Implementation of comp - clojure

I'm trying to understand how this function work, which is an implementation of comp (from the chapter "Functional Programming" in the book Clojure for the Brave and True):
(defn two-comp
[f g]
(fn [& args]
(f (apply g args))))
The idea is that it takes two functions and apply them to args. What I don't understand is how the args reach the anonymous function, since they are not entered as arguments to two-comp? How can be two-comp used this way?

two-comp returns an anonymous function, which in turn takes args. Look at the body of two-comp:
(fn [& args]
(f (apply g args)))
fn creates a function, and that function definition follows. The return value of fn is what is returned from two-comp.

Related

Clojure function/macro to apply functions until one returns something other than nil

Currently I have some code like this:
(defn compute-issue [some args] (or (age-issue some args) (name-issue some args)))
More issue types are coming.
Is there something like this:
(defn compute-issue [some args] (first-not-nil [age-issue name-issue] some args))
; Where first-not-nil would be something like
(defn first-not-nil [fs & args]
(if (empty? fs)
nil
(let [result (apply (first fs) args)]
(if (nil? result)
(recur (rest fs) args)
result))))
I'm new to Clojure. Am I reinventing an existing function?
There is a similar function some-fn in clojure.core:
Takes a set of predicates and returns a function f that returns the first logical true value
returned by one of its composing predicates against any of its arguments, else it returns
logical false. Note that f is short-circuiting in that it will stop execution on the first
argument that triggers a logical true result against the original predicates.
The key differences are some-fn returns another function for the actual function application, and that function will also discard false results, which it sounds like you may not want. This is another simple way to phrase it:
(defn first-not-nil [fs & args]
(first
(for [f fs
:let [r (apply f args)]
:when (some? r)]
r)))

Variant of `some-fn` for multiple arguments

I find myself in need a function that is similar to some-fn but combines predicates that take multiple arguments.
The new function should take a set of predicates and return a function f. The function f should return the first logical true value returned by one of its composing predicates applied to all of f's arguments, or else logical false. So I should be able to do this:
((some-fn* < >) 1 2)
=> truthy
((some-fn* < >) 1 1)
=> falsey
It's easy enough to implement:
(defn some-fn* [& fs]
(fn [& args] (loop [fs fs]
(when (seq fs)
(or (apply (first fs) args)
(recur (rest fs)))))))
But it seems like such a simple thing should already exist in clojure.core. Does it? Or is there a simpler way to achieve what I need?
You can use some:
(defn some-fn* [& ps]
(fn [& args]
(some #(apply % args) ps)))

constantly function not workint in syntax quote

If I do this:
(eval (let [f (fn [& _] 10)]
`(~f nil)))
It returns 10 as expected.
Although if I do this:
(eval (let [f (constantly 10)]
`(~f nil)))
It throws an exception:
IllegalArgumentException No matching ctor found for
class clojure.core$constantly$fn__... clojure.lang.Reflector.invokeConstructor
Since both are equivalent why is the code with constantly not working?
This question has two answers, to really get it.
First, to clarify why your eval form is not giving you the expected result in the second case, note that f has been assigned to be equal to the function (fn [& _] 10). This means when that form is evaluated, the function object is again evaluated--probably not what you had in mind.
tl;dr: f is evaluted when it is bound, and again (with ill-defined results) when the form you create is eval'd.
The reason why one (the anonymous function) works, while the other fails means we have to look at some of the internals of the evaluation process.
When Clojure evaluates an object expression (like the expression formed by a function object), it uses the following method, in clojure.lang.Compiler$ObjExpr
public Object eval() {
if(isDeftype())
return null;
try
{
return getCompiledClass().newInstance();
}
catch(Exception e)
{
throw Util.sneakyThrow(e);
}
}
Try this at the REPL:
Start with an anonymous function:
user=> (fn [& _] 10)
#<user$eval141$fn__142 user$eval141$fn__142#2b2a5dd1>
user=> (.getClass *1)
user$eval141$fn__142
user=> (.newInstance *1)
#<user$eval141$fn__142 user$eval141$fn__142#ee7a10e> ; different instance
user=> (*1)
10
Note that newInstance on Class calls that class' nullary constructor -- one that takes no arguments.
Now try a function that closes over some values
user=> (let [x 10] #(+ x 1))
#<user$eval151$fn__152 user$eval151$fn__152#3a565388>
user=> (.getClass *1)
user$eval151$fn__152
user=> (.newInstance *1)
InstantiationException user$eval151$fn__152 [...]
Since the upvalues of a closure are set at construction, this kind of function class has no nullary constructor, and making a new one with no context fails.
Finally, look at the source of constantly
user=> (source constantly)
(defn constantly
"Returns a function that takes any number of arguments and returns x."
{:added "1.0"
:static true}
[x] (fn [& args] x))
The function returned by constantly closes over x so the compiler won't be able to eval this kind of function.
tl;dr (again): Functions with no upvalues can be evaluated in this way and produce a new instance of the same function. Functions with upvalues can't be evaluated like this.

What does this function definition in clojure code example do?

I am following along 'Clojure in Action' and I am confused by this :
(defn with-log [function-to-call log-statement ]
(fn [& args]
(println log-statement)
(apply function-to-call args)))
This is the segment of code that has me confused. This is what I can decipher so far:
(defn with-log [function-to-call log-statement ] ..) is defining a function with name "with-log" that takes arguments 'function-to-call' and 'log-statement' and function-to-call is a function being passed as a parameter to this function.
The next section is confusing to me : (fn [& args] .... is an anonymous function being defined here ? Is the 'with-log' function returning a new function definition ?
(fn [& args]
(println log-statement)
(apply function-to-call args))
So by calling (with-log somefunc "my label") -- is it just returing a new anonymous function ? Or is it invoking the anonymous function ?
with-log will yield a function that, when called, will do exactly what function-to-call did except with the side-effect that log-statement will be printed to *out* just before function-to-call is evaluated using the arguments given to the anonymous function.
This is an example of the Decorator Pattern - extending the behaviour of an existing function by wrapping it in another function i.e. the anonymous function created by with-log using the (fn ...) form.
In order for the decorator function with-log to work with any conceivable function-to-call, the anonymous function's argument list is specified so that it can be called with number of arguments using (fn [& args] ...). When the anonymous function calls function-to-call it 'unwraps' the argument list with the function apply).
Ways to make use of with-log might be:
((with-log some-fn "Calling some-fn") arg1 arg2)
or
(defn my-fn [a b]
(+ a b))
(def my-fn-with-logging (with-log my-fn "Calling my-fn"))
(my-fn 1 2) ; evaluates to 3
(my-fn-with-logging 1 2) ; prints "Calling my-fn" and evaluates to 3
It is returning the anonymous function, and it is not being called.
For example, this would invoke the anonymous function with the given arguments:
((with-log some-fn "log statement") arg1 arg2)
This works because the function being returned is the first item in the list, which means it gets invoked just like any other function would.
Yes, you're right. (fn ..) is a form which creates anonymous function. This piece of code, given a function f and some value s will return a function, which, when called, will print s and then invoke f:
user=> (defn with-log [function-to-call log-statement ]
(fn [& args]
(println log-statement)
(apply function-to-call args)))
#'user/with-log
user=> (with-log + "String")
#<user$with_log$fn__1 user$with_log$fn__1#147264b1>
user=> ((with-log + "String") 1 2 3)
String
6
user=>
Note the line starting with #<user$.... This is internal identifier of the anonymous function that just has been created, that is, simple call to with-log returns a function. And then we apply the same function (it is same in terms of its behavior; it will be different object in fact, because each call to with-log creates new "instance" of the same function) to a number of arguments. "String" string gets printed and then REPL shows us a result of (+ 1 2 3).
Here you can learn more about it.

is this partial function a closure?

I am discussing closure with a friend and he thinks (partial + 5) is a closure. But I think a closure is a function closing over a free variable, for example
(let [a 10]
(defn func1 [x] (+ x a))
)
then func1 is a closure. But in this case 5 is not a free variable. So which is the right answer?
partial uses a closure to make the partial function. Check out the code of partial by using (source partial) in repl and you will see that it uses closures.
(defn partial
"Takes a function f and fewer than the normal arguments to f, and
returns a fn that takes a variable number of additional args. When
called, the returned function calls f with args + additional args."
{:added "1.0"}
([f arg1]
(fn [& args] (apply f arg1 args)))
([f arg1 arg2]
(fn [& args] (apply f arg1 arg2 args)))
([f arg1 arg2 arg3]
(fn [& args] (apply f arg1 arg2 arg3 args)))
([f arg1 arg2 arg3 & more]
(fn [& args] (apply f arg1 arg2 arg3 (concat more args)))))
(partial + 5) is an anonymous function or "lambda".
Anonymous functions are often¹ called "closures" but it's an abuse of the term ; see the discussion in "What is the difference between a 'closure' and a 'lambda'?"
[¹] Maybe because in most popular languages that support them, closures and anonymous functions are created using the same language features - which renders them undistinguishable at first glance.