height*0.5 );
Rect newRect = Rect(center.x - signs[i].width*0.5,center.y - signs[i].height*0.5,signs[i].width,signs[i].height);
if((previus & newRect).area()>0){
previus = newRect;
}else{
ellipse( frame, center, Size( signs[i].width*0.5, signs[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 0 ), 4, 8, 0 );
Mat resultImage = frame(newRect);
result.push_back(resultImage);
previus = newRect;
}
}
return result;
}
/*
* train the classifier for digit recognition, this could be done only one time, this method save the result in a file and
* it can be used in the next executions
* in order to train user must enter manually the corrisponding digit that the program shows, press space if the red box is just a point (false positive)
*/
void trainDigitClassifier(){
Mat thr,gray,con;
Mat src=imread("/Users/giuliopettenuzzo/Desktop/all_numbers.png",1);
cvtColor(src,gray,CV_BGR2GRAY);
threshold(gray,thr,125,255,THRESH_BINARY_INV); //Threshold to find contour
imshow("ci",thr);
waitKey(0);
thr.copyTo(con);
// Create sample and label data
vector< vector <Point> > contours; // Vector for storing contour
vector< Vec4i > hierarchy;
Mat sample;
Mat response_array;
findContours( con, contours, hierarchy,CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE ); //Find contour
for( int i = 0; i< contours.size(); i=hierarchy[i][0] ) // iterate through first hierarchy level contours
{
Rect r= boundingRect(contours[i]); //Find bounding rect for each contour
rectangle(src,Point(r.x,r.y), Point(r.x+r.width,r.y+r.height), Scalar(0,0,255),2,8,0);
Mat ROI = thr(r); //Crop the image
Mat tmp1, tmp2;
resize(ROI,tmp1, Size(10,10), 0,0,INTER_LINEAR ); //resize to 10X10
tmp1.convertTo(tmp2,CV_32FC1); //convert to float
imshow("src",src);
int c=waitKey(0); // Read corresponding label for contour from keyoard
c-=0x30; // Convert ascii to intiger value
response_array.push_back(c); // Store label to a mat
rectangle(src,Point(r.x,r.y), Point(r.x+r.width,r.y+r.height), Scalar(0,255,0),2,8,0);
sample.push_back(tmp2.reshape(1,1)); // Store sample data
}
// Store the data to file
Mat response,tmp;
tmp=response_array.reshape(1,1); //make continuous
tmp.convertTo(response,CV_32FC1); // Convert to float
FileStorage Data("TrainingData.yml",FileStorage::WRITE); // Store the sample data in a file
Data << "data" << sample;
Data.release();
FileStorage Label("LabelData.yml",FileStorage::WRITE); // Store the label data in a file
Label << "label" << response;
Label.release();
cout<<"Training and Label data created successfully....!! "<<endl;
imshow("src",src);
waitKey(0);
}
/*
* get digit from the image given in param, using the classifier trained before
*/
string getDigits(Mat image)
{
Mat thr1,gray1,con1;
Mat src1 = image.clone();
cvtColor(src1,gray1,CV_BGR2GRAY);
threshold(gray1,thr1,125,255,THRESH_BINARY_INV); // Threshold to create input
thr1.copyTo(con1);
// Read stored sample and label for training
Mat sample1;
Mat response1,tmp1;
FileStorage Data1("TrainingData.yml",FileStorage::READ); // Read traing data to a Mat
Data1["data"] >> sample1;
Data1.release();
FileStorage Label1("LabelData.yml",FileStorage::READ); // Read label data to a Mat
Label1["label"] >> response1;
Label1.release();
Ptr<ml::KNearest> knn(ml::KNearest::create());
knn->train(sample1, ml::ROW_SAMPLE,response1); // Train with sample and responses
cout<<"Training compleated.....!!"<<endl;
vector< vector <Point> > contours1; // Vector for storing contour
vector< Vec4i > hierarchy1;
//Create input sample by contour finding and cropping
findContours( con1, contours1, hierarchy1,CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
Mat dst1(src1.rows,src1.cols,CV_8UC3,Scalar::all(0));
string result;
for( int i = 0; i< contours1.size(); i=hierarchy1[i][0] ) // iterate through each contour for first hierarchy level .
{
Rect r= boundingRect(contours1[i]);
Mat ROI = thr1(r);
Mat tmp1, tmp2;
resize(ROI,tmp1, Size(10,10), 0,0,INTER_LINEAR );
tmp1.convertTo(tmp2,CV_32FC1);
Mat bestLabels;
float p=knn -> findNearest(tmp2.reshape(1,1),4, bestLabels);
char name[4];
sprintf(name,"%d",(int)p);
cout << "num = " << (int)p;
result = result + to_string((int)p);
putText( dst1,name,Point(r.x,r.y+r.height) ,0,1, Scalar(0, 255, 0), 2, 8 );
}
imwrite("dest.jpg",dst1);
return result ;
}
/*
* from the digits detected, it returns a speed limit if it is detected correctly, -1 otherwise
*/
int getSpeedLimit(string numbers){
if ((numbers.find("30") != std::string::npos) || (numbers.find("03") != std::string::npos)) {
return 30;
}
if ((numbers.find("50") != std::string::npos) || (numbers.find("05") != std::string::npos)) {
return 50;
}
if ((numbers.find("80") != std::string::npos) || (numbers.find("08") != std::string::npos)) {
return 80;
}
if ((numbers.find("70") != std::string::npos) || (numbers.find("07") != std::string::npos)) {
return 70;
}
if ((numbers.find("90") != std::string::npos) || (numbers.find("09") != std::string::npos)) {
return 90;
}
if ((numbers.find("100") != std::string::npos) || (numbers.find("001") != std::string::npos)) {
return 100;
}
if ((numbers.find("130") != std::string::npos) || (numbers.find("031") != std::string::npos)) {
return 130;
}
return -1;
}
/*
* load all the image in the file with the path hard coded below
*/
vector<Mat> loadAllImage(){
vector<cv::String> fn;
glob("/Users/giuliopettenuzzo/Desktop/T1/dataset/*.jpg", fn, false);
vector<Mat> images;
size_t count = fn.size(); //number of png files in images folder
for (size_t i=0; i<count; i++)
images.push_back(imread(fn[i]));
return images;
}
maybe you should try implementing the ransac algorithm, if you are using color images, migt be a good idea (if you are in europe) to get the red channel only since the speed limits are surrounded by a red cricle (or a thin white i think also).
For that you need to filter the image to get the edges, (canny filter).
Here are some useful links:
OpenCV detect partial circle with noise
https://hal.archives-ouvertes.fr/hal-00982526/document
Finally for the numbers detection i think its ok. Other approach is to use something like Viola-Jones algorithm to detect the signals, with pretrained existing models... It's up to you!
I am a beginner in OpenCV, I need to remove the horizontal and vertical lines in the image so that only the text remains ( The lines were causing trouble when extracting text in ocr ). I am trying to extract text from the Nutrient Fact Table. Can anyone help me?
This was an interesting question, so I gave it a shot. Below I will show you how to extract and remove horizontal and vertical lines. You could extrapolate from it. Also, for sake of saving time, I did not preprocess your image to crop out the background as one should, which is an avenue for improvement.
The result:
The code (edit: added vertical lines):
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
int main(int, char** argv)
{
// Load the image
Mat src = imread(argv[1]);
// Check if image is loaded fine
if(!src.data)
cerr << "Problem loading image!!!" << endl;
Mat gray;
if (src.channels() == 3)
{
cvtColor(src, gray, CV_BGR2GRAY);
}
else
{
gray = src;
}
//inverse binary img
Mat bw;
//this will hold the result, image to be passed to OCR
Mat fin;
//I find OTSU binarization best for text.
//Would perform better if background had been cropped out
threshold(gray, bw, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
threshold(gray, fin, 0, 255, THRESH_BINARY | THRESH_OTSU);
imshow("binary", bw);
Mat dst;
Canny( fin, dst, 50, 200, 3 );
Mat str = getStructuringElement(MORPH_RECT, Size(3,3));
dilate(dst, dst, str, Point(-1, -1), 3);
imshow("dilated_canny", dst);
//bitwise_and w/ canny image helps w/ background noise
bitwise_and(bw, dst, dst);
imshow("and", dst);
Mat horizontal = dst.clone();
Mat vertical = dst.clone();
fin = ~dst;
//Image that will be horizontal lines
Mat horizontal = bw.clone();
//Selected this value arbitrarily
int horizontalsize = horizontal.cols / 30;
Mat horizontalStructure = getStructuringElement(MORPH_RECT, Size(horizontalsize,1));
erode(horizontal, horizontal, horizontalStructure, Point(-1, -1));
dilate(horizontal, horizontal, horizontalStructure, Point(-1, -1), 1);
imshow("horizontal_lines", horizontal);
//Need to find horizontal contours, so as to not damage letters
vector<Vec4i> hierarchy;
vector<vector<Point> >contours;
findContours(horizontal, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_NONE);
for (const auto& c : contours)
{
Rect r = boundingRect(c);
float percentage_height = (float)r.height / (float)src.rows;
float percentage_width = (float)r.width / (float)src.cols;
//These exclude contours that probably are not dividing lines
if (percentage_height > 0.05)
continue;
if (percentage_width < 0.50)
continue;
//fills in line with white rectange
rectangle(fin, r, Scalar(255,255,255), CV_FILLED);
}
int verticalsize = vertical.rows / 30;
Mat verticalStructure = getStructuringElement(MORPH_RECT, Size(1,verticalsize));
erode(vertical, vertical, verticalStructure, Point(-1, -1));
dilate(vertical, vertical, verticalStructure, Point(-1, -1), 1);
imshow("verticalal", vertical);
findContours(vertical, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_NONE);
for (const auto& c : contours)
{
Rect r = boundingRect(c);
float percentage_height = (float)r.height / (float)src.rows;
float percentage_width = (float)r.width / (float)src.cols;
//These exclude contours that probably are not dividing lines
if (percentage_width > 0.05)
continue;
if (percentage_height < 0.50)
continue;
//fills in line with white rectange
rectangle(fin, r, Scalar(255,255,255), CV_FILLED);
}
imshow("Result", fin);
waitKey(0);
return 0;
}
The limitations of this approach are that the lines need to be straight. Due to the curve in the bottom line, it cuts slightly into "E" in "Energy". Perhaps with a hough line detection like suggested (I've never used it), a similar but more robust approach could be devised. Also, filling in the lines with rectangles probably is not the best approach.
I've been following this tutorial to get the skew angle of an image. It seems like HoughLinesP is struggling to find lines when characters are a bit scattered on the target image.
This is my input image:
This is the lines the HoughLinesP has found:
It's not really getting most of the lines and it seems pretty obvious to me why. This is because I've set my minLineWidth to be (size.width / 2.f). The point is that because of the few lines it has found it turns out that the skew angle is also wrong. (-3.15825 in this case, when it should be something close to 0.5)
I've tried to erode my input file to make characters get closer and in this case it seems to work out, but I don't feel this is best approach for situations akin to it.
This is my eroded input image:
This is the lines the HoughLinesP has found:
This time it has found a skew angle of -0.2185 degrees, which is what I was expecting but in other hand it is losing the vertical space between lines which in my humble opinion isn't a good thing.
Is there another to pre-process this kind of image to make houghLinesP get better results for scattered characters ?
Here is the source code I'm using:
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
static cv::Scalar randomColor( cv::RNG& rng )
{
int icolor = (unsigned) rng;
return cv::Scalar( icolor&255, (icolor>>8)&255, (icolor>>16)&255 );
}
void rotate(cv::Mat& src, double angle, cv::Mat& dst)
{
int len = std::max(src.cols, src.rows);
cv::Point2f pt(len/2., len/2.);
cv::Mat r = cv::getRotationMatrix2D(pt, angle, 1.0);
cv::warpAffine(src, dst, r, cv::Size(len, len));
}
double compute_skew(cv::Mat& src)
{
// Random number generator
cv::RNG rng( 0xFFFFFFFF );
cv::Size size = src.size();
cv::bitwise_not(src, src);
std::vector<cv::Vec4i> lines;
cv::HoughLinesP(src, lines, 1, CV_PI/180, 100, size.width / 2.f, 20);
cv::Mat disp_lines(size, CV_8UC3, cv::Scalar(0, 0, 0));
double angle = 0.;
unsigned nb_lines = lines.size();
for (unsigned i = 0; i < nb_lines; ++i)
{
cv::line(disp_lines, cv::Point(lines[i][0], lines[i][1]),
cv::Point(lines[i][2], lines[i][3]), randomColor(rng));
angle += atan2((double)lines[i][3] - lines[i][1],
(double)lines[i][2] - lines[i][0]);
}
angle /= nb_lines; // mean angle, in radians.
std::cout << angle * 180 / CV_PI << std::endl;
cv::imshow("HoughLinesP", disp_lines);
cv::waitKey(0);
return angle * 180 / CV_PI;
}
int main()
{
// Load in grayscale.
cv::Mat img = cv::imread("IMG_TESTE.jpg", 0);
cv::Mat rotated;
double angle = compute_skew(img);
rotate(img, angle, rotated);
//Show image
cv::imshow("Rotated", rotated);
cv::waitKey(0);
}
Cheers
I'd suggest finding individual components first (i.e., the lines and the letters), for example using cv::threshold and cv::findContours.
Then, you could drop the individual components that are narrow (i.e., the letters). You can do this using cv::floodFill for example. This should leave you with the lines only.
Effectively, getting rid of the letters might provide easier input for the Hough transform.
Try to detect groups of characters as blocks, then find contours of these blocks. Below I've done it using blurring, a morphological opening and a threshold operation.
Mat im = imread("yCK4t.jpg", 0);
Mat blurred;
GaussianBlur(im, blurred, Size(5, 5), 2, 2);
Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(3, 3));
Mat morph;
morphologyEx(blurred, morph, CV_MOP_OPEN, kernel);
Mat bw;
threshold(morph, bw, 0, 255, CV_THRESH_BINARY_INV | CV_THRESH_OTSU);
Mat cont = Mat::zeros(im.rows, im.cols, CV_8U);
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(bw, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
for(int idx = 0; idx >= 0; idx = hierarchy[idx][0])
{
drawContours(cont, contours, idx, Scalar(255, 255, 255), 1);
}
Then use Hough line transform on contour image.
With accumulator threshold 80, I get following lines that results in an angle of -3.81. This is high because of the outlier line that is almost vertical. With this approach, majority of the lines will have similar angle values except few outliers. Detecting and discarding the outliers will give you a better approximation of the angle.
HoughLinesP(cont, lines, 1, CV_PI/180, 80, size.width / 4.0f, size.width / 8.0f);
Now I have been working on the analysis of images with OpenCV, what I'm trying to do is recognize the lane dividing lines, what I do is the following:
1.I receive a image,
2. Then transform it to grayscale
3.I apply the GaussianBlur
4.After I place me in the ROI
5.I apply the canny
6.then I look for lines with hough transform Lines
7.Draw the lines obtained from hough
But I've run into a problem which is:
that recognizes no dividing lines both rail and neither recognizes the yellow lines.
I hope to help me solve this problem, you will thank a lot.
Then I put the code
#include "opencv2/highgui/highgui.hpp"
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <vector>
#include <stdio.h>
#include "linefinder.h"
using namespace cv;
int main(int argc, char* argv[]) {
int houghVote = 200;
string arg = argv[1];
Mat image;
image = imread(argv[1]);
Mat gray;
cvtColor(image,gray,CV_RGB2GRAY);
GaussianBlur( gray, gray, Size( 5, 5 ), 0, 0 );
vector<string> codes;
Mat corners;
findDataMatrix(gray, codes, corners);
drawDataMatrixCodes(image, codes, corners);
//Mat image = imread("");
//Rect region_of_interest = Rect(x, y, w, h);
//Mat image_roi = image(region_of_interest);
std::cout << image.cols << "\n";
std::cout << image.rows << "\n";
Rect roi(0,290,640,190);// set the ROI for the image
Mat imgROI = image(roi);
// Display the image
imwrite("original.bmp", imgROI);
// Canny algorithm
Mat contours;
Canny(imgROI, contours, 120, 300, 3);
imwrite("canny.bmp", contours);
Mat contoursInv;
threshold(contours,contoursInv,128,255,THRESH_BINARY_INV);
// Display Canny image
imwrite("contours.bmp", contoursInv);
/*
Hough tranform for line detection with feedback
Increase by 25 for the next frame if we found some lines.
This is so we don't miss other lines that may crop up in the next frame
but at the same time we don't want to start the feed back loop from scratch.
*/
std::vector<Vec2f> lines;
if (houghVote < 1 or lines.size() > 2){ // we lost all lines. reset
houghVote = 200;
}else{
houghVote += 25;
}
while(lines.size() < 5 && houghVote > 0){
HoughLines(contours,lines,1,PI/180, houghVote);
houghVote -= 5;
}
std::cout << houghVote << "\n";
Mat result(imgROI.size(),CV_8U,Scalar(255));
imgROI.copyTo(result);
// Draw the limes
std::vector<Vec2f>::const_iterator it= lines.begin();
Mat hough(imgROI.size(),CV_8U,Scalar(0));
while (it!=lines.end()) {
float rho= (*it)[0]; // first element is distance rho
float theta= (*it)[1]; // second element is angle theta
if ( theta > 0.09 && theta < 1.48 || theta < 3.14 && theta > 1.66 ) {
// filter to remove vertical and horizontal lines
// point of intersection of the line with first row
Point pt1(rho/cos(theta),0);
// point of intersection of the line with last row
Point pt2((rho-result.rows*sin(theta))/cos(theta),result.rows);
// draw a white line
line( result, pt1, pt2, Scalar(255), 8);
line( hough, pt1, pt2, Scalar(255), 8);
}
++it;
}
// Display the detected line image
std::cout << "line image:"<< "\n";
namedWindow("Detected Lines with Hough");
imwrite("hough.bmp", result);
// Create LineFinder instance
LineFinder ld;
// Set probabilistic Hough parameters
ld.setLineLengthAndGap(60,10);
ld.setMinVote(4);
// Detect lines
std::vector<Vec4i> li= ld.findLines(contours);
Mat houghP(imgROI.size(),CV_8U,Scalar(0));
ld.setShift(0);
ld.drawDetectedLines(houghP);
std::cout << "First Hough" << "\n";
imwrite("houghP.bmp", houghP);
// bitwise AND of the two hough images
bitwise_and(houghP,hough,houghP);
Mat houghPinv(imgROI.size(),CV_8U,Scalar(0));
Mat dst(imgROI.size(),CV_8U,Scalar(0));
threshold(houghP,houghPinv,150,255,THRESH_BINARY_INV); // threshold and invert to black lines
namedWindow("Detected Lines with Bitwise");
imshow("Detected Lines with Bitwise", houghPinv);
Canny(houghPinv,contours,100,350);
li= ld.findLines(contours);
// Display Canny image
imwrite("contours.bmp", contoursInv);
// Set probabilistic Hough parameters
ld.setLineLengthAndGap(5,2);
ld.setMinVote(1);
ld.setShift(image.cols/3);
ld.drawDetectedLines(image);
std::stringstream stream;
stream << "Lines Segments: " << lines.size();
putText(image, stream.str(), Point(10,image.rows-10), 2, 0.8, Scalar(0,0,255),0);
imwrite("processed.bmp", image);
char key = (char) waitKey(10);
lines.clear();
}
The following are the input images respectively:
Here I show two photos one that recognizes the white line and another that does not recognize the yellow line, what I require is to recognize the dividing lines because I monitor the lane, but is complicated to me and it does not recognize the presence of all dividing lines, I hope help me because I have honestly tried everything but I have not had good results.
I think it's because you are doing a bitwise addition of both probabilistic hough and regular hough transforms. This means that the outputted image will only contain lines that appear in both of these transforms. I'm pretty sure in the regular transform the line is not detected but in the probabilistic hough output the line is detected. You're best bet is to output both transforms separately and debug. I'm doing a similar project, I imagine you could include a separate ROI to exclude from the bitwise addition and that area would be along the centrum of the lane markings.
I am trying to use opencv to automatically find and locate all parking spots in an empty parking lot.
Currently, I have a code that thresholds the image, applies canny edge detection, and then uses probabilistic hough lines to find the lines that mark each parking spot.
The program then draws the lines and the points that make up the lines
Here is the code:
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace std;
int threshold_value = 150;
int threshold_type = 0;;
int const max_value = 255;
int const max_type = 4;
int const max_BINARY_value = 255;
int houghthresh = 50;
char* trackbar_value = "Value";
char* window_name = "Find Lines";
int main(int argc, char** argv)
{
const char* filename = argc >= 2 ? argv[1] : "pic1.jpg";
VideoCapture cap(0);
Mat src, dst, cdst, tdst, bgrdst;
namedWindow( window_name, CV_WINDOW_AUTOSIZE );
createTrackbar( trackbar_value,
window_name, &threshold_value,
max_value);
while(1)
{
cap >> src;
cvtColor(src, dst, CV_RGB2GRAY);
threshold( dst, tdst, threshold_value, max_BINARY_value,threshold_type );
Canny(tdst, cdst, 50, 200, 3);
cvtColor(tdst, bgrdst, CV_GRAY2BGR);
vector<Vec4i> lines;
HoughLinesP(cdst, lines, 1, CV_PI/180, houghthresh, 50, 10 );
for( size_t i = 0; i < lines.size(); i++ )
{
Vec4i l = lines[i];
line( bgrdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,255,0), 2, CV_AA);
circle( bgrdst,
Point(l[0], l[1]),
5,
Scalar( 0, 0, 255 ),
-1,
8 );
circle( bgrdst,
Point(l[2], l[3]),
5,
Scalar( 0, 0, 255 ),
-1,
8 );
}
imshow("source", src);
imshow(window_name, bgrdst);
waitKey(1);
}
return 0;
}
Currently, my main problem is figuring out how to extrapolate the line data to find the locations of each parking space. My goal is to have opencv find the parking spaces and draw out rectangles on each parking space with a number labeling the spots.
I think there are some major problems with the method I am currently using, because as shown in the output images, opencv is detecting multiple points on the line other than the 2 endpoints. That might make it very hard to use opencv to connect 2 adjacent endpoints.
I read something about using convex hull, but I am not exactly sure what it does and how it works.
Any help will be appreciated.
Here are the output images from my program:
http://imageshack.us/photo/my-images/22/test1hl.png/
http://imageshack.us/photo/my-images/822/test2lw.png/
Consider thinning your binary image, and then detect the end points and the branch points. Here is one such result based on the images provided; end points are in red and branch points are in blue.
Now you can find the locations of the parking spaces. A pair of blue dots is always connected by a single edge. Each blue dot is connected to either two or three red points. Then there are several ways to find the parking space formed by two blue dots and two red dots, the simplest is along the lines: find the closest pair of red dots where one dot is connected to a certain blue dot, and the other red point is connected to the other blue dot. This step can also be complemented by checking how close to parallel lines are the edges considered.